yifeier12的个人博客分享 http://blog.sciencenet.cn/u/yifeier12

博文

[转载]武新:大数据架构及行业大数据应用

已有 2970 次阅读 2022-10-10 12:23 |个人分类:信创|系统分类:观点评述|文章来源:转载

       有幸和武新博士做过交流,他在Oracle、南大通用、华为高斯都担任要职,是深耕数据库领域的行业专家。他现在已离开南大通用,现任易鲸捷CEO。下文是2014年7月14日来自大数据100分的一篇访谈实录,是一篇互联网公开的文章。按照科学网发布要求,做了细微文字修改和删减,引用以备研究后查。

        武新,南大通用高级副总裁兼CTO,法国奥尔良大学和法国国家科研中心博士;南大通用GBASE系列数据库产品的总设计师。在著名的甲骨文公司任职12年,是世界顶级的Oracle数据库专家。对目前最新兴的列存储技术、压缩技术、SQL优化技术、大型分布式系统等有长期研究和开发经验。曾参与法国家乐福超市、雷诺汽车公司、空客飞机公司、法国航空公司、法国通讯公司等数据库管理的技术支持、咨询和指导工作。

以下为分享实景全文:

主持人:请先介绍下自己和正在做什么。

武新:我85年出国,08年回国。90年代初开始跟Oracle数据库打交道,回国之前在Oracle公司(法国)工作了12年,主要做数据库核心技术的支持、架构、咨询工作。回国后带团队设计开发了GBase 8a列存储数据库、GBase 8a MPP Cluster并行数据库集群以及一些配套工具。这两款产品在过去的3年里已经开始在国内不同行业使用,目前势头很不错。当时开发这些产品的目的是面向结构化数据分析应用的,主要是想用新的技术和架构在数据库市场跟传统行存储数据库竞争,分一块蛋糕。没想到的是,这几年云计算、大数据开始火起来了,所以我们的产品也被推上了风口浪尖。我们期望的“天时地利人和”也许能帮助GBase在数据分析领域占有一席之地。我现在带领大概200人做研发和技术支持,还在搞新技术,很开心。

我今天跟大家分享些我们总结的底层数据处理技术的发展趋势和正在经历的巨大变革。这个领域过去5年发展很快、热度很高,目前还在起步阶段。我今天是来学习的,讲的内容更多是抛砖引玉,感谢大家一起讨论并指正!

先讲讲数据,以及大数据对数据处理技术的压力,然后分析为什么这几年数据处理技术上的创新很多。 

1、数据价值的发现与使用

先不说什么是大数据,这个争议很多,我也说不清楚。不过我个人认为在大数据的4个V中,最显著的特征应该是Value(价值),其他几个V都很模糊。也就是说,不管数据多大,是什么结构,来源如何,能给使用者带来价值的数据是最重要的数据。我们都知道对数据价值的挖掘一直是用户在做的事情,这个在IT出现之前古人已经在实践了,而且有不少成功案例。“眼观六路,耳听八方”可能是最形象的数据采集方法。我跟数据打了20多年的交道,从来没感觉到搞数据的地位有今天这么高。 那么到底什么变了,让我们这么热衷“大数据”?我感觉是整个社会对数据的认知变了,开玩笑说大数据是什么很难说清楚,但它目前最大的贡献至少是让社会各个层面开始认识到数据的重要性,包括最高领导和底层的老百姓。奥巴马搞了个“Big Data Initiative”,有点类似布什当年的“Information Highway”(这个推动了互联网的发展),让世界发现美国人在动真格了。目前大家基本达成共识:数据象石油、煤一样是宝贵的资产,其内在的价值非常巨大。另外一个显著的贡献无疑是互联网企业对于数据的巧妙使用和价值体现,这里面的案例就很多了。 

2、数据处理技术的回顾

互联网的数据“大”是不争的事实,现在分析一下数据处理技术面临的挑战。目前,除了互联网企业外,数据处理领域还是传统关系型数据库(RDBMS)的天下。传统RDBMS的核心设计思想基本上是30年前形成的。过去30年脱颖而出的无疑是Oracle公司。全世界数据库市场基本上被Oracle、IBM/DB2、Microsoft/SQL Server 垄断,其他几家市场份额都比较小。SAP去年收购了Sybase,也想成为数据库厂商。有份量的独立数据库厂商现在就剩下Oracle和Teradata。开源数据库主要是MySQL、PostgreSQL,除了互联网领域外,其他行业用的很少。这些数据库当年主要是面向OLTP交易型需求设计开发的,是用来开发人机会话应用为主的。这些传统数据库底层的物理存储格式都是行存储,比较适合数据频繁的增删改操作,但对于统计分析类的查询,行存储其实效率很低。在这些成熟的数据库产品中,有两个典型特例:一个是Teradata,一个是Sybase IQ。

