最近,科学家通过对球粒陨石的地球化学同位素成分分析,发现了在地球早期形成过程中Cr向地核分异的同位素证据,这对于认识地核中的成分和地球早期演化具有一定的意义。这一结果发表在2011年3月19日出版的《Science》杂志上,著名地球化学家William F. McDonough(Homepage: http://www.geol.umd.edu/~mcdonoug/ )并专门撰写了一篇短文介绍该成果。
Fig.1 δ53/52Cr versus δ50/52Cr/(–2) in chondrites.
早期太阳系中冷凝和蒸发过程可能导致Cr的同位素分异以及请同位素的亏损。Chainpur陨石球粒中重同位素的富集显示了这样的效应(Fig.1)。如果这是事实的话,那么这样的过程应该同样影响着其他的元素,尤其是那些比Cr挥发性更强的元素。Zn和Cu都比Cr挥发性强 [凝结温度:Tc(Zn)=726K,Tc(Cu)=1037, Tc(Cr)=1296K (9)]。另外,研究表明Zn同位素在蒸发过程中会分异(17-19)。但是与Cr(13)不同的是,Cu(20)和Zn(21)均显示相反的挥发性趋势。这一现象在碳质球粒陨石中最为明显。Fig 2A和B显示δCr与δCu和δZn呈反相关性(anticorrelated)关系。而且,δCu和δZn与难容/挥发性元素比[Mg/Cu,Mg/Zn, Tc(Mg) =1336 K (9)] 呈负相关性特征(Fig.2D&E),但是δCr与Mg/Cr呈正相关性(Fig.2F)。最重要的是,δCr,δZn和δCu都和与质量无关的分异示踪剂△17O呈正相关性 (Fig. 2C) (13, 20-21),这表明在早期太阳星云中存在大规模的两个储库的混合作用,其中一个储库富集Cr的轻同位素、Zn和Cu的重同位素以及高△17O,另一个则富集Cr的重同位素、Zn和Cu的轻同位素以及低△17O。Cr与Cu、Zn的行为差异以及他们与△17O的关系,都反驳了蒸发作用引起同位素分异的观点,而与Luck et al.(22)的观点是一致的。
Fig.2 Reverse volatility trend shown by anticorrelations between δCr/amu and δCu/amu (A) and δCr/amu and δZn/amu (B), as well as by anticorrelations of δCu/amu and δZn/amu with refractory/volatile elemental ratios (Mg/Cu and Mg/Zn) (D and E), in contrast to positive correlation between δCr/amu and Mg/Cr (F).
Fig.3 Cr isotopic composition in the BSE, the bulk Earth, and Earth’s core as a function of the percentage of Cr represented by the reservoir (38% of the Earth Cr is in the BSE and 62% in Earth’s core).
Fig.4 Calculated equilibrium Cr isotope fractionation (103lnα ≈ ΔδCr/amu between two phases) of eskolaite (Cr2O3), magnesiochromite (MgCr2O4), olivines, pure Cr metal, daubreelite (FeCr2S4), and CrS relative to Fe15Cr as a function of temperature relevant to core formation.
↵W. F. McDonough, in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier-Pergamon, Oxford, UK, 2003), vol. 2, pp. 547–568.
↵A. E.Ringwood, T.Kato, W.Hibberson,N.Ware,High-pressure geochemistry of Cr, V and Mn and implications for the origin of the Moon. Nature347,174 (1990).doi:10.1038/347174a0 CrossRef
↵C. J.Allègre, J. P.Poirier, E.Humler, A. W.Hofmann, The chemical composition of the Earth. Earth Planet. Sci. Lett.134, 515 (1995).doi:10.1016/0012-821X(95)00123-T CrossRefWeb of Science
↵H. Palme, H. O'Neill, in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier-Pergamon, Oxford, UK, 2003), vol. 2, pp. 1–38.
