YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

Yucong Duan: "Relativity Theory of Understanding"

已有 312 次阅读 2024-5-24 15:47 |系统分类:论文交流

 

 

 

 

Yucong Duan: "Relativity Theory of Understanding" Based on the Relativity of Cognitive Space, Independence of Concept Space, and Discrepancy of Semantic Space

 

Yucong Duan

Benefactor: Shiming Gong

AGI-AIGC-GPT Evaluation DIKWP (Global) Laboratory

DIKWP-AC Artificial Consciousness Standardization Committee

World Conference on Artificial Consciousness

World Artificial Consciousness Association

(Emailduanyucong@hotmail.com)

 

 

 

 

Catalog

 

Abstract

Introduction

1 Definition of Understanding in the DIKWP Model

1.1 The Basis of Understanding

1.2 Semantic Association, Probability Confirmation, and Knowledge Reasoning

2 Relativity of Cognition

2.1 Individual Differences of Cognitive Subjects

2.2 The Influence of Context and Purpose

3 Discrepancy between Concept Space and Semantic Space

3.1 Concept Space

3.2 Semantic Space

3.3 Discrepancy Analysis

4 Dynamic Generation of Understanding and Identification of Misunderstanding

4.1 Dynamic Generation Process

4.2 Identification and Measurement of Misunderstanding

5 The Key Role of Understanding in Information Processing and Knowledge Generation

5.1 Understanding in Information Processing

5.2 Understanding in Knowledge Generation

6 Application of Understanding in Artificial Intelligence and Cognitive Science

6.1 Understanding in Artificial Intelligence

6.2 Understanding in Cognitive Science

7 Case Study: Intelligent Medical Diagnosis System

7.1 Scenario Description

7.2 Understanding Generation Process

8 Case Study: Medical Interaction and Consultation Process

8.1 Scenario Description

8.1.1 Patient Describes Symptoms (Data Input)

8.1.2 Doctor Receives Information (Preliminary Understanding)

8.1.3 Doctor Inquires and Examines (Semantic Association and Knowledge Reasoning)

8.1.4 Patient Further Describes (Supplementary Information)

8.1.5 Doctor Comprehensive Analysis (Probability Confirmation and Knowledge Reasoning)

8.1.6 Diagnosis and Treatment Plan (Confirmation of Understanding)

8.1.7 Patient Feedback (Verification and Adjustment)

8.2 Comparison of Differences in Cognitive, Concept and Semantic Space in Medical Interaction and Consultation Process

8.3 Analysis of Misunderstanding Issues Due to Differences in Cognitive, Concept and Semantic Space in the Medical Interaction and Consultation Process

8.4 Effectiveness of Misunderstanding Elimination in the Medical Interaction and Consultation Process

Conclusion

 

Abstract

In the DIKWP model, Professor Yucong Duan proposes a new theory of "understanding," emphasizing that understanding is a process driven by the specific purpose of the cognitive subject, involving semantic association, probability confirmation, and knowledge reasoning, thereby forming a new cognitive structure. This paper deeply analyzes the definition of understanding in the DIKWP model and its application in semantic processing, knowledge generation, and cognitive processes, particularly focusing on the relativity of cognition and the discrepancy between concept space and semantic space. Through detailed step analysis, it explores the key role of understanding in information processing and knowledge generation, and demonstrates the practical applications of this theory in artificial intelligence and cognitive science.

Introduction

In the fields of information science, cognitive science, and artificial intelligence, "understanding" is a key concept. Traditional cognitive models usually regard understanding as a process of information processing and knowledge generation, but often neglect the dynamic roles of purpose, context, and semantic association of the cognitive subject. Professor Yucong Duan proposes a new definition of understanding in the DIKWP model, emphasizing that understanding is a process driven by the specific purpose of the cognitive subject, realizing semantic association, probability confirmation, and knowledge reasoning, thereby forming a new cognitive structure. This paper will discuss this definition in detail and analyze its applications in different fields, especially how to achieve personalized semantic association and cognitive confirmation by identifying and measuring misunderstandings in semantic space.

