Contents Charleton University Mathematics Journal Vol 1

- 1-10 Monotonicity methods in PDE---Zujin Zhang
- 11-15 Mean-value property of the heat equation---Zujin Zhang
- 16-17 On solution formulae of IBVP for the heat equation---Zujin Zhang
- 18-20 Equipartition of energy---Xuanji Jia, Zujin Zhang
- 21-24 The curvature of a 2D curve---Zujin Zhang
- 25-27 Dirichlet Principle of Harmonic maps---Zujin Zhang
- 28-29 Instrinsic View of Harmonic Maps---Zujin Zhang
- 30-32 Extrinsic View of Harmonic Maps---Zujin Zhang
- 33-35 A Few Facts about Harmonic Maps---Zujin Zhang
- 36-38 Bochner Identity for Harmonic Maps---Zujin Zhang
- 39-42 Second Variation Formula of Harmonic Maps---Zujin Zhang
- 43-48 An existence theorem for stationary compressible Navier-Stokes equations with Dirichlet boundary conditions---Zujin Zhang
- 49-53 An existence theorem for stationary compressible Navier-Stokes equations under Modified Dirichlet Boundary Conditions---Zujin Zhang
- 54-68 Exterior Problems and Related Questions for the Stationary Compressible Navier-Stokes equations---Zujin Zhang
- 69-75 S.T. Yau College Mathematics Contests 2010---Zujin Zhang

MONOTONICITY METHODS IN PDE

ZUJIN ZHANG

ABSTRACT. In this paper, we renormalize the huts 5.1.3 and 6.1.1 in [1], so as to be more accessible, see more details in [4]. Roughly speaking, monotonicity is the natural substitution of convexity in building solutions of *PDE*.

CONTENTS

- 1. Minty-Browder method in L^2 12. Minty-Browder method in L^{∞} 3Acknowledgements9REFERENCES9
- 1. **Minty-Browder method in** L^2 **.** In this hut, we introduce the **monotonicity method** due to Minty and Browder. As as illustrative problem, we consider the following quasi-linear PDE:

$$\begin{cases}
-\operatorname{div}\left(\mathbf{E}(Du)\right) = f, & \text{in } U, \\
u = 0, & \text{on } \partial U,
\end{cases}$$
(1)

where $E: \mathbb{R}^n \to \mathbb{R}^n$ is given.

Observe that (1) can be solved by calculations of variations in case E = DF for some convex $F : \mathbb{R}^n \to \mathbb{R}$.

Key words and phrases. Monotonicity method, weak convergence method.

Our problem is then what natural conditions on E so that (1) may be directly tackled, when E is no longer the gradient of a convex function.

This is the work of Minty and Browder, who give

Definition 1. A vector field E on \mathbb{R}^n is called monotone if

$$(E(p) - E(q)) \cdot (p - q) \ge 0, \ \forall \ p, q \in \mathbb{R}^n, \tag{2}$$

and show (1) can be tacitly worked out as

Theorem 2. Assume E is monotone and satisfies the growth condition $|E(p)| \le C(1+|p|), p \in \mathbb{R}^n$.

Let $\{u_k\} \in H_0^1(U)$ be weak solutions of the approximating problems

$$\begin{cases}
-div \ (\mathbf{E}(Du_k)) = f_k, & \text{in } U, \\
u_k = 0, & \text{on } \partial U,
\end{cases}$$
(3)

with $f_k \to f$ in $L^2(U)$.

Suppose $u_k \to u$ in $H_0^1(U)$. Then u is a weak solution of (1).

Proof. We first write down

$$0 \leq \int_{U} [E(Du_{k}) - E(Dv)] [Du_{k} - Dv] dx \quad (Monotonicity)$$

$$= \int_{U} [f_{k}u_{k} - f_{k}v - E(Dv)(Du_{k} - Dv)] dx, \quad \forall v \in H_{0}^{1}(U)$$
(integration by parts and weak formulation).

Then taking $k \to \infty$ yields

$$0 \le \int_{U} \left[f(u - v) - E(Dv) \cdot (Du - Dv) \right] dx.$$

Choosing $v = u + \lambda w$, with $\lambda \in \mathbb{R}$, $w \in H_0^1(U)$ furthermore gives

$$0 \le sgn(\lambda) \int_{U} \left[\mathbf{E} (Du + \lambda Dw) \cdot Dw - fw \right] dx.$$

Passing $\lambda \to 0$ finally, we have as desired

$$0 = \int_{U} \left[E(Du) \cdot Dv - fw \right] dx, \ \forall \ w \in H_0^1(U).$$

2. **Minty-Browder method in** L^{∞} . We consider the strong solutions of *PDE*, instead of weak solutions in (1). Hence the Minty-Browder method moves from L^2 to L^{∞} .

To illustrate how it works, let us consider the following fully non-linear *PDE*:

$$\begin{cases} F(D^2 u) = f, & \text{in } U, \\ u = 0, & \text{on } \partial U, \end{cases}$$
 (4)

where $F: S^{n \times n} \to \mathbb{R}$ is given. Here $S^{n \times n}$ is the space of real, symmetric $n \times n$ matrices.

Definition 3. The problem (4) is **elliptic**, if F is monotone decreasing with respect to matrix ordering on $S^{n\times n}$, and so

$$F(S) \le F(R), \text{ if } S \ge R, S, R \in S^{n \times n}.$$
 (5)

Remark 4. This very definition of ellipticity, coincides with the classical ones. In fact, we say PDE

$$Tr[A \cdot Du] = f$$

is **elliptic** if A is a non-positive definite symmetric matrix. One then readily verifies

$$S \ge R \implies S - R \text{ non-negative definite}$$

$$\Rightarrow Tr[A \cdot (S - R)] \le 0$$

$$\Rightarrow Tr[A \cdot S] \le Tr[A \cdot R], S, R \in S^{n \times n}.$$

Now, suppose $f_k \to f$ uniformly, and consider the approximating problems

$$\begin{cases} F(Du_k) = f_k, & \text{in } U, \\ u_k = 0, & \text{on } \partial U. \end{cases}$$
 (6)

Assume (6) has a smooth solution u_k , a priori bounded in $W^{2,\infty}(U)$. Then, up to a subsequence,

$$u_k \to u$$
 uniformly, $D^2 u_k \stackrel{*}{\rightharpoonup} D^2 u$ in $L^{\infty}(U; S^{n \times n})$,

for some *u*.

