等离子体科学分享 http://blog.sciencenet.cn/u/等离子体科学 俱怀逸兴壮思飞,欲上青天揽明月

博文

也说几句布朗运动 精选

已有 17772 次阅读 2011-3-19 21:32 |个人分类:学海无涯|系统分类:科研笔记| 爱因斯坦, 布朗运动, 朗之万

 

看到有关于“布朗运动”的博文。正好讲到这一章,也说几句。

 

布朗运动(Brownian motion)的研究是最后奠定原子论的基石之一。而解释这一物理现象的理论模型在不同领域中的广泛应用,具有更重要的意义。

 

早在古罗马时代(大约公元60年),著名哲学家Lucretius的科学长诗《De Rerum Natura》(英文版《On the Nature of Things》在:http://classics.mit.edu/Carus/ ,请直接copy链接)就有过关于尘埃粒子的布朗运动的粗浅描述(作为“原子”存在的证据之一)。这应该是关于布朗运动最早的描述。【西方哲学从一开始就有基于实际观察的“原子论”的学说,这与东方哲学家基于思辨认为“一尺之捶,日取其半,万世不竭”的学说,是不同的。】

 

而布朗运动得名于苏格兰植物学家Robert Brown1827年对花粉在水中的运动的观测,尽管早在1784年一位荷兰科学家就发现了酒精表面的炭粉尘埃颗粒的无规则运动。Brown的观测报告:A Brief Count of Microscopic Observations——on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies的影印本可以在这里找到:

http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf

 

布朗运动的基本物理现象是:

1)悬浮在液体中的颗粒做无规运动;

2)其对初始位置的均方根偏离与测量时间的平方根成正比。

 

最早在理论上研究布朗运动的是一位丹麦数学、天文学家Thorvald N. Thiele。他在1880年发表了一篇关于最小二乘法的论文第一次利用数学工具去寻找布朗运动的规律。后来,法国的数学家Louis Bachelier1900年在他的博士学位论文《The theory of speculation》中独立地建立了布朗运动的理论模型,提出了股票和期货市场的随机过程分析方法。这也被认为是金融数学的创立。而爱因斯坦(1905)和Marian Smoluchowski1906)分别独立地在物理上建立了布朗运动的理论模型。这个模型的成功间接地证实了原子和分子的存在,进一步将热力学定律更稳固地放在基于动理学的统计物理基础之上。

 

爱因斯坦1905年关于布朗运动的论文:《über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen》可以在这里找到:

http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_549-560.pdf

 

其英文译稿:《On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat》则可以在这里找到:

      http://users.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf

 

这个工作从热力学出发,得到“涨落—耗散定理”(文中(7)式);然后引进“迁移概率”的概念,得到后来被称为“Fokker-Planck”方程的14页最下面的结果和15页式(1)。最后得到悬浮在液体中的颗粒对初始位置的均方根偏离与测量时间的平方根成正比的结果(11),解释了Brown的观测结果。

 

后来著名的法国物理学家、数学家Paul Langevin1908年论文《Sur la the′orie du mouvement brownien》(英译稿《On the Theory of Brownian Motion》)从Stokes定律出发,写出著名的描述统计无规运动的“朗之万方程”,利用我们现在广泛使用的“平均”与“起伏”的概念,直接计算了布朗粒子对初始位置的均方根偏离,得到了爱因斯坦理论同样的结果。这个工作比起爱因斯坦的理论,物理上更直观,简洁。所以朗之万方程及其发展的方法在物理学甚至其它科学的很多领域都有广泛的应用。


P.S. :


有意思的是,Langevin的工作实际上没有得到新的结果,如果用现在“世俗”的眼光看,充其量不过是用不同的方法得到同样的结论,算不得“创新”。但是这个简单的方法,却开辟了一块新的天地。


布朗运动理论,应该是“交叉学科”的典范了。Bachelier的工作(Theory of Speculation——“投机的理论”)在当时没有引起重视,传说甚至被学术委员会投票反对,14年之后他才找到一个正式的教职。只是因为 Henri Poincaré 称赞了他的工作,他的博士论文才得到了“honorable”。但是即使是Poincaré的称赞也只是限于其推导误差Gaussion分布的方法。没有人会想到,到了1990年代,Bachelier的工作会衍生出成千上万的“hedge funds”。这些投机家们所使用的,正是Bachelier提出的布朗运动理论方法。


另一个影响世界的,是中国计划生育的理论基础——宋健的人口发展方程。这个方程也是基于布朗运动理论发展出来的分析方法。而中国政府则根据这个方程的prediction确定了“一对夫妻一个孩”的国策,完全改变了现在80后、90后们的生活。其对世界的影响,可能几十年后才知道。





https://blog.sciencenet.cn/blog-39346-424257.html

上一篇:“盐荒”
下一篇:只把春来报
收藏 IP: 117.32.153.*| 热度|

24 王先驱 文双春 吕喆 马红孺 肖重发 郭超 胡新根 孙学军 刘健 陈飞 郭桅 廖聪维 徐迎晓 许洪光 梁进 李泳 谢鑫 唐常杰 王辉辉 梁大成 李宇斌 刘全慧 lixuke2005 heydevil

该博文允许注册用户评论 请点击登录 评论 (42 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-24 14:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部