↵B. J.Wood, J.Wade,M. R.Kilburn,Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta72,1415 (2008).doi:10.1016/j.gca.2007.11.036 CrossRefWeb of Science
↵C. K.Gessmann, D. C.Rubie,The origin of the depletions of V, Cr and Mn in the mantles of the Earth and Moon. Earth Planet. Sci. Lett.184,95 (2000).doi:10.1016/S0012-821X(00)00323-X CrossRefWeb of Science
↵N. L.Chabot,C. B.Agee, Core formation in the Earth and Moon: New experimental constraints from V, Cr, and Mn. Geochim. Cosmochim. Acta67, 2077 (2003).doi:10.1016/S0016-7037(02)01272-3 CrossRefWeb of Science
↵J.Wade,B. J.Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett.236, 78 (2005).doi:10.1016/j.epsl.2005.05.017 CrossRefWeb of Science
↵K.Lodders,Solar system abundances and condensation temperatures of the elements. Astrophys. J.591, 1220 (2003).doi:10.1086/375492 CrossRefWeb of Science
↵M. J.Drake,H. E.Newsom, C. J.Capobianco, V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies. Geochim. Cosmochim. Acta53,2101 (1989).doi:10.1016/0016-7037(89)90328-1 CrossRefWeb of Science
↵M. J. Walter, H. E. Newsom, W. Ertel, A. Holzheid, in Origin of the Earth and Moon, R. M. Canup, K. Righter, Eds. (Univ. of Arizona Press, Tucson, AZ, 2000), pp. 265–289.
↵A. S.Ellis,T. M.Johnson,T. D.Bullen, Chromium isotopes and the fate of hexavalent chromium in the environment. Science295, 2060 (2002).doi:10.1126/science.1068368pmid:11896274 CrossRefMedlineWeb of Science
↵Materials and methods are available as supporting material on Science Online.
↵We define the Cr isotopic fractionation per atomic mass unit as δCr/amu = δ50/52Cr/(–2), where δ50/52Cr is parts per thousand deviation in 50Cr/52Cr of the sample relative to the Cr standard SRM 979 (15). Literature data for Cu and Zn isotopes were treated similarly as δCu/amu (20) and δZn/amu 21).
↵F.Moynier, F.Albarede, G.Herzog, Isotopic composition of zinc, copper, and iron in lunar samples. Geochim. Cosmochim. Acta70, 6103 (2006).doi:10.1016/j.gca.2006.02.030 CrossRefWeb of Science
F.Moynieret al., Isotopic fractionation of zinc in tektites. Earth Planet. Sci.Lett.277, 482 (2009).doi:10.1016/j.epsl.2008.11.020 CrossRef
↵F.Moynier et al.,Volatilization induced by impacts recorded in Zn isotope composition of ureilites. Chem. Geol.276,374 (2010).doi:10.1016/j.chemgeo.2010.07.005 CrossRefWeb of Science
↵J. M.Luck, D. B.Othman, J. A.Barrat,F.Albarede,Coupled 63Cu and 16O excesses in chondrites. Geochim. Cosmochim. Acta67, 143 (2003).doi:10.1016/S0016-7037(02)01038-4 CrossRefWeb of Science
↵J. M.Luck, D. B.Othman, F.Albarede,Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim.Acta69,5351 (2005).doi:10.1016/j.gca.2005.06.018 CrossRefWeb of Science
↵R. N.Clayton, T. K.Mayeda, Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta63,2089 (1999).doi:10.1016/S0016-7037(99)00090-3 CrossRefWeb of Science
↵C.Fitoussi, B.Bourdon, T.Kleine, F.Oberli, B. C.Reynolds, Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar and for Si in the Earth’s core. Earth Planet. Sci. Lett.287, 77 (2009).doi:10.1016/j.epsl.2009.07.038 CrossRefWeb of Science
