|||
点击下载原文:
基于神经网络的马尾松毛虫精细化预报Matlab建模试验.doc
基于神经网络的马尾松毛虫精细化预报Matlab建模试验
张国庆
(安徽省潜山县林业局)
1.数据来源
马尾松毛虫发生量、发生期数据来源于潜山县监测数据,气象数据来源于国家气候中心。
2.数据预处理
为了体现马尾松毛虫发生发展时间上的完整性,在数据处理时,将越冬代数据与上一年第二代数据合并,这样,就在时间上保持了一个马尾松毛虫世代的完整性,更便于建模和预测。
(1)气象数据处理
根据《松毛虫综合管理》、《中国松毛虫》等学术资料以及近年来有关马尾松毛虫监测预报学术论文,初步选择与松毛虫发生量、发生期有一定相关性气象因子,包括卵期极低气温,卵期平均气温,卵期积温(日度),卵期降雨量,第1、2龄极低气温,第1、2龄平均气温,第1、2龄积温(日度),第12龄降雨量,幼虫期极低气温,幼虫期平均气温,幼虫期积温(日度),幼虫期降雨量,世代极低气温,世代平均气温,世代积温(日度),世代降雨量共16个变量。将来自于国家气候中心的气象原始数据,按年度分世代转换成上述16个变量数据系列。
(2)发生量数据处理
为了在建模时分析发生强度,在对潜山县1983~2014年原始监测数据预处理时,按照“轻”、“中”、“重”3个强度等级,分类按世代逐年汇总。
(3)发生期数据处理
首先对潜山县1983~2014年原始发生期监测数据按世代逐年汇总,然后日期数据转换成日历天,使之数量化,以便于建模分析。
3.因子变量选择
通过相关性分析和建模试验比较,第一代发生量因子变量选择第1、2龄极低气温,卵期极低气温,上一代防治效果,上一代防治面积;第二代发生量因子变量选择第1、2龄极低气温,卵期极低气温,上一代防治效果,上一代防治面积,第1、2龄降雨量,卵期降雨量;第一代幼虫高峰期因子变量选择第1、2龄平均气温,第1、2龄积温(日度),第1、2龄极低气温,卵期极低气温;第二代幼虫高峰期因子变量选择成虫始见期,卵期平均气温,卵期积温(日度),第1、2龄极低气温。
将第一代发生量变量命名为s1y,因变量命名为s1x;第二代发生量变量命名为s2y,因变量命名为s2x;第一代幼虫高峰期变量命名为t1y,因变量命名为t1x;第二代幼虫高峰期变量命名为t2y,因变量命名为t2x。
4.第一代发生量建模试验
4.1程序代码
程序代码(Simple Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 19:28:48 CST 2015
%
% This script assumes these variables are defined:
%
% s1x - input data.
% s1y - target data.
x = s1x';
t = s1y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
程序代码(Advanced Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 19:29:03 CST 2015
%
% This script assumes these variables are defined:
%
% s1x - input data.
% s1y - target data.
x = s1x';
t = s1y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
% Deployment
% Change the (false) values to (true) to enable the following code blocks.
if (false)
% Generate MATLAB function for neural network for application deployment
% in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply
% to examine the calculations your trained neural network performs.
genFunction(net,'myNeuralNetworkFunction');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);
end
4.2网络训练过程
网络训练为:
4.3训练结果
训练结果为:
训练样本、验证样本、测试样本的R值分别为0.875337、-1和1。
误差直方图为:
训练样本、验证样本、测试样本、所有数据回归图为:
验证样本和测试样本R值均为1。
5.第二代发生量建模试验
5.1程序代码
程序代码(Simple Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:04:18 CST 2015
%
% This script assumes these variables are defined:
%
% s2x - input data.
% s2y - target data.
x = s2x';
t = s2y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
程序代码(Advanced Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:04:31 CST 2015
%
% This script assumes these variables are defined:
%
% s2x - input data.
% s2y - target data.
x = s2x';
t = s2y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
% Deployment
% Change the (false) values to (true) to enable the following code blocks.
if (false)
% Generate MATLAB function for neural network for application deployment
% in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply
% to examine the calculations your trained neural network performs.
genFunction(net,'myNeuralNetworkFunction');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);
end
5.2网络训练过程
网络训练为:
5.3训练结果
训练结果为:
训练样本、验证样本、测试样本的R值分别为0.942388、0.999999和1。
误差直方图为:
训练样本、验证样本、测试样本、所有数据回归图为:
验证样本和测试样本R值均为1,训练样本R=0.94239,所有数据R=0.89479。
6.第一代幼虫高峰期建模试验
6.1程序代码
程序代码(Simple Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:16:32 CST 2015
%
% This script assumes these variables are defined:
%
% t1x - input data.
% t1y - target data.
x = t1x';
t = t1y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
程序代码(Advanced Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:17:08 CST 2015
%
% This script assumes these variables are defined:
%
% t1x - input data.
% t1y - target data.
x = t1x';
t = t1y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
% Deployment
% Change the (false) values to (true) to enable the following code blocks.
if (false)
% Generate MATLAB function for neural network for application deployment
% in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply
% to examine the calculations your trained neural network performs.
genFunction(net,'myNeuralNetworkFunction');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);
end
6.2网络训练过程
网络训练为:
6.3训练结果
训练结果为:
训练样本、验证样本、测试样本的R值分别为0.875337、-1和1。
误差直方图为:
训练样本、验证样本、测试样本、所有数据回归图为:
验证样本和测试样本R值均为1。
7.第二代幼虫高峰期建模试验
7.1程序代码
程序代码(Simple Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:22:04 CST 2015
%
% This script assumes these variables are defined:
%
% t2x - input data.
% t2y - target data.
x = t2x';
t = t2y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
程序代码(Advanced Script)为:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created Wed Oct 28 20:22:29 CST 2015
%
% This script assumes these variables are defined:
%
% t2x - input data.
% t2y - target data.
x = t2x';
t = t2y';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(net,x,t)
%figure, plotregression(t,y)
%figure, ploterrhist(e)
% Deployment
% Change the (false) values to (true) to enable the following code blocks.
if (false)
% Generate MATLAB function for neural network for application deployment
% in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply
% to examine the calculations your trained neural network performs.
genFunction(net,'myNeuralNetworkFunction');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);
end
7.2网络训练过程
网络训练为:
7.3训练结果
训练结果为:
训练样本、验证样本、测试样本的R值分别为0.402150、1和1。
误差直方图为:
训练样本、验证样本、测试样本、所有数据回归图为:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-10 07:17
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社