complexityworld分享 http://blog.sciencenet.cn/u/pb00011127

博文

心血管病风险分析[Appl. Sci.专栏第八篇发表论文]

已有 2825 次阅读 2023-1-16 07:35 |系统分类:论文交流

我在Applied Sciences(综合性、交叉性期刊,CiteScore=3.70IF=2.84)组织了一个Special Issue,大题目是“大数据分析进展”,比较宽泛。该专栏的推出主要是为了回应因为可获取数据和数据分析的平台、工具的快速增长给自然科学和社会科学带来的重大影响。我们特别欢迎(但不限于)下面四类稿件:(1)数据分析中的基础理论分析,例如一个系统的可预测性(比如时间序列的可预测性)、分类问题的最小误差分析、各种数据挖掘结果的稳定性和可信度分析;(2)数据分析的新方法,例如挖掘因果关系的新方法(这和Topic 1也是相关的)、多模态分析的新方法、隐私计算的新方法等等;(3)推出新的、高价值的数据集、数据分析平台、数据分析工具等等;(4)把大数据分析的方法用到自然科学和社会科学的各个分支(并获得洞见),我们特别喜欢用到那些原来定量化程度不高的学科。

投稿链接:https://www.mdpi.com/journal/applsci/special_issues/75Y7F7607U 

投稿截止时期为2023年6月30日,我们处理稿件非常快,欢迎大家投稿支持。


其中第八篇论文已经正式发表:

A Cardiovascular Disease Risk Score Model Based on High Contribution Characteristics

Abstract

Cardiovascular disease (CVD) risk prediction shows great significance for disease diagnosis and treatment, especially early intervention for CVD, which has a direct impact on preventing and reducing adverse outcomes. In this paper, we collected clinical indicators and outcomes of 14,832 patients with cardiovascular disease in Shanxi, China, and proposed a cardiovascular disease risk prediction model, XGBH, based on key contributing characteristics to perform risk scoring of patients’ clinical outcomes. The XGBH risk prediction model had high accuracy, with a significant improvement compared to the baseline risk score (AUC = 0.80 vs. AUC = 0.65). At the same time, we found that with the addition of conventional biometric variables, the accuracy of the model’s CVD risk prediction would also be improved. Finally, we designed a simpler model to quantify disease risk based on only three questions answered by the patient, with only a modest reduction in accuracy (AUC = 0.79), and providing a valid risk assessment for CVD. Overall, our models may allow early-stage intervention in high-risk patients, as well as a cost-effective screening approach. Further prospective studies and studies in other populations are needed to assess the actual clinical effect of XGBH risk prediction models.


论文免费下载链接:

https://www.mdpi.com/2076-3417/13/2/893  




https://blog.sciencenet.cn/blog-3075-1372112.html

上一篇:表面缺陷检测的牛逼方法[Appl. Sci.专栏第七篇发表论文]
下一篇:金融复杂网络上的风险传播[Appl. Sci.专栏第九篇发表论文]
收藏 IP: 182.148.15.*| 热度|

2 许培扬 杨正瓴

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 18:09

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部