Our **problem** is then: does u satisfies (4)?

If F is uniformly elliptic and convex, then strong estimates are available and passing to limit is simple, see [3]. The main interest is consequently for the nonconvex F, as in hut 1.

Recall that in hut 1, the main assumption leading to the existence of a weak solution is the monotonicity inequality (2). We shall then furnish a similar monotonicity in this current circumstance, replacing the ellipticity of F.

For this purpose, we need

Proposition 5. Let $(X, \|\cdot\|)$ be a Banach space. Then the limit

$$[f,g] = \lim_{\lambda \to 0_+} \frac{\|g + \lambda f\|^2 - \|g\|^2}{2\lambda}$$
 (7)

exists for all $f, g \in X$.

Proof. Writing

$$\frac{\|g + \lambda f\|^2 - \|g\|^2}{2\lambda} = \frac{\|g + \lambda f\| + \|g\|}{2} \cdot \frac{\|g + \lambda f\| - \|g\|}{\lambda},$$

we need only show that $\left\{\frac{\|g + \lambda f\| - \|g\|}{\lambda}\right\}_{\lambda > 0}$ is bounded from below and increasing in λ . In fact, we have

1.
$$\frac{\|g + \lambda f\| - \|g\|}{\lambda} \ge \frac{-\lambda \|f\|}{\lambda} = -\|f\|;$$
2. for $0 < \lambda < \tilde{\lambda}$,
$$\frac{\|g + \lambda f\| - \|g\|}{\lambda} - \frac{\|g + \tilde{\lambda} f\| - \|g\|}{\tilde{\lambda}}$$

$$= \frac{\|\tilde{\lambda} g + \lambda \tilde{\lambda} f\| - \tilde{\lambda} \|g\| - \|\lambda g + \lambda \tilde{\lambda} f\| + \lambda \|g\|}{\lambda \tilde{\lambda}}$$

$$\le \frac{\|(\tilde{\lambda} - \lambda)g\| - (\tilde{\lambda} - \lambda) \|g\|}{\lambda \tilde{\lambda}} = 0.$$

Remark 6. In case X is a Hilbert space, [f, g] is simply the inner product.

We now give an useful property of $[\cdot, \cdot]$ as

Proposition 7. The map $X \times X \ni \{f, g\} \mapsto [f, g]$ is upper semicontinous, that is,

$$\limsup_{n \to \infty} [f_n, g_n] \le [f, g], \tag{8}$$

for all $f, g \in X$, $f_n \to f$, $g_n \to g$ in X.

Proof. Observe that in the proof of (7), we have $\left\{\frac{\|g + \lambda f\| - \|f\|}{\lambda}\right\}_{\lambda > 0}$ is increasing in λ , for $f, g \in X$ fixed.

Thus

$$\lim_{n \to \infty} \sup [f_n, g_n] = \lim_{n \to \infty} \sup_{\lambda \to 0_+} \frac{\|g_n + \lambda f_n\|^2 - \|g_n\|^2}{2\lambda}
= \lim_{n \to \infty} \sup \left\{ \lim_{\lambda \to 0_+} \left[\frac{\|g_n + \lambda f_n\| + \|g_n\|}{2} \cdot \frac{\|g_n + \lambda f_n\| - \|g_n\|}{\lambda} \right] \right\}
= \lim_{n \to \infty} \sup \left[\|g_n\| \cdot \lim_{\lambda \to 0_+} \frac{\|g_n + \lambda f_n\| - \|g_n\|}{\lambda} \right]
\leq \|g\| \cdot \lim_{n \to \infty} \sup \frac{\|g_n + \lambda f_n\| - \|g_n\|}{\lambda}$$

$$\leq \ \|g\|\cdot \frac{\|g+\lambda f\|-\|g\|}{\lambda}, \ \forall \lambda>0.$$

Taking $\lambda \to 0_+$, we obtain

$$\limsup_{n \to \infty} [f_n, g_n] = \|g\| \cdot \lim_{\lambda \to 0_+} \frac{\|g + \lambda f\| - \|g\|}{\lambda}$$
$$= \lim_{\lambda \to 0_+} \frac{\|g + \lambda f\|^2 - \|g\|^2}{2\lambda}$$
$$= [f, g].$$

Then an explicit formula in case $X = C(\bar{U})$ as

Proposition 8. *Let* $X = C(\bar{U})$ *, then*

$$[f,g] = \max \left\{ f(x_0)g(x_0); \ x_0 \in \bar{U}, |g(x_0)| = ||g||_{C(\bar{U})} \right\}, \ f,g \in C(\bar{U}). \tag{9}$$

Proof. Denote by

$$M_h = \left\{ x \in \bar{U}; \ |h(x)| = ||h|| \right\}, \ h \in C(\bar{U}).$$

Then

1. due to

$$\frac{\|g+\lambda f\|^2-\|g\|^2}{2\lambda}\geq \frac{(g(x_0)+\lambda f(x_0))^2-g(x_0)^2}{2\lambda}=g(x_0)f(x_0),\ \forall\ x_0\in M_g,$$

we have

$$[f,g] \ge RHS$$
 of (9).

