||
2阶带复根的SISO线性连续系统的能控域边界计算
已有研究指出在单位输入变量 $$ $\left(\left\Vert u_{t}\right\Vert _{\infty}\leq1,\forall t\right)$ 约束下线性连续时间系统的能控域的定义为
$R_{c,x}=\left\{ z\left|z=\int_{0}^{T}e^{-At}Bu_{t}\textrm{d}t,\left\Vert u_{t}\right\Vert _{\infty}\leq1\right.\right\}$
且该能控域的边界为
$\partial R_{c,x}=\left\{ z\left|z=\int_{0}^{T}e^{-At}B\textrm{sgn(}c^{T}e^{-At}B)\textrm{d}t,\forall c\in R^{n}\right.\right\}$
对2阶带复根的SISO线性连续系统 $\Sigma(A,B)$ ,设其系统矩阵和输入矩阵为(或可转换为)
$A=\left[\begin{array}{cc}
\sigma & \mu\\
-\mu & \sigma
\end{array}\right]=\rho_{A}\left[\begin{array}{cc}
\cos\theta & \sin\theta\\
-\sin\theta & \cos\theta
\end{array}\right]$
$B=\left[\begin{array}{c} b_{1}\\ b_{2} \end{array}\right]=\rho_{B}\left[\begin{array}{c} \cos\delta\\ \sin\delta \end{array}\right]$
其中
$\rho_{B}=\left(b_{1}^{2}+b_{2}^{2}\right)^{1/2},\quad\delta=\arctan\frac{b_{2}}{b_{1}}\in(-\pi,\pi]$
$\rho_{A}=\textrm{sgn}(\sigma)\left(\sigma^{2}+\mu^{2}\right)^{1/2},\quad\theta=\arctan\frac{\mu}{\sigma}\in[0,\pi)$
则由
$e^{-At}=e^{-\rho_{A}t}\textrm{\ensuremath{\left[\begin{array}{cc}
\cos\mathit{\left(\theta t\right)} & -\sin\mathit{\left(\theta t\right)}\\
\sin\mathit{\left(\theta t\right)} & \cos\mathit{\left(\theta t\right)}
\end{array}\right]}}$
有
$\partial R_{c,x}=\left\{ \pm z\left|z=\int_{0}^{T}e^{-At}B\textrm{sgn}\left(e^{-\rho_{A}t}\cos(\mathit{\theta t}+\delta-\textbfsymbol{\phi})\right)\textrm{d}t,\forall\textbfsymbol{\textbfsymbol{\phi}}\in[0,\pi)\right.\right\}$ (1)
对给定的 $\textbfsymbol{\phi}\in[0,\pi)$ ,上式中的 $\textrm{sgn}\text{()}$ 函数的值发生变号的时间点为如下方程的解
$e^{-\rho_{A}t}\cos(\mathit{\theta t}+\delta-\textbfsymbol{\phi})=0\quad\quad0 上述方程的解可能有多个,这取决于复根的虚部 $\theta$ 代表的频率和积分时长 $T$ 。因此,若在 $[0,T]$ 时长内,对给定的 $\textbfsymbol{\phi}\in[0,\pi)$ ,式(2)的解 $\tau_{i}$ 为 $\mathit{\tau_{i}}=s_{i}+\frac{\hat{\delta}+\pi/2}{\theta}\qquad i=1,2,\ldots,N$ 其中 $\mathit{s_{i}}=(i-1)\Delta\qquad i=1,2,\ldots,N$ $N\mathrm{=int}\left(\left|\frac{\mathit{\theta T}+\delta-\textbfsymbol{\phi}}{\pi}\right|\right)$ $\Delta=\frac{\pi}{\theta}$ $\hat{\delta}=\delta-\textbfsymbol{\phi}-q\pi,\qquad\hat{\delta}\in(-\pi/2,\pi/2],q$ 为整数 且有 $\cos(\theta s\mathit{_{i}}+\delta-\textbfsymbol{\phi})=(-1)^{i}\cos(\delta-\textbfsymbol{\phi}),\qquad i=0,1,2,\ldots,N$ 则式(1)所描述的边界为 $\partial R_{c,x}(\phi)
=\left\{ \pm z\left|z=p_{1}\left(\left[\begin{array}{c}
-\sin(\delta+\psi)\\
\cos(\delta+\psi)
\end{array}\right]+\left(1-e^{-N\rho_{A}\varDelta}\right)p_{2}\left[\begin{array}{c}
\cos(\phi+\psi)\\
-\sin(\phi+\psi)
\end{array}\right]\right.\right.\right.$ $\qquad\left.\left.+(-1)^{N}e^{-\rho_{A}T}\left[\begin{array}{c}
\sin(\mathit{\theta T}+\delta+\psi)\\
-\cos(\mathit{\theta T}+\delta+\psi)
\end{array}\right]\right)\right\}$ where $\tau_{0}=0,\qquad\tau_{N+1}=T$ $\psi=\arctan\frac{\rho_{A}}{\theta}\qquad p_{1}=\frac{\rho_{b}}{\sqrt{\rho_{A}^{2}+\theta^{2}}}\qquad p_{2}=(-1)^{q}\frac{2e^{-\rho_{A}\tau_{1}}}{1-e^{-\rho_{A}\varDelta}}$ 当 $T\rightarrow\infty$ 且 $\sigma>0$ 时,式(1)所描述的边界为 $\partial R_{c,x}(\phi)=\left\{ \pm z\left|z=p_{1}\left(\left[\begin{array}{c}
-\sin(\delta+\psi)\\
\cos(\delta+\psi)
\end{array}\right]+p_{2}\left[\begin{array}{c}
\cos(\phi+\psi)\\
\sin(\phi+\psi)
\end{array}\right]\right)\right.\right\}$ $\qquad\textbfsymbol{\phi}\in[0,\pi)$
https://blog.sciencenet.cn/blog-3343777-1072797.html
上一篇:专家控制系统的变量空间
下一篇:4阶有2对复根的离散系统的能达丰富性计算
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-26 16:58
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社