||
1988年,Springer-Verlag主持在Mathematical Intelligencer上评选10个最美数学定理,结果如下:
1. Euler’s identity, eiπ = −1
2. Euler’s formula for a polyhedron, V+ F = E + 2
3. There are infinitely many prime numbers.
4. There are only 5 regular polyhedra
5. The sum of the reciprocals of the squares of the positive integers is π2/6.
6. A continuous mapping of a closed unit disk into itself has a fixed point.
7. The square root of 2 is irrational.
8. π is a transcendental number.
9. Every plane map can be colored with just 4 colors.
10. Every prime number of the form 4n+1 is the sum of two square integers in only one way.
据说只有68个响应的,那么结果的偏见是难免了。而且,当选者的“美”不在同一层次。7太简单(不如直接列勾股定理);4是2的推论;5只是一个级数计算结果(关于π的五花八门的级数可以写满一本书);6(Brouwer不动点定理)在这儿有点儿另类;8可以认为是1的推论;9(四色定理)还没证明呢(机器玩儿的不算);10没什么意思,比它美的素数结果太多了。我最喜欢2。
至于1,也不算什么定理,不过是一个特例,但它别有趣味,可以引出别的话题……
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 18:36
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社