1 Definition of Understanding in the DIKWP Model

1.1 The Basis of Understanding

In the DIKWP model, understanding is defined as the process by which the cognitive subject, driven by a specific purpose, performs semantic association, probability confirmation, and knowledge reasoning, thereby forming a new cognitive structure. This process involves multiple levels of cognitive activities, including data processing, information organization, knowledge generation, and the application of wisdom.

1.2 Semantic Association, Probability Confirmation, and Knowledge Reasoning

The core of understanding lies in semantic association, probability confirmation, and knowledge reasoning:

Semantic Association: Associating new information with existing knowledge structures based on the cognitive subject's purpose. This process requires identifying the semantic relationships between new information and known concepts.

Probability Confirmation: Confirming the association probability between new information and existing knowledge structures through calculation and logical judgment. This process ensures the consistency and rationality of new information within the cognitive subject's knowledge system.

Knowledge Reasoning: Reasoning and interpreting new information based on existing knowledge and reasoning mechanisms to generate new knowledge and understanding. This includes methods such as deductive reasoning, inductive reasoning, and analogical reasoning.

2 Relativity of Cognition

2.1 Individual Differences of Cognitive Subjects

The relativity of cognition is reflected in the fact that different cognitive subjects may interpret the same information differently, depending on their background knowledge, experience, and cognitive abilities. For example, doctors and patients will have different understandings of a medical report because their knowledge backgrounds and cognitive abilities differ.

2.2 The Influence of Context and Purpose

The relativity of cognition is also reflected in the influence of context and purpose on understanding. The same information may produce different understandings in different contexts and purposes. For example, "cloudy" in a weather forecast may mean cool weather in daily life but may indicate a change in flight conditions in the aviation field.

3 Discrepancy between Concept Space and Semantic Space

3.1 Concept Space

Concept space refers to the conceptual expression of the external world by the cognitive subject, including definitions, features, and relationships of concepts. Concept space is expressed through language and symbol systems. For example, a "car" can be defined in concept space as a vehicle with four wheels capable of carrying passengers or cargo.

3.2 Semantic Space

Semantic space refers to the network of semantic associations of concepts in the cognitive subject's brain, including semantic relationships and associations between concepts. Semantic space is formed through the cognitive subject's experience and knowledge accumulation. For example, for the concept of "car," the semantic space may include related semantics such as "driving," "vehicle," and "fuel consumption."

3.3 Discrepancy Analysis

Expression Mode: Concept space is expressed through language and symbol systems, while semantic space is the network of semantic associations in the cognitive subject's brain.

Formation Mechanism: Concept space is formed through learning and definition, while semantic space is formed through experience and association accumulation.

Scope of Action: Concept space is mainly used for communication and description, while semantic space is mainly used for understanding and reasoning.

4 Dynamic Generation of Understanding and Identification of Misunderstanding

4.1 Dynamic Generation Process

Understanding is a dynamically generated process, constantly updating and adjusting as new information is introduced and the cognitive subject's purpose changes. This process includes:

Introduction of New Information: Continuously introducing new information through data collection and information acquisition.

Semantic Association and Knowledge Reasoning: Associating and reasoning new information with existing knowledge to generate new understanding.

Probability Confirmation: Confirming the consistency of new information within the knowledge system through probability calculation and logical judgment.

4.2 Identification and Measurement of Misunderstanding

In the process of information transmission, misunderstandings may arise due to the discrepancy between concept space and semantic space. Professor Yucong Duan's theory of understanding provides methods for identifying and measuring misunderstandings:

Identification of Misunderstanding: Identifying parts that are inconsistent with the sender's original intention by analyzing the receiver's semantic interpretation of natural language concepts.

Measurement of Misunderstanding: Quantifying the semantic differences between the receiver and the sender by calculating the degree of misunderstanding.

Semantic Association and Knowledge Reasoning: Performing personalized semantic association and knowledge reasoning based on the results of misunderstanding identification and measurement, supplementing and modifying the information content.

Confirmation of Understanding: Ensuring that the information content is correctly understood by the receiver through adjusted semantic association and supplementation, achieving cognitive confirmation.