Teradata一开始就使用MPP(Massive Parallel Processing)架构,以软硬一体机的产品方式提供给客户,其定位是高端客户的数据仓库和决策分析系统,Teradata在全世界的客户只有几千个。在这个数据分析高端市场上,Teradata一直是老大,在数据分析技术上Oracle和IBM打不过Teradata。Sybase IQ是一款最早基于列存储的关系型数据库产品,其定位跟Teradata类似,不过是以软件方式销售的。Teradata和Sybase IQ在数据分析应用上的性能其实都比Oracle,DB2等要普遍好。 

图1 数据库发展历史

3、数据增长加速,数据多样化,大数据时代来临

现在看看为什么数据的量突然在快速增长。如果说现在是大数据时代了,其实是数据来源发生了质的变化。在互联网出现之前,数据主要是人机会话方式产生的,以结构化数据为主。所以大家都需要传统的RDBMS来管理这些数据和应用系统。那时候的数据增长缓慢、系统都比较孤立,用传统数据库基本可以满足各类应用开发。互联网的出现和快速发展,尤其是移动互联网的发展,加上数码设备的大规模使用(CCD、CMOS技术的大规模产业化),今天数据的主要来源已经不是人机会话了,而是通过设备、服务器、应用自动产生的。传统行业的数据同时也多起来了,这些数据以非结构、半结构化为主,而真正的交易数据量并不大,增长并不快。机器产生的数据正在几何级增长,比如基因数据、各种用户行为数据、定位数据、图片、视频、气象、地震、医疗等等。 另外,我们每个人也在不知不觉中不断产生着大量的数据(比如这个论坛,除了我正在写的内容,后台可以产生10倍以上的数据和衍生的信息:谁在关注、在哪里、关注的这些人有哪些共性、用的是什么终端。系统甚至可以实时分析出大家对我讲的内容情绪是什么,可以预测最终给打多少分等。如果我有这类实时的系统反馈,那么可以实时调整要讲的内容等等,想象空间可以很大)。所谓的“大数据应用”主要是对各类数据进行整理、交叉分析、比对,对数据进行深度挖掘,对用户提供自助的即席、迭代分析能力。还有一类就是对非结构化数据的特征提取(指纹、图像、语音自动识别、基因数据比对等),以及半结构化数据的内容检索(搜索)、理解(语义分析)等。传统数据库对这类需求和应用无论在技术上还是功能上都几乎束手无策。这样其实就给类似Hadoop的技术和平台提供了很好的发展机会和空间。互联网公司自然就选择能支撑自己业务的开源技术了,反过来又推动了开源技术的快速发展。 

熊:武博士很清晰的说明了数据类型、数据库研发需求从互联网时代到移动互联网时代的改变,致使产品格局、市场主体发生变化。

4、新的数据处理技术、产品和创新

为了应对数据处理的压力,过去十年间在数据处理技术领域有了很多的创新和发展。除了面向高并发、短事务的OLTP内存数据库外(Altibase、Timesten),其他的技术创新和产品都是面向数据分析的,而且是大规模数据分析的,也可以说是大数据分析的。在这些面向数据分析的创新和产品中,除了基于Hadoop环境下的各种NoSQL外,还有一类是基于Shared Nothing架构的面向结构化数据分析的新型数据库产品(可以叫做NewSQL),如:Greenplum(EMC收购),Vertica(HP 收购),Asterdata(TD 收购),以及我们在国内开发的GBase 8a MPP Cluster等。目前可以看到的类似开源和商用产品达到几十个,而且还有新的产品不断涌出。一个有趣的现象是这些新的数据库厂商多数都还没有10年历史,而且发展好的基本都被收购了。收购这些新型数据库厂商的公司,比如EMC、HP,都希望通过收购新技术和产品进入大数据处理市场,是新的玩家。SAP除了收购Sybase外,自己开发了一款叫HANA的新产品,这是一款基于内存、面向数据分析的内存数据库产品。