2. for any sequence $\{\lambda_n\} \setminus 0$, $x_n \in M_{g+\lambda_n f}$,

$$\frac{\|g + \lambda_n f\|^2 - \|g\|^2}{2\lambda_n} \leq \frac{(g(x_n) + \lambda_n f(x_n))^2 - g(x_n)^2}{2\lambda_n}$$

$$= f(x_n)g(x_n) + \frac{\lambda_n}{2}f(x_n)^2$$

$$\to f(x_\infty)g(x_\infty), \text{ as } n \to \infty,$$
(10)

for some $\bar{U} \ni x_{\infty} \leftarrow x_n$.

Meanwhile, taking $n \to \infty$ in

$$|g(x_n) + \lambda_n f(x_n)| = ||g + \lambda_n f||$$
,

gives

$$|g(x_{\infty})| = ||g||.$$

This together with (10) shows that

$$[f,g] \leq RHS$$
 of (9).

The proof is then completed.

With this explicit formula for [f, g], we show that monotonicity is a consequence of ellipticity as

Proposition 9. *If F is convex, then the operator* $A[u] \equiv F(D^2u)$ *satisfies*

$$0 \le [A[u] - A[v], u - v], \ \forall \ u, v \in C_0^2(\bar{U}).$$
 (11)

Here $C_0^2(\bar{U})$ is the subspace of $C^2(\bar{U})$, with vanishing boundary data.

Proof. Suppose $(u - v)(x_0) = ||u - v||_{C(\bar{U})}, x_0 \in U$, then

$$D^2(u-v)(x_0) \le 0$$

$$\Rightarrow$$
 $F(D^2u)(x_0) \ge F(D^2v)(x_0)$ (by ellipticity)

$$\Rightarrow [A[u] - A[v], u - v] = (F(D^2u) - F(D^2v))(x_0) \cdot (u - v)(x_0) \ge 0,$$

by invoking (9).

The case
$$(v - u)(x_0) = ||u - v||_{C(\bar{U})}$$
, $x_0 \in U$ is similarly treated. \square

With all the above preparations above, we now state and prove our main result in this hut. **Theorem 10.** Consider problem (4) and its approximating problems (6). If $A[u] \equiv F(D^2u)$ satisfies the monotonicity inequality:

$$0 \le [A[u] - A[v], u - v], \ \forall \ u, v \in C_0^2(\bar{U}).$$
 (12)

Then u solves (4) a.e..

Proof. 1. For the approximating solution $\{u_k\}$, we have

$$0 \le [A[u_k] - A[v], u_k - v]$$

$$\le [f_k - A[v], u_k - v], \ \forall \ v \in C_0^2(\bar{U}).$$

Taking $k \to \infty$ upon a subsequence, we obtain by invoking (8) that

$$0 \le [f - A[v], u - v], \ \forall \ v \in C_0^2(\bar{U}).$$
 (13)

2. Our strategy to prove *u* solves (4) is then to choose appropriate *v* in (13).

In fact, since $u \in W^{2,\infty}(U)$, Rademacher's theorem (see [2, 5]) implies then u is C^2 a.e.. Fix any $x_0 \in U$ where $D^2u(x_0)$ exists. We **handcraft** a C^2 function v having the form

$$v(x) \begin{cases} = u(x_0) + Du(x_0)(x - x_0) \\ + \frac{1}{2}D^2u(x_0)(x - x_0, x - x_0) + \varepsilon |x - x_0|^2 - 1, & x \text{ near } x_0; \\ = 0, & x \in \partial U; \\ \in \left(u(x) - \frac{1}{2}, u(x) + \frac{1}{2}\right), & \text{otherwise.} \end{cases}$$
(14)

(The $\varepsilon > 0$ is chosen so that u - v looks like a parabola for x near x_0 .) Then |u - v| attains its maximum over \bar{U} only at x_0 . But then (13) and (9) say $(f - A[u])(x_0) \ge 0$, that is,

$$f(x_0) \ge F\left(D^2 u(x_0) + 2\varepsilon I\right).$$

Sending $\varepsilon \to 0_+$, we find

$$f(x_0) \ge F(D^2 u(x_0)).$$

The opposite inequality follows by replacing $\varepsilon |x - x_0|^2 - 1$ by $-\varepsilon |x - x_0|^2 + 1$ in (13). Consequently, we have

$$F(D^2u(x_0)) = f(x_0), \ a.e.x_0 \in U.$$

Acknowledgements. Thanks are due to the discussion group of Professor Yin at Sun Yat-sen University, in particular Dr. Liu's lectures on the monotone property of $\left\{\frac{\|g+\lambda f\|-\|g\|}{\lambda}\right\}_{\lambda>0}$ in the proof of (7), setting forth the simple observation of the proof of (8) by the author through suffering two misleading applications of L' Hospital's law in calculus.

REFERENCES

- L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, 74. American Mathematical Society, 1990.
- [2] H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York, 1969.
- [3] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
- [4] J.L. Lions, Quelques mthodes de ré solution des problmes aux limites non linaires. Gauthier-Villars, Paris, 1969.
- [5] L. Simon, Lectures on geometric measure theory. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

MEAN-VALUE PROPERTY OF THE HEAT EQUATION

ZUJIN ZHANG

ABSTRACT. In this paper, we detailed the proof of the mean-value theorem for the heat equation, see [1] for example.

Let $U \subset \mathbb{R}^n$ be open and bounded, and T > 0. We give

Definition 1. 1. The parabolic cylinder is the parabolic interior of $\bar{U} \times [0, T]$:

$$U_T \equiv U \times (0, T].$$

2. The parabolic boundary of U_T is

$$\Gamma_T \equiv \bar{U}_T - U_T$$

which comprises the bottom and vertical sides of $U \times [0,T]$, but not the top.

In this parabolic cylinder U_T , we want to derive a kind of analogue to the mean-value property for harmonic function. For this purpose, we introduce

Definition 2. The heat ball E(x, t; r)(r > 0) at $(x, t) \in \mathbb{R}^{n+1}$ is

$$E(x,t;r) = \left\{ (y,s) \in \mathbb{R}^{n+1}; \ \varPhi(x-y,t-s) \ge \frac{1}{r^n} \right\}.$$

Remark 3. 1. The heat ball is a region in space-time, the boundary of which is a level set of $\Phi(x - y, t - s)$.