5 The Key Role of Understanding in Information Processing and Knowledge Generation

5.1 Understanding in Information Processing

In the information processing process, understanding acts as a bridge, transforming data into meaningful information and knowledge. Driven by the cognitive subject's purpose, it performs semantic association, probability confirmation, and knowledge reasoning, ensuring the consistency and rationality of new information within the knowledge system.

5.2 Understanding in Knowledge Generation

In the knowledge generation process, understanding forms new knowledge structures through dynamic semantic association, probability confirmation, and knowledge reasoning. This process includes not only the expansion of existing knowledge but also the generation and verification of new knowledge.

6 Application of Understanding in Artificial Intelligence and Cognitive Science

6.1 Understanding in Artificial Intelligence

In artificial intelligence systems, the realization of understanding mainly relies on technologies such as semantic analysis, knowledge graphs, and reasoning mechanisms:

Semantic Analysis: AI systems perform semantic analysis on input natural language using natural language processing techniques, identifying semantic relationships and generating structured information.

Knowledge Graphs: AI systems use knowledge graphs to semantically associate information from different sources, forming a comprehensive knowledge network to support complex reasoning and decision-making.

Reasoning Mechanisms: AI systems use reasoning mechanisms (such as deductive reasoning, inductive reasoning, and analogical reasoning) to further interpret and expand semantic associations, generating new knowledge and understanding.

6.2 Understanding in Cognitive Science

In cognitive science, research on understanding focuses on the following aspects:

Simulation of Cognitive Processes: Simulating human cognitive processes to study the storage, processing, and retrieval mechanisms of information in the brain.

Identification and Adjustment of Misunderstanding: Studying how to identify and adjust misunderstandings through cognitive mechanisms to enhance human understanding of information.

Knowledge Reasoning: Studying how humans use existing knowledge for reasoning and interpretation to generate new understanding and knowledge structures.

7 Case Study: Intelligent Medical Diagnosis System

7.1 Scenario Description

In an intelligent medical diagnosis system, doctors use AI technology to assist in diagnosing patients' conditions. The system collects various data from patients (such as physical examination data and medical history records) and integrates them with doctors' professional knowledge and medical knowledge bases for comprehensive analysis to generate diagnostic information. The following will detail the generation and processing of understanding in this system, demonstrating the application of the definition of understanding and semantic processing in the DIKWP model.

7.2 Understanding Generation Process

Data Collection and Preliminary Recording: The system collects data from various sources, including physical examination data and medical history records. These data are the basic inputs of the system and belong to the data level of the DIKWP model.

Semantic Matching and Concept Confirmation: The system semantically matches and confirms the collected data with the existing medical knowledge base. The system categorizes and matches the data semantically to form preliminary information semantics.

Personalized Semantic Association: Based on the doctor's diagnostic purpose, combining data semantics, information semantics, knowledge semantics, and wisdom semantics, the system generates personalized diagnostic information.

Probability Confirmation and Knowledge Reasoning: Through probability confirmation and knowledge reasoning, the diagnostic information is further interpreted and expanded, ensuring its rationality and consistency within the doctor's knowledge system.

Confirmation of Understanding: Finally, through adjusted semantic association and supplementation, the system ensures that the diagnostic information is correctly understood by the doctor, achieving cognitive confirmation.

Professor Yucong Duan proposes a new theory of understanding in the DIKWP model, emphasizing that understanding is a process driven by the specific purpose of the cognitive subject, involving semantic association, probability confirmation, and knowledge reasoning, thereby forming a new cognitive structure. This paper deeply analyzes the definition of understanding in the DIKWP model and its application in the medical interaction and consultation process, particularly focusing on the relativity of cognition and the discrepancy between concept space and semantic space. Through detailed step analysis, it explores the elimination of misunderstandings and the achievement of understanding in the interaction between doctors and patients, demonstrating the key role of understanding in information processing and knowledge generation.