这类新的分析型数据库产品的共性主要是:

-架构基于大规模分布式计算(MPP)

-硬件基于X86 PC服务器

 -存储基于服务器自带的本地硬盘

 -操作系统主要是Linux

 -拥有极高的横向扩展能力(scale out)、内在的故障容错能力、数据高可用保障机制,能大大降低每TB数据的处理成本,为“大数据”处理提供技术和性价比支撑。

后面要介绍MPP关系型数据库与Hadoop/NoSQL之间各自的优点和应用场景。

总的来看,数据处理技术进入了一个新的创新和发展高潮,机会很多。这里的主要原因是一直沿用了30年的传统数据库技术遇到了技术瓶颈,而市场和用户的需求在推动着技术的创新,并为此创造了很多机会。在大数据面前,越来越多的用户愿意尝试新技术和新产品,不那么保守了,因为大家开始清晰地看到传统技术的瓶颈,选择新的技术才有可能解决他们面临的新问题。现在的总体趋势是在数据量快速增长、多类数据分析并存的需求压力下,数据处理技术朝着细分方向发展,过去30年一种平台满足所有应用需求的时代已经过去。我们必须开始根据应用需求和数据量选择最适合的产品和技术来支撑应用。世界数据处理市场格局正在发生革命性的变化,传统数据库(OldSQL)一统天下变成了OldSQL+NewSQL+NoSQL+其他新技术(流、实时、内存等)共同支撑多类应用的局面。在大数据时代,需要的是“八仙过海”,是数据驱动最优平台和产品的选择。 

图2 数据处理的市场格局变化

我们正在迎来30年一遇的数据处理技术发展高峰期,30年前的上个高峰造就了十几家世界级的数据库厂商,其中的Oracle 市值超过千亿美金,员工超过10万人。互联网已经造就了像Google这样用数据创造价值的辉煌企业,其市值已经超过了Oracle。 Google是用数据+技术快速创造了成功,而Oracle是用产品+服务不断积累了成功。不同的模式,不同的物种,未来如何,让我们拭目以待吧。

5、MPP关系型数据库(New SQL)与Hadoop的非关系型数据库(NoSQL)

新的技术主要是MPP架构的新型数据库和Hadoop生态环境,我对MPP比较熟悉,Hadoop略知一点,主要谈谈MPP的优势。

大数据存储技术路线最典型的共有三种:

第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Share Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。 

图 3 MPP架构图

第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。

第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。

6、数据仓库的案例

个人对数据仓库比较熟悉,所以可讲讲。我们拿大家熟悉的数据仓库(Data Warehouse=DW)来看看数据分析的价值。在互联网高速发展之前,无论是电信运营商,还是大银行、保险公司等都花费了巨额资金建立了自己的企业级数据仓库。这些仓库主要是为企业决策者生成企业的一些关键指标(KPI),有的企业有几千张、甚至上万张KPI报表,有日表,周表,月表等等。这些系统有几个主要特征: 

-技术架构主要基于传统RDBMS+小型机+高端阵列(就是大家说的IOE),当然数据库有部分DB2、Teradata等。

-报表基本都是固定的静态报表,产生的方式是T+1(无法即时产生)。

-数据量增长相对缓慢,DW的环境变化很少。

-最终用户只能看汇总的报表,很少能够基于汇总数据做动态drilldown(钻取)。

-多数领导基本上认为花了很多钱,但看不出是否值得做,有鸡肋的感觉。最后大家对大量的报表都视而不见了。

这类系统属于“高富帅”,是有钱的企业给领导用的。最后,目前多数企业和部门根本就没有数据仓库。其实大家对传统数据的分析还没做得太好、还没有普及,现在又遇上了大数据。大家往往会问这类数据仓库对企业是不是真正有用?我认为是的。关键还是如何把数据用好。

