xiaoqiugood的个人博客分享 http://blog.sciencenet.cn/u/xiaoqiugood

博文

光谱的种类:激光诱导击穿光谱

已有 10244 次阅读 2015-7-13 21:32 |个人分类:等离子体与聚变能|系统分类:科研笔记

关注:

1)  激光诱导击穿光谱和电感耦合等离子体原子发射光谱法:LIBS  vs ICP-AES;ICP-MS vs LIBS-MS?

2)  同位素的原子发射光谱、等离子体原子发射光谱

3)  光发射电子显微镜

4)  激光器的种类:红外、紫外  准分子激光

    激光器的参数指标:飞秒、纳秒

5)  光谱仪的种类:光纤光谱仪、光栅光谱仪

6)  激光的应用:激光笔、激光治疗近视


题记: “你的技术,别人不懂”

        技术之所以成为技术表明背后的物理/化学知识已经很成熟了,因此,只要花功夫,技术是可以理解并被掌握的;只要勤加练习,就可以很快娴熟,甚至炉火纯青。

       任何先进的技术后面都有最朴实的物理/化学原理作为支撑,即便是理论物理中的许多专有名词,如近藤效应、拓扑绝缘体等,背后都是基本的物理化学知识在支撑着。因此,在一个连相对论都可以说出个一、二的年代,不要轻易说“你的技术,别人不懂”。


概念辨析:粒子数反转与离子的激发态

1) 高能电子束(泵浦)
2) 能量传递媒质(适当的亚稳态)

3) 等离子体加热(动能)

4) 离子的激发态



摘录:  在“百花齐发,百家争鸣”的时代,要达到国内领先,也是相当不容易

中国研成无源单像素相机原理样机 技术国内领先

http://news.ifeng.com/a/20150713/44156965_0.shtml


    近日,中国航天科技集团公司九院13所研制出无源单像素相机原理样机,并成功实现了约17千米远目标的可见光成像。该样机的成像距离技术指标达到国内领先水平。

     该样机使用数字微镜阵列对来自目标的太阳反射光进行调制使用高灵敏度光电探测器对调制后的光进行光强测量,根据量子关联算法重建目标图像

      单像素相机技术是一种新型遥感成像技术,可以作为传统遥感成像技术的有效补充,能有效解决红外阵列相机像源制冷不均匀、像源噪声不一致等技术弊端,可以广泛应用于微光成像和多光源成像等领域。(杨然)



激光功率、激光波长、激光频率、飞秒/纳秒

http://jetlasers.com/ask/?/question/55

激光功率与光强(光子数量)和光子动能有关

   

     这个跟激光器的构造有关,建议你可以读读激光原理,波长的选择跟谐振腔长度有关,要输出稳定波长的激光,腔的端点应该位于驻点上,这个应该不难理解,当然整个激光原理不是简单句话就能说明白的。
     至于脉冲激光器的功率与么脉冲频率(脉冲重复率)的关系,功率定义是能量除以时间,单个脉冲的脉冲功率称为峰值功率,这个一般很大,数量级在Kw级别,峰值功率乘以脉冲宽度(一般在纳秒 ns 级别)就是单个脉冲的能量,这个能量乘以脉冲重复率(就是每秒多少个脉冲,常见的在KHz的量级)就是脉冲激光的输出功率。

 

纳秒的基本都是调Q,特点是重复频率低(几十HZ到kHz),脉冲能量高
ps和fs的基本是锁模,ps的大多是主动锁模,特点是重复频率高(>10GHz),但是脉冲能量低;fs的大多是被动锁模,特点是重复频率相对低一点(MHz),脉冲能量也不是很高,但是脉冲峰值功率很高(kW)


飞秒激光器、最短脉冲(一个脉冲下可以有好几个频率?)

http://baike.baidu.com/link?url=aNCi_3iKnkGqyIatZ16jXIcN9qm3T37k6bB5zBDAFc_N88yisP4vX8r-bCPV48korT3GpZC5gdqDfO7C0ELG6_

 北大  中国工程物理研究院  中国科学院物理所(自制) 华东师范大学 天津大学(自制)


     激光曾被视为神秘之光,并已被人类广泛使用。近年来,科学家研究发现了一种更为奇特的激光-飞秒激光,飞秒(femtosecond)也叫毫微微秒,简称fs,是标衡时间长短的一种计量单位,飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段。飞秒激光在瞬间发出的巨大功率比全世界发电总功率还大,已有所应用,科学家预测飞秒激光将为下世纪新能源的产生发挥重要作用。