Key words and phrases. heat equation, mean-value property, fundamental solution.

2. Written explicitly, we have

$$\frac{1}{[4\pi(t-s)]^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}} = \Phi(x-y,t-s) \ge \frac{1}{r^n},$$

$$r^n e^{-\frac{|x-y|^2}{4(t-s)}} \ge [4\pi(t-s)]^{n/2}$$
.

Applying the logarithmical function, we obtain

$$n \ln r - \frac{|x - y|^2}{4(t - s)} \ge \frac{n}{2} \ln \left[4\pi (t - s) \right],$$

$$|x - y|^2 \le 2n(t - s) \ln \frac{r^2}{4\pi(t - s)}.$$

One then verifies easily that RHS of the above inequality equal 0 if

$$s = t - \frac{r^2}{4\pi} \text{ or } s = t.$$

This echoes the notion of heat ball, a region in space-time, with the scale in t is twice that in x.

3. By the above calculations, we find that the function

$$\psi \equiv -\frac{n}{2} \ln \left[4\pi (t - s) \right] - \frac{|x - y|^2}{4(t - s)} + n \ln r, \tag{1}$$

vanishes on $\partial E(x,t;r)$, which is helpful in integration by parts formula, as we shall in later on. Notice also that

$$\psi_y = -\frac{y}{2(t-s)},\tag{2}$$

$$\psi_s = \frac{n}{2} \frac{s}{t - s} - \frac{|x - y|^2}{4(t - s)^2}.$$
 (3)

Now, we state and prove our mean-value theorem for the heat equation as

Theorem 4. (A mean-value property for the heat equation). Let $u \in C_1^2(U_T)$ solve the heat equation. Then

$$u(x,t) = \frac{1}{4r^n} \iint_{E(x,t;r)} u(y,s) \frac{|y|^2}{s^2} dy ds,$$
 (4)

for each $E(x,t;r) \subset U_T$.

Proof. 1. An useful identity:

$$\iint_{E(1)} \frac{|y|^2}{s^2} dy ds = 4,\tag{5}$$

where E(1) = E(0, 0; 1).

Indeed,

$$\iint_{E(1)} \frac{|y|^2}{s^2} dy ds = \int_{-\frac{1}{4\pi}}^0 \frac{1}{s^2} ds \int_{|y|^2 \le -2ns \ln \frac{1}{-4\pi s}} |y|^2 dy$$

$$= \int_{-\frac{1}{4\pi}}^0 \frac{ds}{s} \int_0^{\left[-2ns \ln \frac{1}{-4\pi s}\right]^{1/2}} n\alpha(n) r^{n-1+2} dr$$

$$= \frac{n\alpha(n)}{n+2} \int_{-\frac{1}{4\pi}}^0 \frac{1}{(-s)^2} \left[2\pi (-s) \ln \frac{1}{4\pi (-s)} \right]^{\frac{n+2}{2}} ds$$

$$= \frac{n\alpha(n)(2n)^{\frac{n+2}{2}}}{n+2} \int_0^1 \frac{1}{4\pi} s^{\frac{n-2}{2}} \left(\ln \frac{1}{4\pi s} \right)^{\frac{n+2}{2}} ds$$

$$= \frac{n\alpha(n)(2n)^{\frac{n+2}{2}}}{n+2} \int_{-\infty}^0 \left(\frac{1}{4\pi} e^{-s} \right)^{\frac{n-2}{2}} \cdot s^{\frac{n+2}{2}} \cdot \left(-\frac{1}{4\pi} e^{-s} \right) ds$$

$$= \frac{n\alpha(n)(2n)^{\frac{n+2}{2}}}{n+2} \cdot \frac{1}{(4\pi)^{n/2}} \int_0^\infty s^{\frac{n+4}{2}-1} e^{-\frac{n}{2}s} ds$$

$$= \frac{n\alpha(n)(2n)^{\frac{n+2}{2}}}{n+2} \cdot \frac{1}{(4\pi)^{n/2}} \int_0^\infty \left(\frac{2}{n} \right)^{\frac{n+4}{2}} t^{\frac{n+4}{2}-1} e^{-t} dt$$

$$= \frac{8}{(n+2)\pi^{n/2}} \cdot \Gamma\left(\frac{n}{2}+2\right)$$

$$= \frac{8}{(n+2)\pi^{n/2}} \cdot \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \cdot \left(\frac{n}{2}+1\right) \Gamma\left(\frac{n}{2}+1\right)$$

$$= 4.$$

2. We now prove (4). Without loss of generality, we may assume that (x, t) = (0, 0). Write E(r) = E(0, 0; r) and set

$$\varphi(r) \equiv \frac{1}{r^n} \iint_{E(r)} u(y, s) \frac{|y|^2}{s^2} dy ds$$
$$= \iint_{E(1)} u(ry, r^2 s) \frac{|y|^2}{s^2} dy ds.$$