用3个案例,讲讲数据分析能力和分析结果的巧妙使用比数据大更重要。

第一个是个亲身经历过的案例:在90年代后期,法国电信决定建立自己的核心数据仓库(项目的名字很有诗意,叫“Symphony”),把当时法国用户全部的话单数据(固网电话,那时还没有现在的移动手机)汇集到一个数据库中,用话单数据跟用户的其他属性做交叉统计,看看有什么消费行为和规律。项目需求是负责Marketing的部门提出的,技术部门负责实施。这个项目当时在世界上是最大的民用数据库,30TB数据规模,光磁盘阵列就占了很大的一个机房。经过大量的投资和艰苦的建设(第一期使用的是Oracle 7, 刚开始有分区功能),第一批统计数据终于跑出来了。我记得最清楚的一个是通话时长的分布。 大家惊奇的发现有很大一部分通话不超过1分钟(大概是30%以上,不记得准确的数字了),而且跟用户其他特征关联不大。随后,为了推动消费,Marketing部门想出了一招,很快法国电信推出广告,大致是“为了给大家提供更好的社交便利,我们决定从xx日起降低电话通讯费用30%,大家可以多打电话,可多跟家人、朋友聊天了……”。从广告发布的第二个月开始,统计显示大家打电话的次数增加了,这给法电带来了更多的收入。这里面的猫腻是第一分钟的话费没有降,是从第二分钟开始降低30%,而大家觉得打电话便宜了,自然打的次数就多了。

第二个案例是个相反的案例,说明技术平台对需求的满足有时很难。这个案例不是自己经历过的,是听比较靠谱的朋友讲的。大家每年过春节都发很多短信。运营商因此挣很多钱。中国早就是世界上短信第一大国。据说有一年的春节期间,某电信运营商的老大突然问IT部门老大要每个小时一共发了多少短信的实时统计数据。IT老大找底下的运营部门要,居然没有人能把这个简单的数据按时统计出来。大家可想像那个电信运营商老大是什么反应:投资了上百亿的系统,竟然连个这么简单的问题都回答不了。我分析当时的原因可能有2个:一是运营商是按省份建立数据仓库的,而全国的数据需要汇总所有省份的统计,很难;二是在每个省的数据仓库里统计这个数据没有可用的报表,临时用SQL统计可能要跑很长时间(虽然是个简单的select count(*), 但要全表扫描肯定不会快的)。这是个典型的技术拖了需求后腿的案例。

第三个案例也是自己经历过的,没有时间在线讲,放在这里供大家参考。这是法国一家著名超市集团在90年代就通过A/B试验和数据分析总结出的一个商品在超市最佳摆放位置的案例。这个案例肯定没有比大家都知道的“尿布与啤酒”那么经典,但实用性很强,今天仍然在使用,大家不信下次可以去超市买东西时验证下。问题的起源是“针对同一类型中不同品牌、不同价格、不同利润的商品,摆在货架的什么位置最容易销售出去?”。为了科学的回答这个问题,这家超市组织了真实试验以获得真实数据。试验很简单,比如把1个商品先摆在货架高处,然后摆在中间、最后摆在底下的位置,每次摆放的时间一样长。试验期间不断收集不同商场的销售数据,最后的统计结果发现当把商品摆放在跟多数人视野水平高度接近的位置时,商品卖的最好。据说后来还咨询了心里学专家解释这个现象,原因好像大家无意中关注的重点就是视野的水平方向。大家可以试验下,今天多数超市都把最贵或者利润最高的商品放在跟多数人视野水平高度接近的位置,而最便宜的同类商品放在最底层,其他的放在最高层。当然,这个规律可以进一步细化,比如给小孩的糖果都摆的比较低、在结帐台附近等等。知道了这个规律,大家可以省些钱的,哈哈!

从这3个案例可以看出,在没有“大数据”概念之前,大家已经在用不同手段从数据中获得有价值的信息并推动了企业的业务发展。今天的“大数据”可能是把数据挖掘方法、用数据思维的方式更广泛的使用而已。

7、数据处理技术的核心问题到底是什么?

其实我们一直面临着数据处理中最核心、最大的问题,那就是性能问题。性能不好的技术和产品是没有生命力的。数据处理性能问题不是因为大数据才出现,也不会有了大数据技术而消失。这是个“道高一尺,魔高一丈”的问题:处理性能的提升将促进对数据价值的挖掘和使用,而数据价值挖掘的越多、越深入,对处理技术要求就越高。上面的案例其实已经说明了因为性能问题,目前的数据仓库只能满足一些静态统计需求,而且是T+1模式;也是因为性能问题,运营商无法有效构造超过PB级别的大数据仓库,无法提供即席查询、自助分析、复杂模型迭代分析的能力,更无法让大量一线人员使用数据分析手段。