8 Case Study: Medical Interaction and Consultation Process

In the fields of information science, cognitive science, and artificial intelligence, "understanding" is a key concept. Traditional cognitive models usually regard understanding as a process of information processing and knowledge generation, but often neglect the dynamic roles of purpose, context, and semantic association of the cognitive subject. Professor Yucong Duan proposes a new definition of understanding in the DIKWP model, emphasizing that understanding is a process driven by the specific purpose of the cognitive subject, realizing semantic association, probability confirmation, and knowledge reasoning, thereby forming a new cognitive structure. This paper will discuss this definition in detail through the case of medical interaction and consultation process and analyze its practical application effects, particularly how to achieve personalized semantic association and cognitive confirmation by identifying and measuring misunderstandings in semantic space.

8.1 Scenario Description

In the medical interaction and consultation process, patients describe symptoms to doctors through natural language, while doctors form an understanding of the condition and develop treatment plans through questioning, examination, and diagnosis. In this process, misunderstandings may arise due to the discrepancy between the concept space and semantic space of patients and doctors. The following will detail this process, demonstrating the application of the definition of understanding and semantic processing in the DIKWP model.

8.1.1 Patient Describes Symptoms (Data Input)

Patient Description: "I feel a bit stuffy in my chest, especially when lying down at night."

Patient's Concept Space:

"Chest": Body part.

"Stuffy": A feeling of discomfort.

"Lying down at night": Specific time and posture.

Patient's Semantic Space:

"Chest": Related to heart and breathing sensations.

"Stuffy": May be related to pressure, difficulty breathing.

"Lying down at night": May be related to sleep, posture changes.

8.1.2 Doctor Receives Information (Preliminary Understanding)

Doctor's Concept Space:

"Chest": Body part, may involve heart and lungs.

"Stuffy": Symptom, may be related to heart disease, asthma, anxiety.

"Lying down at night": Time and posture of symptom exacerbation, may indicate specific causes.

Doctor's Semantic Space:

"Chest": Related to heart disease, lung disease, gastroesophageal reflux.

"Stuffy": May involve difficulty breathing, heart disease symptoms, anxiety.

"Lying down at night": May indicate heart, lung compression, gastroesophageal reflux.

8.1.3 Doctor Inquires and Examines (Semantic Association and Knowledge Reasoning)

Doctor Inquires: "How long have you had this feeling? Are there any other symptoms, such as coughing, palpitations, acid reflux?"

Semantic Association:

Through further questioning, the doctor associates the patient's description with possible causes.

Identifies potential associated semantics, such as "difficulty breathing," "heart disease," "gastroesophageal reflux."

Knowledge Reasoning:

Based on the patient's responses, the doctor uses existing medical knowledge to reason and form a preliminary judgment of the condition.

Reasoning may involve deductive reasoning (e.g., inferring the cause from symptoms), inductive reasoning (e.g., summarizing symptom patterns), and analogical reasoning (e.g., comparing similar cases).

8.1.4 Patient Further Describes (Supplementary Information)

Patient Adds: "Sometimes I also feel acid coming up from my stomach, especially after eating and lying down."

Patient's Concept Space:

"Acid": Acid reflux.

"Lying down after eating": Specific situation of symptom exacerbation.

Patient's Semantic Space:

"Acid": May be related to gastroesophageal reflux.

"Lying down after eating": May indicate symptoms related to the digestive system.

8.1.5 Doctor Comprehensive Analysis (Probability Confirmation and Knowledge Reasoning)

Doctor Analyzes: "Your symptoms resemble gastroesophageal reflux disease (GERD), especially the feeling of acid and chest discomfort after eating and lying down."

Probability Confirmation:

Confirms the high association between the patient's symptoms and gastroesophageal reflux disease through probability calculation.

Knowledge Reasoning:

Uses existing medical knowledge to reason the possible cause and form a preliminary diagnosis.

8.1.6 Diagnosis and Treatment Plan (Confirmation of Understanding)

Doctor Diagnoses: "Based on your description, I think you may have gastroesophageal reflux disease. I suggest you pay attention to your diet, avoid lying down immediately after eating, and try some antacid medications."