   

本质

       飞秒激光是一种以脉冲形式运转的激光,持续时间非常短,只有几个飞秒,一飞秒就是10的负15次方秒,也就是1/1000万亿秒,它比利用电子学方法所获得的最短脉冲要短几千倍。这是飞秒激光的第一个特点。

      飞秒激光的第二个特点是具有非常高的瞬时功率,可达到百万亿瓦,比全世界发电总功率还要多出百倍。

     飞秒激光的第三个特点是,它能聚焦到比头发的直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。

用途

     飞秒激光有什么用途呢?众所周知,物质是由分子和原子组成的,但是它们不是静止的,都在快速地运动着,这是微观物质的一个非常重要的基本属性。

     飞秒激光的出现使人类第一次在原子和电子的层面上观察到这一超快运动过程。基于这些科学上的发现,飞秒激光在物理学、生物学、化学控制反应、光通讯等领域中得到了广泛应用。特别值得提出的是,由于飞秒激光具有快速和高分辨率特性,它在病变早期诊断、医学成象和生物活体检测、外科医疗及超小型卫星的制造上都有其独特的优点和不可替代的作用。

    物质在高强度飞秒激光的作用下会出现非常奇特的现象:气态、液态、固态的物质瞬息间变成了等离子体。这种等离子体可以辐射出各种波长的射线的激光。高功率飞秒激光与电子束碰撞能够产生硬X射线飞秒激光,产生β射线激光,产生正负电子对。
      高功率飞秒激光在医学、超精细微加工、高密度信息储存和记录方面都有着很好的发展前景。高功率飞秒激光还可以将大气击穿,从而制造放电通道,实现人工引雷,避免飞机、火箭、发电厂因天然雷击而造成的灾难性破坏。利用飞秒激光能够非常有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火。从而为人类实现新一代能源开辟一条崭新的途径。

特点

1、飞秒激光是我们人类目前在实验条件下能够获得的最短脉冲,它的精确度是± 5 微米【?】;
2、飞秒激光有非常高的瞬间功率,它的瞬间功率可达百万亿瓦,比全世界的发电总功率还要多出上百倍;
3、物质在飞秒激光的作用下会产生非常奇特的现象,气态的物质、液态的物质、固态的物质瞬间都会变成等离子体;
4、飞秒激光具有精确的靶向聚焦定位特点,能够聚焦到比头发的直径还要小的多的超细微空间区域;
5、用飞秒激光进行手术,没有热效应和冲击波,在整个光程中都不会有组织损伤。



飞秒激光近视手术的步骤

    手术包含二个步骤:一是制作角膜瓣;二是进行角膜基质层切削。

     飞秒激光手术设备也有二种:一种是“传统准分子激光技术”,一种是“飞秒激光结合准分子激光技术”。

传统的“准分子激光手术Lasik”,是由手术医生用角膜板层刀,手工制作掀开式角膜瓣,然后再用准分子激光进行角膜基质层切削。随着医疗科技的进步,出现了一种用来制作角膜瓣的飞秒激光设备,代替了手术过程中的手工制作角膜瓣程序,开始有了“普通飞秒”这种手术方式。

     EuroEyes介绍普通飞秒激光手术先由飞秒激光设备制作掀开式角膜瓣,再用准分子激光进行角膜切削。由于准分子激光以“消融”的方式进行角膜基质切削,所以手术过程中会有焦糊味。因为在这种手术方式中飞秒激光扮演制瓣的角色,因此这种方式也称为“半飞秒”。




激光器

http://baike.1688.com/doc/view-d2428577.html

 

 能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。

   1960年T.H.梅曼等人制成了第一台红宝石激光器

   1961年A.贾文等人制成了氦氖激光器。

   1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。

 

(一)  分类

       按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。


      按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的0.7毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。


(二)  工作原理

  除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。

      激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。

      工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。

      谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。


  激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。

  激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。

    ①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。

    ②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。

    ③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。

    ④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。

  光学共振腔 通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:


( 二)  分类再谈

      激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。

  按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:

   ①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;

   ②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;

   ③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;

   ④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;

   ⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。


  按激励方式分类 

    ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。

    ②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。

    ③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。

    ④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。


  按运转方式分类 

      由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。

      ①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。

      ②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。

      ③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。

       ④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。



  按输出波段范围分类


     根据输出激光波长范围之不同,可将各类激光器区分为以下几种。

     ①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。

    ②中红外激光器,指输出激光波长处于中红外区(2.5~25微米)的激光器件,代表者为CO分子气体激光器(10.6微米)、 CO分子气体激光器(5~6微米)。

     ③近红外激光器,指输出激光波长处于近红外区(0.75~2.5微米)的激光器件,代表者为掺钕固体激光器(1.06微米)、CaAs半导体二极管激光器(约 0.8微米)和某些气体激光器等。