Then

$$\varphi'(r) = \iint_{E(1)} \left[y \cdot D_y u \frac{|y|^2}{s^2} + 2r D_s u \frac{|y|^2}{s} \right] dy ds$$

$$= \frac{1}{r^{n+1}} \iint_{E(r)} \left[y \cdot D_y u \frac{|y|^2}{s^2} + 2D_s u \frac{|y|^2}{s} \right] dy ds$$

$$\equiv A + B.$$

Next, we calculate *B* as

$$B = \frac{1}{r^{n+1}} \iint_{E(r)} 2D_s u \frac{|y|^2}{s} dy ds$$

$$= \frac{4}{r^{n+1}} \iint_{E(r)} D_s u D_y \varphi \cdot y dy ds \quad ((2))$$

$$= -\frac{4}{r^{n+1}} \int_{E(r)} y \cdot D_s D_y u \varphi dy ds - \frac{4n}{r^{n+1}} \iint_{E(r)} D_s u \varphi dy ds$$
(integration by part w.r.t. y)
$$= \frac{4}{r^{n+1}} \iint_{E(r)} \left\{ y \cdot D_y u \left[-\frac{n}{2s} - \frac{|y|^2}{4s^2} \right] \right\} dy ds$$

$$-\frac{4n}{r^{n+1}} \iint_{E(r)} D_s u \varphi dy ds \quad (\text{integration by part w.r.t. } s \text{ and } (3))$$

$$= -A + \frac{4}{r^{n+1}} \iint_{E(r)} \left[-\frac{n}{2s} y \cdot D_y u - n \Delta_y u \varphi \right] dy ds \quad (D_s u - \Delta_y u = 0)$$

$$= -A \quad (\text{integration by part w.r.t. } y \text{ and } (2)).$$

Hence,

$$\varphi(r) = \lim_{t \to 0_+} \varphi(t) = \lim_{t \to 0_+} \iint_{E(1)} u(ry, r^2 s) \frac{|y|^2}{s^2} dy ds$$

$$= \iint_{E(1)} u(0,0) \frac{|y|^2}{s^2} dy ds = 4u(0,0).$$

The proof of the mean-value property of the heat equation is thus completed. $\hfill\Box$

Acknowledgements. The author would like to thank Dr. Zhang at Sun Yat-sen University, who are still on his road to Alexandrov geometry, and who showed me

\usepackage{palatino}

to display with the font here.

REFERENCES

[1] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, 74. American Mathematical Society, 1990.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

ON SOLUTION FORMULAE OF IBVP FOR THE HEAT EQUATION

ZUJIN ZHANG

ABSTRACT. In this paper, we give a solution formula of the initial/boundary-value problem for the heat equation via reflection method. This problem is 2.5.13 in [1].

Given a smooth $g:[0,\infty)\to\mathbb{R}$, with g(0)=0, we have the solution formula

$$u(x,t) = \frac{x}{4\pi} \int_0^t \frac{1}{(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} g(s) ds$$

for the initial/boundary-value problem

$$\begin{cases} u_t - u_{xx} = 0, & \text{in } \mathbb{R}_+ \times (0, \infty), \\ u = 0, & \text{on } \mathbb{R}_+ \times \{t = 0\}, \\ u = g, & \text{on } \{x = 0\} \times [0, \infty). \end{cases}$$

Proof. Setting $v(x, t) \equiv u(x, t) - g(t)$, due to the fact that

$$v = 0$$
, on $\{x = 0\} \times [0, \infty)$,

we may odd reflect v. Still denoting the resulting function by v yields

$$\begin{cases} v_t - v_{xx} = \begin{cases} g_t, & x < 0 \\ -g_t, & x > 0 \end{cases}, & \text{in } \mathbb{R} \times (0, \infty), \\ v = 0, & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Solution formula for the heat equation in one dimension then gives

$$u(x,t) - g(t)$$

Key words and phrases. heat equation, solution formula, reflection method.

$$= v(x,t)$$

$$= \int_{0}^{t} g_{s}(s)ds \left[\int_{-\infty}^{0} \Phi(x-y,t-s)dy - \int_{0}^{\infty} \Phi(x-y,t-s)dy \right]$$

$$= \int_{0}^{t} g_{s}(s) \left[-\int_{-x}^{x} \Phi(y,t-s)dy \right] ds$$

$$= -\int_{0}^{t} g(s) \left[\int_{-x}^{x} \Phi_{t}(y,t-s)dy \right] ds - g(t) \lim_{s \to t_{-}} \int_{-x}^{x} \Phi(y,t-s)dy$$

$$= -\int_{0}^{t} g(s) \left[\int_{-x}^{x} \Phi_{yy}(y,t-s)dy \right] ds - 2g(t) \lim_{s \to t_{-}} \int_{0}^{x} \frac{1}{[4\pi(t-s)]^{1/2}} e^{-\frac{|y|^{2}}{4(t-s)}} dy$$

$$= -\int_{0}^{t} g(s) \left[\Phi_{y}(t,y-s) = \frac{1}{[4\pi(t-s)]^{1/2}} \cdot \frac{-2y}{4(t-s)} e^{-\frac{|y|^{2}}{4(t-s)}} \right]_{-x}^{x} ds$$

$$-\frac{2g(t)}{\pi^{1/2}} \lim_{s \to t_{-}} \int_{0}^{\frac{x}{[4(t-s)]^{1/2}}} e^{-z^{2}} dz$$

$$= \frac{x}{(4\pi)^{1/2}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}} e^{-\frac{|x|^{2}}{4(t-s)}} g(s) ds - g(t) \left(\int_{0}^{\infty} e^{-z^{2}} dz = \frac{\pi^{1/2}}{2} \right).$$

Acknowledgements. The author would like to thank Professor L.C. Evans for showing him a rough integrating by parts formula.

REFERENCES

[1] L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

E-mail address: uia.china@gmail.com

EQUIPARTITION OF ENERGY

XUANJI JIA AND ZUJIN ZHANG

ABSTRACT. In this paper, we show the equipartition of energy for the 1D wave equation [2], and suggest a challenging open problem.

Let $u \in C^2(\mathbb{R} \times [0, \infty))$ solve the initial-value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt} - u_{xx} = 0, & \text{in } \mathbb{R} \times (0, \infty), \\ u = g, u_t = h, & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (1)

Suppose g, h have compact support. The **kinetic energy** is

$$k(t) \equiv \frac{1}{2} \int_{\mathbb{R}} u_t^2 dx,$$

and the **potential energy** is

$$p(t) \equiv \frac{1}{2} \int_{\mathbb{R}} u_x^2 dx.$$

Prove

- 1. k(t) + p(t) is constant in t;
- 2. k(t) = p(t) for all large enough times t.

