complexityworld分享 http://blog.sciencenet.cn/u/pb00011127

博文

利用动态图卷积网络在时序网络中发现关键节点[Appl. Sci.专栏第十八篇发表论文]

已有 2761 次阅读 2023-6-18 22:33 |个人分类:生活点滴|系统分类:论文交流

我在Applied Sciences(综合性、交叉性期刊,CiteScore=3.70IF=2.84)组织了一个Special Issue,大题目是“大数据分析进展”,比较宽泛。该专栏的推出主要是为了回应因为可获取数据和数据分析的平台、工具的快速增长给自然科学和社会科学带来的重大影响。我们特别欢迎(但不限于)下面四类稿件:(1)数据分析中的基础理论分析,例如一个系统的可预测性(比如时间序列的可预测性)、分类问题的最小误差分析、各种数据挖掘结果的稳定性和可信度分析;(2)数据分析的新方法,例如挖掘因果关系的新方法(这和Topic 1也是相关的)、多模态分析的新方法、隐私计算的新方法等等;(3)推出新的、高价值的数据集、数据分析平台、数据分析工具等等;(4)把大数据分析的方法用到自然科学和社会科学的各个分支(并获得洞见),我们特别喜欢用到那些原来定量化程度不高的学科。

投稿链接:https://www.mdpi.com/journal/applsci/special_issues/75Y7F7607U 

投稿截止时期为2023年6月30日,我们处理稿件非常快,欢迎大家投稿支持。


其中第十八篇论文已经正式发表:


Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks

Abstract

Many real-world systems can be expressed in temporal networks with nodes playing different roles in structure and function, and edges representing the relationships between nodes. Identifying critical nodes can help us control the spread of public opinions or epidemics, predict leading figures in academia, conduct advertisements for various commodities and so on. However, it is rather difficult to identify critical nodes, because the network structure changes over time in temporal networks. In this paper, considering the sequence topological information of temporal networks, a novel and effective learning framework based on the combination of special graph convolutional and long short-term memory network (LSTM) is proposed to identify nodes with the best spreading ability. The special graph convolutional network can embed nodes in each sequential weighted snapshot and LSTM is used to predict the future importance of timing-embedded features. The effectiveness of the approach is evaluated by a weighted Susceptible-Infected-Recovered model. Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods in terms of the Kendall 𝜏coefficient and top k hit rate.

论文免费下载链接:

https://www.mdpi.com/2076-3417/13/12/7272 



https://blog.sciencenet.cn/blog-3075-1392213.html

上一篇:在线导航中的信息茧房问题
下一篇:检测社会问题的一种网络分析问题[Appl. Sci.专栏第十九篇发表论文]
收藏 IP: 182.148.13.*| 热度|

1 杨正瓴

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-21 22:12

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部