      ④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或0.4~0.7微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。

    ⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。

    ⑦X射线激光器, 指输出波长处于X射线谱区(0.01~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段


  激光器的发明

  激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。

  激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。

  此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。

  如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。

     1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。

  然而上述的微波波谱学理论和实验研究大都属于"纯科学",对于激光器到底能否研制成功,在当时还是很渺茫的。

  但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。

  汤斯等人研制的微波激射器只产生了1.25厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。

  此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。

  1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度

  "梅曼设计"引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。

  尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是"激光"("受激辐射式光频放大器"的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。

  1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器--氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。

  由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。

  今后,随着人类对激光技术的进一步研究和发展,激光器的性能和成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。





激光波长与激光种类

氦氖激光(红光) 543         二氧化碳(远红外光) 1064




准分子激光:

摘录:http://baike.baidu.com/link?url=8FuE61m6EdxPbNIfhwE4a9LidXeCpXvE3yVeFFdACRZRk0FD_u4v_Ti3tHKGTduW2hyzrj8r3XjTLRouoR9PDK

 

准分子激光(引)(英文:Excimer laser)是指受到电子束激发的惰性气体和卤素气体结合的混合气体形成的分子向其基态跃迁时发射所产生的激光。 准分子激光属于冷激光,无热效应,是方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157-353纳米,寿命为几十毫微秒,属于紫外光。最常见的波长有157 nm、193 nm、248 nm、308 nm、351-353 nm。


准分子激光治疗近视眼最早是1985年美国医生开始在临床应用的,近年来发展迅速,九十年代初传入中国。准分子激光治疗高、中、低度近视的手术效果远远优于以往的屈光手术,因此,广为全世界的眼科医师所瞩目。但仍有很多人对它产生怀疑,怕眼睛被打穿、烧焦。


一般来说,准分子激光是波长很短的紫外光,它与生物组织发生的是光化学效应而不是热效应,因此,不会产生热损伤,更谈不上烧焦。


激光笔:

http://baike.baidu.com/link?url=9wRIbDCh5VHEDwg5K8G1ZpYmmfyj3mLUUI1Orms27uJcCVsDODSdV_Q2yTPSKh-Ot8wowREs06yOlY0AR9fbq_

 

激光指示器,又称为激光笔、指星笔等,是把可见激光设计成便携、手易握、激光模组(发光二极管)加工成的笔型发射器。常见的激光指示器有红光(λ=650~660nm, 635nm)、绿光(λ=515-520nm, 532nm)、蓝光(λ=445~450nm)和蓝紫(λ=405nm)等。
通常在汇报、教学、导游人员都会使用它来投映一个光点或一条光线指向物体,但它在特定场所,例如艺术馆(有些画作怕光)、动物园等都不宜使用。
不当使用激光笔可能造成视网膜严重受损,甚至失明,儿童不宜使用。

早期的激光笔使用波长为633纳米(nm)的(HeNe)气体激光,通常用于产生能量不超过1mW的激光束。最便宜的激光笔使用波长接近670/650nm的深红色激光二极管。稍贵的则使用波长为635nm的红-橙色二极管,这一波长更易于为人眼所识别。也有其他颜色的激光笔,最常见的是波长为532nm的绿光。


激光的波长不同对眼球作用的程度不同,其后果也不同。远红外激光对眼睛的损害主要以角膜为主,这是因为这类波长的激光几乎全部被角膜吸收,所以角膜损伤最重,主要引起角膜炎结膜炎,患者感到眼睛痛,异物样刺激、怕光、流眼泪、眼球充血,视力下降等。发生远红外光损伤时应遮住保护伤眼,防止感染发生,对症处理。

紫外激光对眼的损伤主要是角膜和晶状体,此波段的紫外激光几乎全部被眼的晶状体吸收搜索,而中远以角膜吸收为主,因而可致晶状体角膜混浊
具体的功率不好说。



   原子发射光谱:ICP-AES  vas ICP-MS

摘录:原子发射光谱

http://baike.baidu.com/link?url=W1kzlYs_ihT-FUq_eFaN2thoEG_856-n5U_cN1yw5QIfh3V8c1AJGDJNwjAWr5RPOwTHKe7GvxzxfzZ4nt4MUq