Proof. 1. Since

$$\frac{d}{dt} [k(t) + p(t)] = \int_{-\infty}^{\infty} [u_t u_{tt} + u_x u_{xt}] dx = \int_{-\infty}^{\infty} [u_t u_{xx} + u_x u_{xt}] dx$$
$$= \int_{-\infty}^{\infty} [u_t u_x]_x dx = 0,$$

Key words and phrases. equipartition of energy, wave equation, d'Alembert's formula, Paley-Wiener theorem, Brownian motion.

we see

$$k(t) + p(t) = k(0) + p(0) = \frac{1}{2} \int_{-\infty}^{\infty} \left[g'^2 + h^2 \right] dx.$$

2. In view of d'Alembert's formula,

$$u(x,t) = \frac{g(x+t) + g(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy,$$

and thus

$$u_t(x,t) = \frac{g'(x+t) - g'(x-t)}{2} + \frac{h(x+t) + h(x-t)}{2},$$

$$u_x(x,t) = \frac{g'(x+t) + g'(x-t)}{2} + \frac{h(x+t) - h(x-t)}{2}.$$

Consequently,

$$u_t^2 - u_x^2 = [u_t + u_x] \cdot [u_t - u_x]$$

$$= [g'(x+t) + h(x+t)] \cdot [-g'(x-t) + h'(x-t)]$$

$$= -g'(x+t)g'(x-t) + g'(x+t)h(x-t)$$

$$-h(x+t)g'(x-t) + h(x+t)h(x-t)$$

$$= 0, \text{ for all large } t,$$

the last equality holding since both g and h have compact support:

supp
$$(g,h) \subset [a,b]$$

$$\Rightarrow$$
 either $x + t$ or $x - t$ leaves away $[a, b], \ \forall \ t > \frac{b - a}{2}, \ x \in \mathbb{R}$.

We obtain finally that

$$k(t) - p(t) = \frac{1}{2} \int_{-\infty}^{\infty} \left[u_t^2 - u_x^2 \right] dx = 0,$$

for all large *t*.

- **Remark 1.** 1. This result can be extended to the wave equation in general odd space dimensions. However, it involves Fourier analysis, mainly the Paley-Wiener theorem [1].
- 2. To the authors' best knowledge, this equipartition of energy was first introduced by Einstein in 1901s. Since then, many mathematicians have been devoted to studying this problem.
- 3. Just in May 2010, some experiments established in Texas showed that equipartition of energy was valid for Brownian motion. This would give a challenging and interesting open problem whether we can give a mathematical proof of it.

Acknowledgements. The authors would like to thank C. Chen at CUHK for sending them a copy of [1].

REFERENCES

- [1] R.J. Duffin, Equipartion of energy in wave motion, J. Math. Anal. Appl., 32 (1970), 386-391.
- [2] L.C. Evans, *P*artial differential equations, American Mathematical Society, 1998.

DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY, JINHUA 321004, P. R. CHINA

E-mail address: jiamath@gmail.com

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

THE CURVATURE OF A 2D CURVE

ZUJIN ZHANG

ABSTRACT. In this paper, we establish various curvature formulae for a two dimensional curve.

1. Arclength parametrization. Let $\alpha: I \to \mathbb{R}^2$ with $|\dot{\alpha}| = 1$. Then

$$\langle \dot{\boldsymbol{\alpha}}, \ddot{\boldsymbol{\alpha}} \rangle = 0.$$

We call

$$\kappa(s) = |\ddot{\alpha}| \tag{1}$$

the **curvature** of α at s.

2. **Parametrization.** Assume a curve $C \subset \mathbf{R}^2$ is given parametrically as

$$\boldsymbol{\alpha}(t) = (x(t), y(t)).$$

Then the tangent vector

$$t = \frac{(\dot{x}, \dot{y})}{\sqrt{\dot{x}^2 + \dot{y}^2}}, \quad \frac{ds}{dt} = \sqrt{\dot{x}^2 + \dot{y}^2}.$$

And thus

$$\kappa \boldsymbol{n} = \frac{d\boldsymbol{t}}{dt} \cdot \frac{dt}{ds}$$

$$= \frac{1}{\sqrt{\dot{x}^2 + \dot{y}^2}} \cdot \frac{(\ddot{x}, \ddot{y})\sqrt{\dot{x}^2 + \dot{y}^2} - (\dot{x}, \dot{y})\frac{\dot{x}\ddot{x} + \dot{y}\ddot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}}}{\dot{x}^2 + \dot{y}^2}$$

Key words and phrases. curvature, curve, arc length, polar coordinate, level set.

$$= \frac{(\ddot{x}, \ddot{y}) (\dot{x}^2 + \dot{y}^2) - (\dot{x}, \dot{y}) (\dot{x}\ddot{x} + \dot{y}\ddot{y})}{(\dot{x}^2 + \dot{y}^2)^2}$$

$$= \frac{(\dot{y} (\dot{y}\ddot{x} - \dot{x}\ddot{y}), \dot{x} (\dot{x}\ddot{y} - \dot{y}\ddot{x}))}{(\dot{x}^2 + \dot{y}^2)^2},$$

$$\kappa = \frac{|\ddot{x}\dot{y} - \dot{x}\ddot{y}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}.$$
 (2)