Confirmation of Understanding:

Through comprehensive analysis and reasoning, the doctor forms an understanding of the condition and confirms it with the patient, ensuring the patient understands the diagnosis and treatment advice.

8.1.7 Patient Feedback (Verification and Adjustment)

Patient Feedback: "Okay, I'll pay attention. If the symptoms don't improve, when should I come back for a follow-up?"

Verification and Adjustment:

The doctor adjusts the subsequent treatment plan based on the patient's feedback and schedules a follow-up time.

Through the in-depth discussion of the definition of understanding and semantic processing in Professor Yucong Duan's DIKWP model, we find that understanding is not only about information processing and organization but also a dynamic, purpose-driven cognitive process. The DIKWP model emphasizes the subjectivity, dynamic nature, and personalized semantic association of understanding. By identifying and measuring misunderstandings, it achieves personalized semantic supplementation and adjustment and generates new understanding and knowledge through knowledge reasoning. In the medical interaction and consultation process, Professor Yucong Duan's theory of understanding can effectively identify and eliminate misunderstandings, ensuring smooth communication between doctors and patients, achieving accurate diagnosis and treatment. This model provides new perspectives and theoretical frameworks for information processing and cognitive science, helping to deepen the understanding of the role and significance of understanding in cognitive processes, and offering new research directions for natural language processing and artificial intelligence. Future research can further explore the practical application and optimization of the DIKWP model, promoting the development and innovation of information processing technology.

8.2 Comparison of Differences in Cognitive, Concept and Semantic Space in Medical Interaction and Consultation Process

The following table details the differences between patients and doctors in Cognitive, Concept and Semantic Space during the medical interaction and consultation process, to better understand Professor Yucong Duan's theory of understanding.

Stage

Role

Cognitive Space

Concept Space

Semantic Space

Patient Describes Symptoms

Patient

Feeling chest tightness, especially when lying down at night, presence of discomfort

"Chest": body part, "Stuffy": a feeling of discomfort, "Lying down at night": specific time and posture

"Chest": related to heart and breathing sensations, "Stuffy": may be related to pressure, difficulty breathing, "Lying down at night": may be related to sleep, posture changes

Doctor Receives Information

Doctor

Patient's description of symptoms, combined with medical knowledge for preliminary understanding

"Chest": body part, may involve heart and lungs, "Stuffy": symptom, may be related to heart disease, asthma, anxiety, "Lying down at night": time and posture of symptom exacerbation, may indicate specific causes

"Chest": related to heart disease, lung disease, gastroesophageal reflux, "Stuffy": may involve difficulty breathing, heart disease symptoms, anxiety, "Lying down at night": may indicate heart, lung compression, gastroesophageal reflux

Doctor Inquires and Examines

Doctor

Inquires about symptom duration and associated symptoms, performs preliminary reasoning based on patient's responses

Identifies potential associated semantics, such as "difficulty breathing," "heart disease," "gastroesophageal reflux"

Uses medical knowledge to reason and form preliminary judgment of the condition, involving deductive reasoning, inductive reasoning, and analogical reasoning

Patient Further Describes

Patient

Feeling acid coming up from the stomach, especially after eating and lying down

"Acid": acid reflux, "Lying down after eating": specific situation of symptom exacerbation

"Acid": may be related to gastroesophageal reflux, "Lying down after eating": may indicate symptoms related to the digestive system

Doctor Comprehensive Analysis

Doctor

Comprehensive analysis of patient's description, combined with medical knowledge for diagnosis

Identifies association with gastroesophageal reflux disease (GERD)

Uses medical knowledge to confirm the association and form a preliminary diagnosis

Diagnosis and Treatment Plan

Doctor

Forms understanding of the condition, provides treatment advice

"Gastroesophageal reflux disease": digestive system disease, "Antacid medications": medications to relieve symptoms

Confirms the association of symptoms with GERD, provides lifestyle and medication advice

Patient Feedback

Patient

Understands doctor's diagnosis and treatment advice, asks further questions

"Follow-up": returning for check-up if symptoms don't improve

Confirms understanding of diagnosis and treatment plan, schedules follow-up

 

Cognitive Space: Cognitive space includes the perception and understanding of external information by the cognitive subject. During the interaction between patients and doctors, patients convey their perceptions through symptom descriptions, while doctors form an understanding of the patient's condition through questioning and examination.

