||
关注:
1) DFT+U参数设置
2) DFT+U焓值变化曲折问题
3) DFT+U优化过程中参数参看,如是否磁性发生变化(总磁矩)
Thanks to Ruizhi
参数设置
PREC = Accurate
ENCUT = 400.0
EDIFF = 1E-6
EDIFFG = -2E-3
#SYMPREC=1e-3
IBRION = 2
POTIM = 0.05
ISIF = 3
NSW = 100
#LSDA-plus-U
ISPIN=2
LDAU = .TRUE.
LDAUTYPE = 2
LDAUL = 3 -1
LDAUU = 4.10 0.00
LDAUJ = 0.10 0.00
LDAUPRINT = 2
LMAXMIX = 6
LASPH = T
PSTRESS = 110
ISMEAR = 1
SIGMA = 0.2
#ISYM=0
#LREAL = .FALSE.
LCHARG = FALSE
LWAVE = FALSE
参数注释:
1) LDAUPRINT = 2 【可给出是哪个原子磁性发生变化信息】
LDAUPRINT= 0 | 1 | 2 Controls the verbosity of the L(S)DA+U module.
(0: silent,
1: Write occupancy matrix to OUTCAR,
2: idem 1., plus potential matrix dumped to stdout,
Default: LDAUPRINT=0)
2)LASPH = T
Usually VASP calculates only the spherical contribution to the gradient corrections inside the PAW spheres (non-sperical contributions for the LDA part of the potential and the Hartree potential are always included).
Using LASPH = .TRUE., VASP also includes non-spherical contributions from the gradient corrections inside the PAW spheres. For VASP.4.6, these contributions are only included in the total energy, after self-consistency has been reached disregarding the aspherical contributions in the gradient corrections.
For VASP.5.X the aspherical contributions are properly accounted for in the Kohn-Sham potential as well. This is essential for accurate total energies and band structure calculations for f-elements (e.g. ceria), all 3d-elements (transition metal oxides), and magnetic atoms in the 2nd row (B-F atom), in particular if LDA+U or hybrid functionals or meta-GGAs are used, since these functionals often result in aspherical charge densities.
运行过程查看
命令:
1) grep per\ type OUTCAR_50-04
ions per type = 8 24
2) grep magnet OUTCAR_80-04 | tail
grep magnet OUTCAR_80-04 | tail
number of electron 120.0000005 magnetization 7.0678281 (总磁矩,对应Ce原子)
augmentation part -10.6433087 magnetization 4.6066496 (扩展部分)
number of electron 120.0000005 magnetization 7.0674828
augmentation part -10.6395810 magnetization 4.6076461
number of electron 120.0000005 magnetization 7.0674174
augmentation part -10.6367936 magnetization 4.6080527
number of electron 120.0000004 magnetization 7.0674384
augmentation part -10.6383120 magnetization 4.6074621
number of electron 120.0000004 magnetization 7.0674384
augmentation part -10.6383120 magnetization 4.6074621
3) tail -n 1 OSZICAR_*-04
==> OSZICAR_120-04 <==