3. **Polar coordinates.** Let the curve C be given in polar coordinates as

$$\rho = \rho(\vartheta), \quad a \le \vartheta \le b.$$

Then

$$\boldsymbol{t} = \frac{1}{\sqrt{\rho^2 + \dot{\rho}^2}} \left(\dot{\rho} \cos \vartheta - \rho \sin \vartheta, \dot{\rho} \sin \vartheta + \rho \cos \vartheta \right),$$

$$\begin{split} \kappa \boldsymbol{n} &= \frac{d\boldsymbol{t}}{d\vartheta} \cdot \frac{d\vartheta}{ds} \\ &= \frac{1}{\left(\rho^2 + \dot{\rho}^2\right)^{3/2}} \cdot \left[\left(\ddot{\rho} \cos \vartheta - 2\dot{\rho} \sin \vartheta - \rho \cos \vartheta, \ddot{\rho} \sin \vartheta + 2\dot{\rho} \cos \vartheta - \rho \sin \vartheta \right) \cdot \sqrt{\rho^2 + \dot{\rho}^2} \right. \\ &+ \left. \left(\dot{\rho} \cos \vartheta - \rho \sin \vartheta, \dot{\rho} \sin \vartheta + \rho \cos \vartheta \right) \cdot \frac{\rho \dot{\rho} + \dot{\rho} \ddot{\rho}}{\sqrt{\rho^2 + \dot{\rho}^2}} \right], \end{split}$$

$$\kappa = \frac{\sqrt{[(\rho^2 + \dot{\rho}^2)(\ddot{\rho} - \rho) - (\rho\dot{\rho} + \dot{\rho}\ddot{\rho})\dot{\rho}]^2 + [(\rho^2 + \dot{\rho}^2) \cdot 2\dot{\rho} - (\rho\dot{\rho} + \dot{\rho}\ddot{\rho})\rho]^2}}{(\dot{\rho}^2 + \ddot{\rho}^2)^2}$$

$$= \frac{\sqrt{\rho^2 (\rho\ddot{\rho} - 2\dot{\rho}^2 - \rho^2)^2 + \dot{\rho}^2 (\rho\ddot{\rho} - 2\dot{\rho}^2 - \rho^2)^2}}{(\dot{\rho}^2 + \ddot{\rho}^2)^2}$$

$$= \frac{|\rho\ddot{\rho} - 2\dot{\rho}^2 - \rho^2|}{(\rho^2 + \dot{\rho}^2)^{3/2}}.$$

4. **Level sets.** Suppose at last the curve C is given by the level set of a function $u: \mathbb{R}^2 \to \mathbb{R}$ as

$$u\left(x(s), y(s)\right) = C,$$

for some $C \in \mathbf{R}$, and s is the arc length.

Then

$$Du \cdot \dot{\alpha} = 0, \quad Du / / \ddot{\alpha};$$

$$D^2u\left(\dot{\boldsymbol{\alpha}},\dot{\boldsymbol{\alpha}}\right) + Du\cdot\ddot{\boldsymbol{\alpha}} = 0;$$

$$\kappa^{2} = \frac{1}{|Du|^{2}} |D^{2}u(\dot{\boldsymbol{\alpha}}, \dot{\boldsymbol{\alpha}})|^{2}$$

$$= \frac{1}{|Du|^{2}} |\Delta u - D^{2}u\left(\frac{Du}{|Du|}, \frac{Du}{|Du|}\right)|^{2}$$

(The trace is an invariant of a matrix)

$$= \frac{1}{|Du|^4} ||Du|^2 \Delta u - D^2 u (Du, Du)|^2;$$

$$\kappa = \frac{1}{|Du|^2} ||Du|^2 \Delta u - D^2 u (Du, Du)|$$

$$= \frac{1}{|Du|^2} |(u_{x_1}^2 + u_{x_2}^2) (u_{x_1x_1} + u_{x_2x_2}) - (u_{x_1}^2 u_{x_1x_1} + 2u_{x_1} u_{x_2} u_{x_1x_2} + u_{x_2}^2 u_{x_2x_2})|$$

$$= \frac{1}{|Du|^2} |u_{x_2}^2 u_{x_1x_1} - 2u_{x_1} u_{x_2} u_{x_1x_2} + u_{x_1}^2 u_{x_2x_2}|;$$

$$\kappa = \left| \frac{\operatorname{div} \nabla u \cdot \left| D u \right|^2 - D^2 u \left(D u, D u \right)}{\left| D u \right|^2} \right| = \left| \operatorname{div} \left(\frac{D u}{\left| D u \right|} \right) \right|.$$

In conclusion,

$$\kappa = \left| \operatorname{div} \left(\frac{Du}{|Du|} \right) \right| = \frac{1}{|Du|^2} \left| u_{x_2}^2 u_{x_1 x_1} - 2u_{x_1} u_{x_2} u_{x_1 x_2} + u_{x_1}^2 u_{x_2 x_2} \right|.$$
 (3)

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

DIRICHLET PRINCIPLE OF HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. We define harmonic maps as the critical point of Dirichlet energy functional. This is [1, 1.1].

Let

- 1. (M^n, g) be a Riemanninan manifold with or without boundary;
- 2. (N^l, h) be a compact Riemanninan manifold without boundary (closed).

The we may define the Dirichlet energy functional

$$E(u) = \int_{M} e(u) dv_g,$$

where e(u) is the **Dirichlet energy density function**, the expression of which in local coordinates (U, x^{α}) , (V, u^{i}) is

$$e(u) \equiv \frac{1}{2} |\nabla u|_g^2 = \frac{1}{2} g^{\alpha\beta}(x) h_{ij}(u(x)) \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^j}{\partial x^\beta}.$$

Definition 1. A map $u \in C^2(M, N)$ is a harmonic map if it is a critical point of the Dirichlet energy functional E.

Proposition 2. A map $u \in C^2(M; N)$ is a harmonic map iff u satisfies

$$\Delta_g u^i + g^{\alpha\beta} \Gamma^i_{jk}(u) \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^k}{\partial x^\beta} = 0, \text{ in } M, \ 1 \le i \le l.$$

Here

Key words and phrases. harmonic map, Dirichlet principle.

