教员休息室分享 http://blog.sciencenet.cn/u/antq 一去二三里,烟村四五家,亭台六七座,八九十枝花。

博文

看着圆圆的月亮,想起了多年前的一个问题

已有 7229 次阅读 2013-9-18 23:02 |个人分类:数理|系统分类:科研笔记

         中秋节就要到了,看着那圆圆的月亮,有心却也无力联想那些“举杯邀明月”,“千里共婵娟”的美妙词句了。脑海里飘出的,却是多年前思考过的一个数学问题,真是职业病,没情趣!

      圆圆的月亮是个球体,球体的表面就是球面,准确地说是二维球面,数学上记作 $S^2$ 。我们要谈论的话题,是高维球面 $S^n$ 上的向量场。

      若 $n$ 为偶数,则 $S^n$ 上的向量场必有零点。只有当 $n$ 为奇数时, $S^n$ 上才存在非奇异向量场。奇数维球面上的非奇异向量场是否一定有周期轨道呢?不一定,有反例。这就产生了一个有趣的问题:怎样的非奇异向量场有周期轨道?这个问题很难,先从简单情形说起。

      设 $S^{2n-1}$ $R^{2n}$ 中的单位球面(半径大小其实无所谓)。对任意 $x\in S^{2n-1}$ ,记 $\upsilon (x)$ 为单位法向量,又记 $J$ $R^{2n}$ 中的标准辛矩阵,则 $J\upsilon (x)$ $S^{2n-1}$ 上的 $Hanilton$ 向量场。这个向量场的每条轨道都是周期的,表达式也可以算出来。

      讨论不动点问题时,恒等映射是最简单的,每个点都是不动点。对于那些由恒等映射作摄动生成的映射,也容易得出不动点的存在性。那么,研究球面上非奇异向量场的周期轨道时,似乎也应该以 $J\upsilon (x)$ 为参照,讨论那些与 $Hanilton$ 向量场“接近”的向量场。总感觉下述结论是成立的:

      结论:设 $V(x)$ $S^{2n-1}$ 上的非奇异向量场, $V(x)$ 与 $J\upsilon (x)$ 夹角为锐角,则 $V(x)$ 有周期轨道。

      究竟成立不成立,不知道,猜猜而已。这个问题应该很有趣,但不会简单。这个问题也与流形结构有关,环面上存在这样的向量场,所有轨道都是周期的,但轻微扰动之后,周期轨道全部被破坏了。



https://blog.sciencenet.cn/blog-112841-726017.html

上一篇:观图有感
下一篇:此词一出,余词尽废
收藏 IP: 180.110.121.*| 热度|

2 徐传胜 赵甫荣

该博文允许注册用户评论 请点击登录 评论 (4 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-27 01:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部