Concept Space: Concept space is the conceptual expression of the external world by the cognitive subject, mainly described through language and symbol systems. There may be differences in concept space expressions between patients and doctors, such as the patient's description of "chest tightness" and the doctor's understanding of "may involve heart or lung problems."

Semantic Space: Semantic space is the network of semantic associations of concepts in the cognitive subject's brain, including semantic relationships and associations between concepts. Differences in semantic space between patients and doctors may lead to misunderstandings during information transmission. Through semantic association and knowledge reasoning, doctors can more accurately understand the patient's symptoms and form reasonable diagnoses and treatment plans.

8.3 Analysis of Misunderstanding Issues Due to Differences in Cognitive, Concept and Semantic Space in the Medical Interaction and Consultation Process

The following table details how differences between patients and doctors in Cognitive, Concept and Semantic Space can lead to misunderstandings during the medical interaction and consultation process, and provides corresponding solutions.

Stage

Role

Space

Content

Potential Misunderstanding

Solution

Patient Describes Symptoms

Patient

Cognitive Space

Feeling chest tightness, especially when lying down at night

Doctor may misunderstand as a breathing or heart issue

Doctor further inquires about specific details and timing of symptoms

Concept Space

"Chest tightness": discomfort; "Lying down at night": specific time and posture

Doctor may have different understanding of "tightness"

Doctor needs to ask detailed questions about the feeling, such as "Is there pain?"

Semantic Space

"Chest": related to heart, breathing; "Tightness": may be related to pressure, breathing difficulty

Doctor may confuse with other symptoms (e.g., angina, asthma)

Doctor performs detailed examination and analysis

Doctor Receives Information

Doctor

Cognitive Space

Patient's description combined with medical knowledge

Doctor may misunderstand severity or nature of the condition

Doctor asks further questions and examines patient

Concept Space

"Chest": may involve heart, lungs; "Tightness": may be related to heart disease, asthma, anxiety

Doctor may focus on a single cause, ignoring other possibilities

Doctor considers multiple possibilities and performs comprehensive analysis

Semantic Space

"Chest": related to heart disease, lung disease, GERD; "Tightness": may involve difficulty breathing, heart disease symptoms, anxiety

Doctor may link symptoms to unrelated diseases

Doctor uses medical knowledge to reason and exclude unrelated possibilities

Doctor Inquires and Examines

Doctor

Cognitive Space

Inquires about symptom duration and associated symptoms, performs reasoning

Patient may not accurately describe symptom duration and associated symptoms

Doctor guides patient with specific questions

Concept Space

Identifies potential associated semantics like breathing difficulty, heart disease, GERD

Doctor may misinterpret symptom severity

Doctor combines examination results and patient description for analysis

Semantic Space

Uses medical knowledge for preliminary judgment

Patient may not fully understand doctor's diagnosis

Doctor explains diagnosis in layman's terms

Patient Further Describes

Patient

Cognitive Space

Feeling acid coming up, especially after eating and lying down

Doctor may misinterpret symptom frequency and severity

Doctor inquires about frequency, timing, and triggers

Concept Space

"Acid": acid reflux; "Lying down after eating": symptom exacerbation in specific situation

Doctor may focus on single cause

Doctor considers multiple possibilities and confirms with examination

Semantic Space

"Acid": may be related to GERD; "Lying down after eating": may indicate digestive system symptoms