20 F= -.11464875E+03 E0= -.11465805E+03 d E =-.142515E+01 mag= 7.9948 (8个Ce原子自旋向上)
==> OSZICAR_130-04 <==
20 F= -.10944735E+03 E0= -.10943073E+03 d E =-.840084E+00 mag= 7.2862
[yexq@admin from13g]$ cd ../
[yexq@admin ceh3-beta-pm3n-8f]$ tail -n 1 OSZICAR_*-04
==> OSZICAR_0.001-04 <==
1 F= -.13880229E+03 E0= -.13881339E+03 d E =-.138802E+03 mag= 7.9961
==> OSZICAR_100-04 <==
1 F= -.11406309E+03 E0= -.11406035E+03 d E =-.114063E+03 mag= 6.8794
==> OSZICAR_10-04 <==
1 F= -.13666787E+03 E0= -.13667878E+03 d E =-.136668E+03 mag= 7.9957
==> OSZICAR_130-04 <==
14 F= -.10943334E+03 E0= -.10941671E+03 d E =-.779024E-04 mag= 7.2862
==> OSZICAR_150-04 <==
1 F= -.10582828E+03 E0= -.10581272E+03 d E =-.105828E+03 mag= 7.1590
==> OSZICAR_180-04 <==
1 F= -.10051091E+03 E0= -.10049700E+03 d E =-.100511E+03 mag= 6.9571
==> OSZICAR_200-04 <==
1 F= -.97032323E+02 E0= -.97019700E+02 d E =-.970323E+02 mag= 6.8093
==> OSZICAR_20-04 <==
1 F= -.13455620E+03 E0= -.13456692E+03 d E =-.134556E+03 mag= 7.9967
==> OSZICAR_50-04 <==
1 F= -.12837383E+03 E0= -.12838406E+03 d E =-.128374E+03 mag= 7.9995
==> OSZICAR_80-04 <==
1 F= -.11778161E+03 E0= -.11777446E+03 d E =-.117782E+03 mag= 7.0674 (7个Ce原子自旋向上)
https://baijiahao.baidu.com/s?id=1636837921100531467&wfr=spider&for=pc
、ISPIN 参数确定自洽计算是否考虑自旋极化。若考虑自旋极化,自旋向上和自旋向下的电子将被当作不同的对象进行处理,此时电子步耗时会增加 (有时还会导致自洽迭代步数增加,甚至导致自洽迭代不收敛) 。
对于暂不确定是否有磁性的体系,建议在结构优化时打开 ISPIN =2,并设置合理的 MAGMOM 值。
若进行分步优化,我自己在第一步低精度优化时会考虑关掉自旋极化 (即 ISPIN = 1) (对于小体系,我可能会在此时直接打开 ISPIN=2 ) ,而在后面高精度结构优化时打开 ISPN=2。
4) 如果体系打开了自旋极化 (ISPIN=2),还会给出考虑了磁态后所属的点群。
MAGMOM 的设置会影响这一对称性。
要提一句的是,MAGMOM 的正负值不影响磁态所属点群,其绝对值才影响磁态所属点群。以 CrI3 结构为例,CrI3 属于 D3d 点群。若 MAGMOM = 6*0 2*3,此时磁态属于 D3d 点群。若把其中一个 Cr 原子初始磁矩设为设为负数,即 MAGMOM = 6*0 3 -3,此时磁态依然属于 D3d 点群。若改变一下 Cr 原子初始磁矩大小,比如 MAGMOM=6*0 3 3.5,此时磁态属于 D3 点群。
4、固定某个晶格的优化:通过修改 VASP 源代码 constr_cell_relax.F 文件,实现一些 VASP 手册中没有提到的结构优化方式,比如固定特定晶格的优化 (目前个人认为也能够实现固定特定晶格夹角的优化,未来若实现了这一功能,会发布详细的讨论及说明) 。如何实现固定特定晶格的优化,可以参考博文:http://blog.wangruixing.cn/2019/05/05/constr/ 。
6) MAGNE:OSZICAR中最后一个 mag 对应的能量。为最后给出的体系的总磁矩。
7) Edisp:OUTCAR 中最后一个 Edisp 对应的能量。为考虑了 vdw 校正,最后给出的 vdw 校正能量。若不设置 vdw 校正,则输出 “--” 。
2、若体系弛豫是打开了自旋极化 (ISPIN=2),还需要搜集整理磁矩相关的信息。
mag_tot:OSZICAR中最后一个 mag 对应的能量。为最后给出的体系的总磁矩。即为上一个截图中的 MAGNE。ISPIN:若设置了 ISPIN=1,或者每个原子磁矩绝对值都小于 0.01,则该值为 1。atom_nam:元素符号。atom_mag:OUTCAR 中最后一个离子步结束后给出的原子磁矩。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2023-9-29 14:13
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社