今天如果做“大数据”数据仓库,运营商面临的挑战比上个10年要大的多。目前没有单一技术和平台能够满足类似运营商的数据分析需求。可选的方案只能是混搭架构,用不同的分布式技术来支撑一个超越PB级的数据仓库系统。这个混搭架构主要的核心是新一代的MPP并行数据库集群+Hadoop集群,再加上一些内存计算、甚至流计算技术等。

为什么今天的挑战更大,主要是下面几个原因:

第一个原因是数据量已经是上一代的一个数量级了,1个省份级运营商1年就可超越1PB结构化数据,其中尤其是数据业务产生的日志数据在智能终端普及下爆炸式增长,而这些数据其实跟互联网企业采集到的移动数据完全一样,运营商可以获得甚至比互联网企业更多的数据。这些数据还属于正常业务产生的数据。如果把交换机、基站等产生的数据(部分非结构化)加进来(关注网络服务质量),把内容数据也加进来(关注用户访问的内容),最终的数据量可能还要上一个数量级。明天何鸿陵会详细介绍运营商面临的数据和技术挑战,我也是班门弄斧了。

第二个原因是“大数据”关注的更多是用户行为、群体趋势、事件之间的相关性等,而不仅仅是过去的KPI,说穿了就是开始关注最终用户的行为,为精细化营销、优化企业流程、降低运营成本等做支撑。这就对数据分析平台对数据的分析能力和性能提出了新的要求和挑战。这些要求跟上一代数据仓库相比不仅仅是量的改变,而是质的改变。比如对大表之间的关联、复杂的OLAP函数、复杂的数据挖掘函数等。

所以我想讲的是我们需要多元化的技术来支撑大数据了。这个图可能就是未来几年大数据处理的核心技术所在。当然互联网公司另论了。


图 4未来大数据处理的核心技术

为了说明这一个混搭技术的趋势,再举个最近一个客户对新一代数据分析产品需求的案例:

下面是最近一家运营商招标文件中对MPP数据库的技术需求描述:“大数据分析平台功能方面,要求具备数据结构和处理方式的多样化处理要求。系统除标准SQL外,还需支持MapReduce等分布式处理机制,具备优秀的非结构化数据处理能力,提供完整的事务管理功能,具备完善的混合负载管理能力;具备良好的通用性,支持主流第三方工具,提供可视化开发界面,支持自定义开发。性能方面要求大数据的加载、处理、导出等关键处理性能表现优异,具备优秀的高可用性和线性扩展能力,支持在线扩容,100台规模内增加节点后,系统的性能扩展系数大于0.8。运维方面要求提供统一的管理监控平台,系统运维操作简单。”大家可以看出,既需要事务处理能力,又需要MapReduce能力。不是一个产品能搞定的。

下面是招标书中对业务需求的描述:“模型必须包含用户轨迹模型和用户交往圈模型。用户轨迹模型是指记录用户在通信网络中的xxx等信息,分析用户的移动路径,了解用户的生活轨迹,以更好地为精确营销类应用提升数据支撑,同时为网络可管理的科学选址奠定位置基础。用户交往圈分析是指对CDR清单数据中蕴含的用户之间的社会关系进行分析挖掘,得出基于用户通话行为的社交网络交往圈,同时结合用户位置轨迹信息,发掘交往圈中经常处于同一位置范围内的用户,并对交往圈中的用户进行分群,从而以交往圈的角度,深入了解客户,提升客户价值,为用户维系挽留、离网预警、精确营销提供支撑”

而招标书中对数据挖掘的需求更是关系型数据很难解决的:“大数据平台具备非结构化数据处理能力(文本分词),支持多维社交网络分析、路径分析等大数据深度分析功能,支持经典数据挖掘算法,包括:逻辑回归、聚类、决策树。”从上面标书内容可以看出,无论是对数据处理平台的技术,还是业务需求都跟上一代数据分析平台有了巨大的差别。比如需要MPP与Hadoop Map Reduce的融合,需要分析用户的交往圈、移动路径等等。这些互联网企业在做的大数据分析,传统企业也开始做了。

8. 总结: 新型MPP数据库的价值 

技术:基于列存储+MPP架构的新型数据库在核心技术上跟传统数据库有巨大差别,是为面向结构化数据分析设计开发的,能够有效处理PB级别的数据量。在技术上为很多行业用户解决了数据处理性能问题。 