Doctor may overlook other potential causes like heart issues

Doctor uses comprehensive analysis to confirm diagnosis

Doctor Comprehensive Analysis

Doctor

Cognitive Space

Comprehensive analysis, combined with medical knowledge for diagnosis

Patient may not understand diagnosis results

Doctor explains in simple terms and with illustrations

Concept Space

Identifies association with GERD

Doctor may overlook other causes, leading to misdiagnosis

Doctor performs detailed examination to confirm diagnosis

Semantic Space

Uses medical knowledge for reasoning

Doctor may confuse symptoms with unrelated diseases

Doctor performs comprehensive analysis to confirm diagnosis

Diagnosis and Treatment Plan

Doctor

Cognitive Space

Forms understanding of condition, provides treatment advice

Patient may not understand treatment specifics

Doctor explains treatment steps and precautions in detail

Concept Space

"GERD": digestive system disease; "Antacid medications": to relieve symptoms

Patient may not understand medication effects and usage

Doctor explains medication mechanism and usage

Semantic Space

Confirms symptom association with GERD, provides lifestyle and medication advice

Patient may not understand condition's relation to lifestyle

Doctor explains relation to diet and habits, provides specific advice

Patient Feedback

Patient

Cognitive Space

Understands diagnosis and treatment, asks further questions

Doctor may overlook patient feedback, leading to poor follow-up

Doctor listens to feedback and adjusts treatment plan

Concept Space

"Follow-up": returning if symptoms persist

Doctor may overlook patient's actual situation

Doctor schedules reasonable follow-up based on feedback

Semantic Space

Confirms understanding of diagnosis and treatment

Doctor may not explain follow-up importance, patient may not value it

Doctor explains follow-up importance and its significance for condition management

 

Cognitive Space: Misunderstandings in cognitive space mainly arise from different perceptions and understandings of symptoms by patients and doctors. The key to resolving these misunderstandings lies in the doctor's detailed questioning and examination. By guiding the patient to describe symptoms more accurately, the doctor can comprehensively understand the patient's condition.

Concept Space: Misunderstandings in concept space arise from different definitions and interpretations of the same concept by patients and doctors. For example, the patient's description of "chest tightness" may differ from the doctor's understanding. By asking detailed questions and explanations, the doctor can clarify the differences in concepts and ensure accurate understanding of symptoms.

Semantic Space: Misunderstandings in semantic space arise from different associations and connections of concepts by patients and doctors. The doctor needs to use medical knowledge for semantic association and reasoning, excluding unrelated possibilities to ensure diagnostic accuracy. Meanwhile, the doctor needs to explain diagnosis results and treatment plans in layman's terms to ensure the patient understands and follows the advice.

8.4 Effectiveness of Misunderstanding Elimination in the Medical Interaction and Consultation Process

The following table demonstrates the effectiveness of eliminating misunderstandings in the medical interaction and consultation process through the theory of understanding in the DIKWP model.

Stage

Role

Space

Potential Misunderstanding

Method of Elimination

Effect

Patient Describes Symptoms

Patient

Cognitive Space

Doctor may misunderstand as breathing or heart issue

Doctor asks detailed questions about symptoms' specific situation, frequency, duration, and timing

Doctor obtains more detailed information, initially excludes breathing issue, focuses on possible digestive issues

Concept Space

Doctor may have different understanding of "tightness"

Doctor asks specific questions about the feeling, such as "Is there pain?"

Patient accurately describes the nature and degree of tightness, doctor understands patient's feeling clearly

Semantic Space

Doctor may confuse with other symptoms (e.g., angina, asthma)

Doctor combines patient description with detailed examination (e.g., ECG, chest X-ray), excludes other possibilities, performs semantic association analysis

Doctor excludes angina and asthma through examination, confirms symptoms are likely related to the digestive system

Doctor Receives Information

Doctor

Cognitive Space

Doctor may misunderstand severity or nature of the condition

Doctor asks further questions and examines patient

Doctor confirms severity and nature of symptoms, initially suspects GERD

Concept Space

Doctor may focus on a single cause, ignoring other possibilities

Doctor considers multiple possibilities, combines patient's symptoms and examination results for comprehensive analysis

Doctor excludes unrelated possibilities through comprehensive analysis, confirms symptoms are related to the digestive system

Semantic Space

Doctor may link symptoms to unrelated diseases

Doctor uses medical knowledge for detailed semantic association and reasoning, excludes unrelated diseases

Doctor confirms symptoms are highly related to the digestive system through examination and patient description

