|
我在Applied Sciences(综合性、交叉性期刊,CiteScore=3.70;IF=2.84)组织了一个Special Issue,大题目是“大数据分析进展”,比较宽泛。该专栏的推出主要是为了回应因为可获取数据和数据分析的平台、工具的快速增长给自然科学和社会科学带来的重大影响。我们特别欢迎(但不限于)下面四类稿件:(1)数据分析中的基础理论分析,例如一个系统的可预测性(比如时间序列的可预测性)、分类问题的最小误差分析、各种数据挖掘结果的稳定性和可信度分析;(2)数据分析的新方法,例如挖掘因果关系的新方法(这和Topic 1也是相关的)、多模态分析的新方法、隐私计算的新方法等等;(3)推出新的、高价值的数据集、数据分析平台、数据分析工具等等;(4)把大数据分析的方法用到自然科学和社会科学的各个分支(并获得洞见),我们特别喜欢用到那些原来定量化程度不高的学科。
投稿链接:https://www.mdpi.com/journal/applsci/special_issues/75Y7F7607U
投稿截止时期为2023年6月30日,我们处理稿件非常快,欢迎大家投稿支持。
其中第十一篇论文已经正式发表:
Community structure is one of the most important features of complex networks. Modularity-based methods for community detection typically rely on heuristic algorithms to optimize a specific community quality function. Such methods have two major limits: (1) the resolution limit problem, which prohibits communities of heterogeneous sizes being simultaneously detected, and (2) divergent outputs of the heuristic algorithm, which make it difficult to differentiate relevant and irrelevant results. In this paper, we propose an improved method for community detection based on a scalable community “fitness function.” We introduce a new parameter to enhance its scalability, and a strict strategy to filter the outputs. Due to the scalability, on the one hand, our method is free of the resolution limit problem and performs excellently on large heterogeneous networks, while on the other hand, it is capable of detecting more levels of communities than previous methods in deep hierarchical networks. Moreover, our strict strategy automatically removes redundant and irrelevant results; it selectively but inartificially outputs only the best and unique community structures, which turn out to be largely interpretable by the a priori knowledge of the network, including the implanted community structures within synthetic networks, or metadata observed for real-world networks.
https://www.mdpi.com/2076-3417/13/3/1774
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-21 22:40
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社