用户价值:新型数据库是运行在X86PC服务器之上的,可以大大降低数据处理的成本(1个数量级)。 

未来趋势:新型数据库将逐步与Hadoop生态系统结合混搭使用,用MPP处理PB级别的、高质量的结构化数据,同时为应用提供丰富的SQL和事务支持能力;用Hadoop实现半结构化、非结构化数据处理。这样可同时满足结构化、半结构化和非结构化数据的处理需求。

下面这个图是我们正在做的产品架构图,将逐步把MPP与Hadoop技术融合在一起,为用户提供透明的数据管理平台。

图 5 MPP与Hadoop技术融合的产品架构图

 

互动内容:

牛一壹:MPP无法像Hadoop那样扩展到5000个节点的原因是什么?另外,列式的MPP与列式的NoSQL区别主要在那里?

武新:MPP有的号称可做到1000个节点,我们实际用到的在百节点规模。不过MPP的数据处理密度要远大于Hadoop,目前100节点可处理2PB结构化数据。

张涵诚:Google用什么系统啊?

武新:Google用自己开发的系统。

牛一壹:这是将MPP与Hadoop集成,统一管理,目前市场上有这样的管理平台吗?

武新:MPP的扩展问题是底层的存储层,MPP使用的是本地磁盘,数据本地化存储;Hadoop的HDFS解决了大规模数据分布存储问题。另外一个问题是MPP都是用连接态执行SQL,而Hadoop用job方式。大家正在试探把MPP的存储放在HDFS或其他DFS上,目的是提升MPP的扩展能力。市场上未来2-3年会有统一的平台。MPP的列式存储与NoSQL的本质上差别不大。MPP主要是关系型的表,表的每个字段列存储;而NoSQL是Schema Free,列的粒度不同。

张存勇:地震预报不准是否与大数据处理能力不足有关?

武新:有一定关系,但不太大。

张存勇:用户很需要利用历史数据做产品等多维度全生命周期分析,以利改进工作提高效率。

武新:完全同意,所以机会很多,不仅仅是互联网。其实行业用户对数据分析、挖掘的需求和多样性要大于互联网。

陈新河:能否在Hadoop领域出现类似当年的Oracle呢?

武新:可能性不太大,原因是发展太快,技术要细化。

吴东亚:您觉得在这个方面,国内企业还有机会吗?还有,您对行业大数据开放怎么看?

武新:国内企业机会很好,也很多。关键是资本、人才、环境是否能培养出大企业来。数据开放首先需要解决法律问题,这是国家的事。大数据让大家没有隐私可言,就像核能,是双刃剑。

刘睿民:海量节点间通讯的问题您觉得有什么样好的解决途径,现在超大表,或宽表出现的概率愈来愈高了。join的节点拷贝会带来很大问题的。

武新:Pivotal 的方向是对的,内部的优化很难。TD的Bynet做了20多年,软硬优化的很好。我们正在优化这部分,基于新的网络技术,几百个节点间通信不是问题了。

吴东亚:国外除了政府、科学数据外,行业数据有开放先例吗?有可借鉴学习的法律吗?

武新:我所知道的有,比如:气象数据、人口数据等。需要参考西方发达国家的法律,隐私在西方是至高无上的问题。是政府数据,没有企业拿自己的数据(资源)免费给别人的,哈哈。

吴东亚:希望贵公司早日开发出有竞争力的产品。

武新:谢谢!已经有竞争力了。国外的厂商已经开始打压我们了,有时报价比我们还低。

张涵诚:大数据是不是用0、1描述不科学?数据和物体不对等,但是都在用数据量化宇宙是不是不对头?没有新的计算科学,我们不可能掌握大数据,对不?你怎么看?

武新:非常对!我曾跟一个数学家聊过,他说大数据对很多算法是颠覆性的,需要发明新的算法。 

刘睿民:@张涵诚 不能这样认为,Hadoop 是开源,企业版还是需要我们自己努力做。没有天上掉下来该我们的

武新:Hadoop是Google基本淘汰的技术了。新的东西没有开源,比如F1/Spanner。Google 已经用卫星+原子钟同步不同的数据中心里的服务器时间,为Spanner提供数据一致性服务,很震撼!