Doctor Inquires and Examines

Doctor

Cognitive Space

Patient may not accurately describe symptom duration and associated symptoms

Doctor guides patient with specific questions, helps accurately describe symptom duration and associated symptoms

Patient accurately describes duration and associated symptoms, doctor comprehensively understands the condition

Concept Space

Doctor may misinterpret symptom severity

Doctor combines examination results and patient description for analysis

Doctor accurately assesses symptom severity through comprehensive analysis

Semantic Space

Patient may not fully understand doctor's diagnosis

Doctor explains diagnosis in layman's terms and with illustrations

Patient clearly understands doctor's preliminary diagnosis, cooperates with further examination

Patient Further Describes

Patient

Cognitive Space

Doctor may misinterpret symptom frequency and severity

Doctor asks about frequency, timing, and specific triggers

Doctor clearly understands frequency, timing, and triggers, accurately diagnoses

Concept Space

Doctor may focus on single cause

Doctor considers multiple possibilities, confirms with examination

Doctor excludes other possible causes, confirms GERD diagnosis

Semantic Space

Doctor may overlook other potential causes like heart issues

Doctor uses comprehensive analysis to confirm diagnosis

Doctor confirms symptoms are mainly related to the digestive system, excludes other potential causes

Doctor Comprehensive Analysis

Doctor

Cognitive Space

Patient may not understand diagnosis results

Doctor explains in simple terms and with illustrations

Patient clearly understands diagnosis results, cooperates with treatment

Concept Space

Doctor may overlook other causes, leading to misdiagnosis

Doctor performs detailed examination, confirms diagnosis

Doctor confirms GERD diagnosis, excludes other possibilities

Semantic Space

Doctor may confuse symptoms with unrelated diseases

Doctor performs comprehensive analysis to confirm diagnosis

Doctor confirms GERD diagnosis through comprehensive analysis

Diagnosis and Treatment Plan

Doctor

Cognitive Space

Patient may not understand treatment specifics

Doctor explains treatment steps and precautions in detail

Patient understands treatment steps and follows doctor's advice

Concept Space

Patient may not understand medication effects and usage

Doctor explains medication mechanism and usage

Patient understands medication effects and usage, follows doctor's advice

Semantic Space

Patient may not understand condition's relation to lifestyle

Doctor explains relation to diet and habits, provides specific advice

Patient understands relation to diet and habits, adjusts lifestyle accordingly

Patient Feedback

Patient

Cognitive Space

Doctor may overlook patient feedback, leading to poor follow-up

Doctor listens to feedback, adjusts treatment plan

Doctor adjusts treatment plan based on feedback, patient's symptoms are effectively controlled

Concept Space

Doctor may overlook patient's actual situation

Doctor schedules reasonable follow-up based on feedback

Doctor schedules reasonable follow-up, patient follows up timely, ensuring effective treatment

Semantic Space

Doctor may not explain follow-up importance, patient may not value it

Doctor explains follow-up importance and its significance for condition management

Patient understands follow-up importance, values and cooperates with follow-up arrangements

 

Conclusion

Through the in-depth discussion of the definition of understanding and semantic processing in Professor Yucong Duan's DIKWP model, we find that understanding is not only about information processing and organization but also a dynamic, purpose-driven cognitive process. The DIKWP model emphasizes the subjectivity, dynamic nature, and personalized semantic association of understanding. By identifying and measuring misunderstandings, it achieves personalized semantic supplementation and adjustment and generates new understanding and knowledge through knowledge reasoning. This model provides new perspectives and theoretical frameworks for information processing and cognitive science, helping to deepen the understanding of the role and significance of understanding in cognitive processes, and offering new research directions for natural language processing and artificial intelligence. Future research can further explore the practical application and optimization of the DIKWP model, promoting the development and innovation of information processing technology.

 

 

 



https://blog.sciencenet.cn/blog-3429562-1435464.html

上一篇:Semantic Mathematics: A Road towards Artificial Consciousnes
下一篇:段玉聪教授DIKWP“坍塌”预言及其应对综合报告
收藏 IP: 140.240.39.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-17 07:13

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部