    原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范围约2个数量级。这种方法可有效地用于测量高、中、低含量的元素。

       原子发射光谱法,是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。在正常状态下,原子处于基态,原子在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。原子发射光谱法包括了三个主要的过程,即:
1、由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射
2、将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;
3、用检测器检测光谱中谱线的波长和强度。
由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。
原子发射光谱是指由于物质内部运动的原子和分子受到外界能量后发生变化而得到的。

工作原理

atomic emission spectrometry

      原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。根据激发机理不同,原子发射光谱有3种类型:

      ①原子的核外光学电子在受热能和电能激发而发射的光谱

     通常所称的原子发射光谱法是指以电弧、电火花和电火焰(如ICP等)为激发光源来得到原子光谱的分析方法

    以化学火焰为激发光源来得到原子发射光谱的,专称为火焰光度法

     ②原子核外光学电子受到光能激发而发射的光谱,称为原子荧光(见原子荧光光谱分析)。

     ③原子受到X射线光子或其他微观粒子激发使内层电子电离而出现空穴,较外层的电子跃迁到空穴,同时产生次级X射线即X射线荧光(见X射线荧光光谱分析)。

     在通常的情况下,原子处于基态。基态原子受到激发跃迁到能量较高的激发态激发态原子是不稳定的,平均寿命为10-10~10-8秒。随后激发原子就要跃迁回到低能态或基态,同时释放出多余的能量,如果以辐射的形式释放能量,该能量就是释放光子的能量。因为原子核外电子能量是量子化的,因此伴随电子跃迁而释放的光子能量就等于电子发生跃迁的两能级的能量差 ,式中h为普朗克常数;c为光速;ν和λ分别为发射谱线的特征频率和特征波长。【CCD相机捕获】

     根据谱线的特征频率和特征波长可以进行定性分析。常用的光谱定性分析方法有铁光谱比较法和标准试样光谱比较法。

     原子发射光谱的谱线强度I与试样中被测组分的浓度c成正比。据此可以进行光谱定量分析

      光谱定量分析所依据的基本关系式是I=acb,式中b是自吸收系数,α为比例系数。为了补偿因实验条件波动而引起的谱线强度变化,通常用分析线和内标线强度比对元素含量的关系来进行光谱定量分析,称为内标法。常用的定量分析方法是标准曲线法标准加入法

     原子发射光谱分析的优点是:

    ①灵敏度高。许多元素绝对灵敏度为10-11~10-13克。

    ②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。

    ③分析速度快。可进行多元素同时测定。

     ④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用于金属、矿石、合金、和各种材料的分析检验。

       新元素在原子吸收光谱分析法建立后,其在分析化学中的作用下降。



 

摘录:

激光在原子发射光谱分析中的应用研究

http://d.wanfangdata.com.cn/Thesis_D157613.aspx

      原子发射光谱分析是对元素进行定性和定量分析的应用最广泛的方法。与现有的其他光谱分析技术相比,激光应用于原子发射光谱分析可以做到近似无损分析在分析难蒸发、难激发元素方面也有其独特的优势。激光等离子体的相关研究在薄膜制备、同位素分离、医学、生物学等方向都有着较好的应用前景。目前激光应用在原子发射光谱分析中多采用红外激光,且相关分析多是理论性分析或定性半定量分析,紫外激光的应用及光谱定量分析的相关研究还相对较少。
   本文介绍了原子发射光谱分析的相关原理,激光等离子体的形成过程和光谱特点,摄谱法定量分析的过程和方法。利用微型光纤光谱仪实现了 ,得出其激发温度与激发时间的相对关系,得出电弧引燃30s后等离子体温度相对稳定。利用光栅光谱仪拍摄激光激发的纯铜等离子体原子发射光谱,确定实验条件。

    在选定的实验条件下采集激光激发的HPb59-1铅黄铜样品的等离子体原子发射光谱,分析了XeCl准分子激光诱导击穿铅黄铜合金光谱的谱线加宽线形。做出定量分析工作曲线,并计算了样品中Ni、Fe元素含量的定量分析精密度。
   研究结果表明将紫外激光应用于原子发射光谱分析中是可行的,并且能够提高定量分析的最小取样量水平。






 








https://blog.sciencenet.cn/blog-567091-905181.html

上一篇:标准漏孔与氦质谱检漏仪
下一篇:同位素的原子发射光谱:从氢同位素说起
收藏 IP: 139.205.199.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 20:46

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部