赖兆红 :@刘睿民:说到点上了,我有计划推出version 1。

刘睿民:@赖兆红 这个情况我了解的,不是不成熟。对于国家气象,海量的数据主要是用于数值计算,对算法要求极高。他们买的是Mainframe,这个门槛非常的高。

武新:买IOE的仍然很多,但问题是他们往往连IOE都用不好,白花不少冤枉钱。

张涵诚:@武新,发明新的计算机吧,it,我们在沿老美设计的路在走。

刘睿民:您对矩阵数据库如何看?从数学的角度来看,它基本能解决绝大多数现在大数据面临的算法问题。

武新:这类数据库可解决一些特殊需求(细分),问题是建立矩阵需要得时间很长,类似索引。另外,数据很难实时更新。Mainframe的纯计算能力其实不高,IO子系统,Mainframe上的DB2是强项。 不知道为什么还买Mainframe,好像中国人买掉了一半的Mainframe。

刘睿民:但是内存技术如果一起使用的话应当速度会猛升。感觉会很有前途!

武新:太棒了,你们已经在做了。如果不做,我下一步及时MPP+内存。如果你们做得好,我帮你们推广,可以和我们的基于磁盘的MPP组合使用。

刘睿民:共同前进!找机会深度交流下。

武新:一定,新技术很热闹,也很开心。国内大的形势会越来越好,国人对自己的信心正在建立,国货一定有前途的。前提是要自己争气。 

董健:武总,我们做的事情和MPP比较类似,不过我们更加侧重的是上层的分布式计算层,相当于我们有一个和Hadoop内核类似的计算层,但是我们做的更加通用,毕竟Hadoop的Map-Reduce只能够适应那种批处理,也就是一个任务本身工作量很大的类型,对于高并发的小任务、实时任务,包括有工作流的任务就完全不适合了。

武新:非常好,我们是一路的,可下来向你们请教。复杂的大表关联,分布式事务都支持了吗 ?

董健:我们能够实现RDBMS和NoSQL的分布式的表各种关联,基本上SQL和NoSQL支持的标准语法在分布式的结构上都支持了,还包括我们扩展的语法,比如社会化媒体中经常用到的各种形式的faceted search。

武新:这个我们做了,花了很多精力。对性能是有一定影响的,不过用户对数据的强一致性要求是不可规避的。

董健:以前国外的用户对事务的使用是比较普遍的,总之各种架构有各自的优势,国内选择了应用层的保证,其实是放弃了更专业的厂商提供的方法。想当初,我们做事务,那可是真的跟硬盘死磕,必须保证在各种物理故障的时候保证数据的一致性。上次一个智慧城市的项目,标书就明确要求国产数据库,所以我们也希望能够和国内的数据库实现深度的对接,发挥各自的优势。我们当时选择不做数据引擎,而利用现有数据库其实也是希望利用现有成果,一个最重要的原因就是利用企业现有的数据存储配置,刚才@陈新河 已经介绍了,云计算的一个核心问题就是让企业IT架构发生太大的变化,而产生巨大的阻力。IaaS能够盛行主要是没有切任何现有厂商的蛋糕,结果又创造了新的需求,一堆人才会扑上去,虽然最后没有成果,都搞成了房地产,但核心原因摆在那里。

武新:国产基础软件一定慢慢能做起来的,相信会有大的动作。

董健:你们的定位是分析么?如果是分析,为什么要做分布式事务?你们也有MPP形式的OLTP产品?

武新:是的,与移动研究院合作研发的,已经开始试用了。在分析型MPP上,我们用类似PAXOS机制实现了2阶段提交,保证所有节点的数据DML是一个完整的事务。

董健:不太理解,分析型MPP,为什么要保证DML的完整,而且列式存储只能追加,修改数据的机会就更少。是为了保证一批数据没有全部进入的时候不能被分析看到?

武新:虽然是分析型,但用户也需要做DML操作的(比如电信话单重批,从ODS汇总到上层,等等),这类操作可能要同时涉及到分布到所有节点上的数据,而这类操作必须要保证原子性,否则数据会弄错的。

张存勇:斯诺登和这次的华为沦陷教训太深刻了。

董健:可惜国内大部分时候都是口头提自主可控,实际做事的人少。

张存勇:我们要从最基础做起,我们的嵌入式物联网网关及采集器采用的是国产龙芯芯片组。

董健:原来很多国内的大厂商说,咱们的东西只要能启动就行了,要求不高。我一直期望和IBM和Oracle同台竞争,我太了解他们,他们不神秘,就是踏实的积累。上次,我们就在一个项目中拿出IBM的PDA有很多明显优势的东西,以前我对Exadata有研究,结果IBM说PDA更强,我就仔细研究了一下,某个领域很有优势,但是还是没逃出他们的老套路。就是刚才武总说的一体机系列,一体机在节点之间的配合上确实比开放式结构的MPP有很多优势,虽然PDA号称也是MPP。

