TickingClock的个人博客分享 http://blog.sciencenet.cn/u/TickingClock

博文

Science Advance:植物表皮在系统获得性抗性时调控水杨酸的质外体运输

已有 2656 次阅读 2020-5-8 08:20 |个人分类:每日摘要|系统分类:论文交流

The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance

第一作者Gah-Hyun Lim

第一单位美国肯塔基大学
通讯作者Pradeep Kachroo


Abstract


背景回顾The plant cuticle is often considered a passive barrier from the environment. 


主要发现:We show that the cuticle regulates active transport of the defense hormone salicylic acid (SA). 


结果:SA, an important regulator of systemic acquired resistance (SAR), is preferentially transported from pathogen-infected to uninfected parts via the apoplast. Apoplastic accumulation of SA, which precedes its accumulation in the cytosol, is driven by the pH gradient and deprotonation of SA. In cuticle-defective mutants, increased transpiration and reduced water potential preferentially routes SA to cuticle wax rather than to the apoplast. This results in defective long-distance transport of SA, which in turn impairs distal accumulation of the SAR-inducer pipecolic acid. High humidity reduces transpiration to restore systemic SA transport and, thereby, SAR in cuticle-defective mutants. 


结论:Together, our results demonstrate that long-distance mobility of SA is essential for SAR and that partitioning of SA between the symplast and cuticle is regulated by transpiration. 


摘  要


植物的表皮通常被认为是一个隔离外界环境的被动型障碍。作者发现表皮能够调控植物防御性激素水杨酸的主动运输。水杨酸是植物系统获得性抗性SAR一个重要的调控因子,水杨酸会通过质外体途径从病原菌侵染的部位优先被转运到未被侵染的部位。质外体中水杨酸的积累要先于胞质中水杨酸的积累,该过程是由pH梯度和水杨酸的去质子化所驱动的。在表皮存在缺陷的突变体中,蒸腾作用增强,水势降低,从而会优先将水杨酸转运至表皮蜡层而不是质外体中。该结果会导致水杨酸的长距离运输中断,进而导致SAR诱导因子胡椒酸不能在远端积累。高湿度能够减少蒸腾作用,从而恢复系统性水杨酸转运,因此恢复表皮缺陷突变体中的SAR。综上,本文的研究结果揭示了水杨酸的长距离迁移对于SAR是必需的,并且水杨酸在共质体与表皮间的分配是由蒸腾作用调控的。


通讯作者


**Pradeep Kachroo**


个人简介:

1987年,印度德里大学,学士;

1989年,印度Maharaja Sayajirao University of Baroda,硕士;

1995年,印度Maharaja Sayajirao University of Baroda、美国威斯康星大学麦迪逊分校,博士


研究方向:利用拟南芥为模式植物,研究其与

细菌性病原体丁香假单胞菌、

病毒性病原体芜菁皱纹病毒、

真菌性病原体炭疽菌和灰葡萄孢的相互作用 



doi: 10.1126/sciadv.aaz0478


Journal: Science Advance

Published date: May 06, 2020


p.s. 往期cuticle精彩链接:

Science:植物胚胎-胚乳双向多肽信号调控胚胎表皮沉积 (上篇)

Science:植物胚胎-胚乳双向多肽信号调控胚胎表皮沉积 (中篇)

Science:植物胚胎-胚乳双向多肽信号调控胚胎表皮沉积 (下篇)



https://blog.sciencenet.cn/blog-3158122-1232129.html

上一篇:Nature Communications:植物干细胞调控因子WUSCHEL结合DNA的结构基础
下一篇:Nature Biotechnology:高维数据降维可视化新工具,适用于scRNA、Hi-C等多种数据类型
收藏 IP: 49.65.153.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-27 10:42

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部