↵R.Chakrabarti, S.Jacobsen,Silicon isotopes in the inner Solar System: Implications for core formation, solar nebular processes and partial melting. Geochim. Cosmochim.Acta74,6921 (2010). doi:10.1016/j.gca.2010.08.034 CrossRefWeb of Science
↵E.Schauble, G. R.Rossman, H. P.TaylorJr.., Theoretical estimates of equilibrium chromium-isotope fractionations. Chem. Geol.205, 99 (2004).doi:10.1016/j.chemgeo.2003.12.015 CrossRefWeb of Science
↵B. J.Wood,Accretion and core formation: Constraints from metal-silicate partitioning. Philos. Trans. R. Soc. London Ser. A366, 4339 (2008).doi:10.1098/rsta.2008.0115pmid:18826926 Abstract/FREE Full Text
↵A.Corgne, S.Keshav, B. J.Wood, W. F.McDonough, Y.Fei,Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim. Cosmochim.Acta72, 574 (2008).doi:10.1016/j.gca.2007.10.006 CrossRefWeb of Science
↵Y.Ricard, O.Sramek, F.Dubuffet,A multi-phase model of runaway core-mantle segregation in planetary embryos. Earth Planet. Sci. Lett.284,144 (2009).doi:10.1016/j.epsl.2009.04.021 CrossRef
↵J.Monteux, Y.Ricard,N.Coltice, F.Dubuffet,M.Ulvrova,A model of metal-silicate separation on growing planets. Earth Planet. Sci. Lett.287,353 (2009).doi:10.1016/j.epsl.2009.08.020 CrossRef
↵T. W.Dahl, D. J.Stevenson,Turbulent mixing of metal and silicate during planet accretion — And interpretation of the Hf-W chronometer. Earth Planet. Sci. Lett.295,177 (2010).doi:10.1016/j.epsl.2010.03.038 CrossRefWeb of Science
↵J. F.Rudge, T.Kleine, B.Bourdon, Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci.3,439 (2010).doi:10.1038/ngeo872 CrossRefWeb of Science
↵R. N.Clayton,Solar System: Self-shielding in the solar nebula.Nature415,860 (2002).doi:10.1038/415860b
H.Yurimoto, K.Kuramoto, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science305,1763 (2004).doi:10.1126/science.1100989pmid:15375265 Abstract/FREE Full Text
↵J. R.Lyons, E. D.Young,CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature435,317 (2005).doi:10.1038/nature03557pmid:15902251 CrossRefMedline
↵A.Trinquier, J.-L.Birck, C. J.Allègre,Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J.655, 1179 (2007).doi:10.1086/510360 CrossRefWeb of Science
↵Q. Z.Yin et al., Lunar Planet. Sci. Conf.40, 2006 (2009).↵
F.Moynier et al., Ca isotope effects in orgueil leachates and the implications for the carrier phases of 54Cr anomalies. Astrophys. J.718, L7 (2010).doi:10.1088/2041-8205/718/1/L7 CrossRefWeb of Science
↵G. W.Kallemeyn, J. T.Wasson,The compositional classification of chondrites—I. The carbonaceous chondrite groups. Geochim. Cosmochim. Acta45,1217 (1981).doi:10.1016/0016-7037(81)90145-9 CrossRefWeb of Science
K. Lodders, B. Fegley Jr., The Planetary Scientist’s Companion (Oxford Univ. Press, Oxford,1998).
↵Y.Wang, W. B.Hsu,Petrology and mineralogy of the Ningqiang carbonaceous chondrite. Meteorit. Planet. Sci.44,763 (2009).doi:10.1111/j.1945-5100.2009.tb00767.x CrossRefWeb of Science
We acknowledge NASA funding (LASER grant NNX09AM64G to F.M. and Cosmochemistry grant NNX08AG57G and Origins of Solar Systems grant NNX09AC93G to Q.-Z.Y.) and NSF funding (grants EAR0643286 and EAR0711411 to E.S.). We thank B. Jacobsen for his assistance in the laboratory; J. Wasson, A. Rubin, and J. Wimpenny for helpful discussions; and two reviewers for their insightful and constructive comments.