刘睿民:IBM是收购的Netezza,是基于FPGA的,说是MPP有点儿过了。

董健:对,就是Netezza,在那个机柜里面share nothing,所以说是MPP。他们的优势在于硬件的整合,比如FPGA,比如高速带宽。ExaData也是,可以在压缩、数据传输、数据过滤上有些优势,但是逃不出机柜,还是scaleup。

武新:Netezza跨机柜扩展很困难,另外FPGA实际效果并不好,是串行的。

刘睿民:还是要追求混合负载吧。

董健:在一定数据范围内有一些优势,但是拿PDA玩大数据就有点扯了,结果弄个Hadoop过来,自己家先弄俩竖井,还谈什么大数据整合。FPGA的优势就是把一些软件算法硬化了,但是具体的优化就很难了。我们针对不同的数据访问都会对数据访问方法进行优化,尽量少查,尽量少传。这些估计PDA都不会做。

刘睿民:我以前做过Tandem的MPP OLTP的引擎,部署过像AMEX那样的1024个节点,他的并行OLTP和TPM绝对可以参考。

武新:这个很牛!一定向你请教其内部核心实现,尤其是网络、事务部分。谢谢!

董健:不过国内IBM的人对PDA的产品了解的精度有限,如果跟Netezza的人沟通,可能效果会不一样,以色列人的IT还是很厉害。深交所原来用的是Tandem?

刘睿民:是Tandem。NATO全球飞机健康监测全部跑Tandem。

武新:Tandem很牛。

赖兆红:我们有一个FPGA团队,FPGA对实时stream数据和关键processing及algo有重大优势。

董健 :我相信。

赖兆红:我们主要用FPGA来做10G/40G高速数据采集过滤处理,芯片太贵了。 

刘睿民:直接来个Select xxxfromt1,t2...t9 (select xxx from s1,...s9 join t1s9,t2s8),他的MPP马上露馅。

董健 :PDA号称支持全部的SQL,我曾经怀疑过这些问题,但是看在他们前面的问题都回答的不好,就没有再穷追猛打了,毕竟那个是他们布的局。我印象中的Tandem好像跟NonStop有关系,因为原来我们曾经把中间件代码授权给NonStop。想想那个时代,我们支持的操作系统比JVM支持的都多,什么sequent,NEC,Fujitsu,Hitachi,Irix。

刘睿民:他是支持。但MPP的多表复杂关联,在FPGA下是没法并行的。

武新:我在VAX VMS上搞过Oracle v6,好东西啊。

董健:我原来是我们那个团队唯一的OpenVMS火种啊,从VAX到Alpha到IA。PDA不是每个计算节点上都有FPGA么?他们的并行应该是多个计算节点的并行,节点内不清楚了。

刘睿民:是的,tandem现在就是惠普的NonStop,你说的是Tuxedo,因为Tandem要和Unix世界打交道。

董健:我们甚至连OS/390都支持了。

刘睿民:FPGA没法并行。

董健:嗯,我原来负责的就是Tuxedo。还有MessageQ,世界上第一个消息中间件。

武新:时间飞快,不过搞数据技术一直很Exiting。

董健:DEC公司创造了无数的好产品,很难有公司与其相比,但是和Lucent一样,都败在了市场上。我有幸有机会深度接触这两家公司的核心产品,真是令人尊敬。Bell-Labs70年代就提供了实时内存数据库,那时候Oracle的性能还不行,就靠这个内存数据库,Lucent曾经用100行代码挣了10亿美刀。

刘睿民:tuxedo非常经典。写Tuxedo的JIM Gray是我在Tandem的导师。后来Tandem 的TPM也是他写的,非常的牛逼。

武新:Tuxedo是好东西,当年我在Oracle内部曾建议收购Tuxedo,结果被BEA收购了。后来Oracle一起收购了。



https://blog.sciencenet.cn/blog-887780-1358813.html

上一篇:信息化百人会2021年《构建我国基础软件生态研究》读后感
下一篇:【定期更新】全球操作系统市场占有率数据
收藏 IP: 36.110.50.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 00:24

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部