传统认为,人类的第一级感光细胞有两种:视杆细胞(rods)和视锥细胞(cones)。1675年Anton van Leeuwenhoek (1632-1723)可能观察到了感光细胞,而其一百多年后的Gottfried Reinhold Treviranus (1776–1837)描述了感光细胞。十九世纪,德国的Rudolph Albert von Kolliker (1817 -1905)与Max Schultze(1825-1874)清楚地知道视网膜细胞的分层和感光细胞。Schultze画的视杆和视锥细胞如图。
牛顿与胡克因为万有引力和光学有过多个发明权的争论。牛顿可能因此才等到胡克去世以后的1704年发表《光学》一书。牛顿对人脑感受色觉的理解是“May not the harmony and discord of colours arise from the proportions of the vibrations propagated through the fibres of the optick nerves into the brain”,提出光振荡的比例通过视神经传到大脑。我们今天知道胡克对色觉的推想是错的,牛顿有关色觉的想法在原则上是对的。在生物学上,有很多简单便宜的想法,大家都想的到、但不容易证明,而有些想法,如牛顿对于色觉的想法就并不容易,需要过几百年才得以证实和发展。另外,我们解释过孟德尔在有实验证据的情况下推出的理论,因为思想超前所以需要几十年才被人们广泛接受,说明生物学也有时有很难、很超前的想法。
英国科学家Thomas Young于1801年宣读,1802年发表的“光和色的理论”。在引用牛顿在《光学》中对颜色和色觉的讨论后,Young提出,不可能在视网膜的光敏感点含有无穷的颗粒,每一颗粒与相应光同步振荡,所以需要提出有限的颗粒数,比如三原色(three principal colours),红黄蓝。每一种的振荡或多或少偏离完全同步。视神经的每根纤维可能有三部分,分别对一种原色敏感。至于为什么是这三种颜色,他当时只是猜测性地将三种原色分布在可见光较广的范围内。Young被很多人认为是第一次提出色觉三原色。如果认为Palmer对光的物理理解错误,所以影响其三原色理论的准确性,也可以认为Young在对光的连续性正确理解的基础上,提出视网膜为基础的三原色是第一次正确地理解三原色。
英国物理学家麦克斯韦(James Clerk Maxwell,1831-1879)和德国生理学家赫姆霍兹(Hermann von Helmholtz,1821-1894)发展了Young的色觉理论。麦克斯韦还在1861年显示了彩色照相的可能。赫姆霍兹对光的生理学有深入和细致的讨论,他已经知道视神经的电生理。对于色觉,他发展了Young的理论,提出有三种视神经,分别对红、绿、紫最敏感,各种颜色的光对这三种视神经有不同程度的激活,导致不同的色觉。他指出理论上无法确定哪三个颜色是三原色,只能从色盲来确定。
人的视锥细胞到底有几种、分别对什么波长的光最敏感,到1964年才由美国霍普金斯大学的Marks、Dobelle和MacNichol所确定(Marks et al.,1964)。实际上,人类三种视锥细胞最为敏感的波长分别为:564 nm、533 nm和437 nm。它们分别接近黄、绿和紫,根本没有对红色最为敏感的细胞,所以现在也称为长(L)、中(M)、短(S)波长的视锥细胞。用红黄紫或红黄蓝是习惯用法,科学上不准确。不同的动物,不仅色觉细胞种类不同,所含光蛋白(opsins)敏感的波长也不同。果蝇有对紫外线敏感的感光细胞。
4. 牛顿《光学》出版于Hooke去世以后,与两人一直有争论可能有关。牛顿的名言“我如果看的远是因为站在巨人肩上(If I have seen further it is by standing on the should of giants)”出现于他与Hooke争论的通讯中,有两位英国传记作家解读可能是牛顿讽刺挖苦驼背的Hooke。不过,这句话并非牛顿发明,在十二世纪就有人提过。
5. George Wald与夫人Ruth Hubbard在1960、1970年代加入社会活动,如反核,但也曾错误地积极反对重组DNA,在1970年代导致哈佛所在地限制重组DNA的研究,有些教授逃跑,见http://blog.sciencenet.cn/blog-2237-463690.html。
参考文献:
Arshavsky VY, Lamb TD, Pugh Jr EN (2002) G proteins and phototransduction. Annual Review of Physiology 64: 153-187.
Baylor DA, Lamb TD and Yau KW (1979) Responses of retinal rods to single photons. Journal of Physiology 288:613-634.
Belrhali, H., Nollert, P., Royant A., Menzel, C., Rosenbusch, J.P., Landau, E.M. & Pebay-Peyroula, E. (1999). Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7:909-917.
Berson DM, Dunn FA and Takao M (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070-1073.
Böll F (1877) Zur Anatomie und Physiologie der Retina. Arch. Anat. Physiol. Physiol. Abt:4-35.
Dalton J (1798). Extraordinary facts relating to the vision of colours with observations. Memoirs of the Literary and Philosophical Society of Manchester 5:28-45.
Dowling JE(2002)George Wald 18 November 1906-12 April 1997. Proceedings of the American Philosophical Society 146:431-439.
Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310 –313.
Fridericia LS and Holm E (1925). Experimental contribution to the study of the relation between night blindness and malnutrition. American Journal of Physiology 73:63–78.
Hargrave PA, McDowell JH, Sremiatkowski-Juszczak EC, Fong S-L, Kuhn H, Wang JK, Curtis DR, Mohana Rao JK, Argos P, and Feldmann RJ (1982). The carboxy terminal one-third of bovine rhodopsin: its structure and function. Vision Research 22:1429-1438.
Hargrave P. A., McDowell J. H., Curtis D. R., Wang J. K., Juszczak E., Fong S. L., Rao J. K., Argos P. (1983) The structure of bovine rhodopsin. Biophysics of Structure and Mechanism 9:235–244.
Hattar S, Liao HW, Takao M, Berson DM and Yau KW (2002). Melanopsin containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065-1070.
Hecht S (1919). Sensory equilibrium and dark adaptation in Mya arenaria. Journal of General Physiology i(5):545-58.
Hecht S, Shlaer S, Pirenne M (1942) Energy, quanta and vision. Journal of General Physiology 25:819–840.
von Helmholtz H (1910) Treatise on Physiological Optics, translated by Southall JPC (1924), Vol. 2 the sensations of vision. The Optical Society of America.
Horiguchi H, Winawer J, Dougherty RF, Wandell BA (2012). Human trichromacy revisited. Proceedings of the National Academy of Sciences USA110:260-269.
Hunt DM, Dulai KS, Bowmaker JK, Mollon JD (1995). The chemistry of John Dalton’s color blindness. Science 267:984 – 988.
Kimura, Y., Vassylyev, D.G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., Murate, K., Hirai, T. & Fujiyoshi, Y. (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206-211.
Kühne W. (1879) Chemische Vorgänge in der Netzhaut. Hermann L. eds. Handbuch d. Physiologie d. Sinnesorgane Erster Theil, Gesichtssinn. F.C.W. Vogel Leipzig, Germany.
Kühne W (1882). Beiträge zur Optochemie. Untersuchungen aus dem physiologischen Institute der Universität Heidelberg 4:169-249.
Marks WB, Dobelle WH, MacNichol Jr EF (1964) Visual pigments of single primate cones. Science 143:1181-1183.
Maxwell JC (1872). On colour vision. Proceedings of the Royal Institution of Great Britain 6:260-271.
McCollum, E. V. and Davis, M. (1913) The necessity of certain lipins in the diet during growth. Journal of Biological Chemistry 15:167–175.
McCollum, E. V. and Davis, M. (1915) The nature of the dietary deficiencies of rice. Journal of Biological Chemistry 23:181–230.
Müller R (1851). Zur Histologie der Netzhaut. Z. Wiss. Zool. 3:234-237.
Nathans J and Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807-814.
Nathans J and Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proceedings of the National Academy of Sciences USA 81:4851-4855
Nathans J, Thomas D, Hogness DS (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193-202
Nathans J, Piantanida TP, Eddy RL, Shows TB and Hogness DS (1986).Molecular genetics of inherited variation in human color vision. Science 232:203-210.
Newton I (1704). Opticks.
Osborne TB and Mendel LB (1913) The relation of growth to the chemical constituents of the diet. Journal of Biological Chemistry 15:311-326.
Ovchinnikov Iu A., Abdulaev N. G., Feigina M., Artamonov I. D., Bogachuk A. S.(1983) Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane. Bioorganicheskaia Khimiia 9:1331–1340.
Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E., Yamamoto M., Miyano M.(2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745.
Palmer, G. 1777a. Theory of Colour and Vision, London: Leacroft.
Palmer, G. 1777b. Theorie du couleur et de la vision, translated by D.-B. Quatremere d'Isjonval, Paris: Pissot.
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences USA95:340–345.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF and Rollag MD (2000) A novel human opsin in the inner retina. Journal of Neuroscience 20:600-605.
Ripps H (2008). The color purple: milestones in photochemistry. FASEB Journal 22:4038-4043.
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC (2012).Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042-1054.
Smith SO (2010). Structure and activation of the visual pigment rhodopsin annual review of biophysics. Annual Review of Biophysics 39:309-328.
van der Velden HA (1946) The number of quanta necessary for the perception of light in the human eye. Opthalmologica 111:321–331.
Wald G (1933) Vitamin A in the retina. Nature 132:316.
Wald G (1935) Vitamine A in eye tissue. Journal of General Physiology 18 :905-915.
Wald G (1935) Carotenoids and the visual cycle. Journal of General Physiology 19:351-371.
Wald G. (1968). The molecular basis of visual excitation. Nature 219:800-807.
Wolf G (2001). The discovery of the visual function of Vitamin A. Journal of Nutrition 131:1647-1650.
Young T (1802) On the Theory of Light and Colours. Philosophical Transactions of the Royal Society of London 92:12-48.
Yudkin AM (1931) The presence of vitamin A in the retina. Archive of Ophthalmology 6:510–517.