1. Δ_g is the **Laplace-Beltrami operator** on (M, g) given by

$$\Delta_g = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\alpha}} \left(\sqrt{g} g^{\alpha \beta} \frac{\partial}{\partial x^{\beta}} \right);$$

2. and Γ^i_{jk} is the **Christoffel symbol** of the metric h on N given by

$$\Gamma^{i}_{jk} = \frac{1}{2} h^{il} \left(h_{li,k} + h_{kl,j} - h_{jk,l} \right).$$

Proof. 1. Let $U \subset M$ be any coordinate chart and $\varphi \in C_0^2(U; \mathbb{R}^l)$. Then we have

$$0 = \frac{d}{dt}\Big|_{t=0} \left[\frac{1}{2} \int_{M} g^{\alpha\beta} h_{ij} (u + t\varphi) \left(u_{\alpha}^{i} + t\varphi_{\alpha}^{i} \right) \left(u_{\beta}^{j} + t\varphi_{\beta}^{j} \right) \sqrt{g} dx \right]$$
$$= \frac{1}{2} \int_{M} g^{\alpha\beta} h_{ij,k}(u) \varphi_{k} u_{\alpha}^{i} u_{\beta}^{j} \sqrt{g} dx + \int_{M} g^{\alpha\beta} h_{ij}(u) u_{\alpha}^{i} \varphi_{\beta}^{j} \sqrt{g} dx.$$

2. Direct computations show

$$\int_{M} \Delta_{g} u^{i} h_{ij}(u) \varphi^{j} dv_{g} = \int_{M} \frac{\partial}{\partial x^{\alpha}} \left(\sqrt{g} g^{\alpha\beta} \frac{\partial u^{i}}{\partial x^{\beta}} \right) h_{ij}(u) \varphi^{i} dx$$

$$= -\int_{M} \sqrt{g} g^{\alpha\beta} u_{\beta}^{i} \left(h_{ij,k}(u) u_{\alpha}^{k} \varphi^{j} + h_{ij}(u) \varphi_{\alpha}^{j} \right) dx$$

$$= -\frac{1}{2} \int_{M} \sqrt{g} g^{\alpha\beta} u_{\alpha}^{i} u_{\beta}^{j} \left(h_{ik,j} + h_{kj,i} - h_{ij,k} \right) (u) \varphi^{k} dx$$

$$= -\int_{M} g^{\alpha\beta} \Gamma_{ij}^{l}(u) h_{lk}(u) u_{\alpha}^{i} u_{\beta}^{j} \varphi^{k} dv_{g}.$$

This implies that

$$\Delta u^i + g^{\alpha\beta} \Gamma^i_{kl}(u) u^k_\alpha u^l_\beta = 0, \ \forall \ 1 \le i \le l.$$

REFERENCES

[1] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

INSTRINSIC VIEW OF HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. We see harmonic maps in an intrinsic point of view. This is [3, 1.2].

Viewing

$$du = du^{i} \frac{\partial}{\partial u^{i}} = \frac{\partial u^{i}}{\partial x^{\alpha}} \frac{\partial}{\partial u^{i}} \otimes dx^{\alpha},$$

we may write

$$e(u) = \frac{1}{2} g^{\alpha\beta} h_{ij}(u) \frac{\partial u^i}{\partial x^{\alpha}} \frac{\partial u^j}{\partial x^{\beta}} = \frac{1}{2} \langle du, du \rangle_{T^*M \otimes u^*TN};$$

and noticing

$$u^*h\left(\frac{\partial}{\partial x^{\alpha}},\frac{\partial}{\partial x^{\beta}}\right) = h\left(\frac{\partial u}{\partial x^{\alpha}},\frac{\partial u}{\partial x^{\beta}}\right) = h_{ij}(u)u_{\alpha}^i u_{\beta}^j,$$

we shall further see

$$e(u) = \frac{1}{2} t r_g \left(u^* h \right).$$

Proposition 1. [1, 2] $u \in C^2(M; N)$ is a harmonic map iff u satisfies

$$\tau(u) \equiv tr_g(\nabla du) = 0$$
, in M .

Here ∇ *is the covariant derivative on* $T^*M \otimes u^*TN$.

Remark 2. *Component-wise,* $\tau(u) = 0$ *is equivalent to*

$$\tau^k(u) = g^{\alpha\beta} \left[u_{\alpha\beta}^k - \left(\Gamma^M \right)_{\alpha\beta}^{\gamma} u_{\gamma}^k + \left(\Gamma^N \right)_{ij}^k (u) u_{\alpha}^i u_{\beta}^j \right] = 0, \text{ in } M, \ 1 \le k \le l.$$

Key words and phrases. harmonic map, intrinsic geometry.

Indeed,

$$\begin{split} \nabla_{\frac{\partial}{\partial s^{\beta}}} du &= \nabla_{\frac{\partial}{\partial s^{\beta}}} \left(u_{\alpha}^{i} \frac{\partial}{\partial u^{i}} \otimes dx^{\alpha} \right) \\ &= u_{\alpha\beta}^{i} \frac{\partial}{\partial u^{i}} \otimes dx^{\alpha} + \left(\Gamma^{N} \right)_{ij}^{k} (u) u_{\beta}^{j} \frac{\partial}{\partial u^{k}} \otimes dx^{\alpha} - \left(\Gamma^{M} \right)_{\beta\gamma}^{\alpha} u_{\alpha}^{i} \frac{\partial}{\partial u^{i}} \otimes dx^{\gamma} \\ &= \left[u_{\alpha\beta}^{i} - \left(\Gamma^{M} \right)_{\alpha\beta}^{\gamma} u_{\gamma}^{i} + \left(\Gamma^{N} \right)_{kj}^{i} (u) u_{\alpha}^{j} \right] \frac{\partial}{\partial u^{i}} \otimes dx^{\alpha}; \\ tr_{g} (\nabla du) &= g^{\alpha\beta} \left[u_{\alpha\beta}^{i} - \left(\Gamma^{M} \right)_{\alpha\beta}^{\gamma} u_{\gamma}^{i} + \left(\Gamma^{N} \right)_{kj}^{i} (u) u_{\alpha}^{j} \right] \frac{\partial}{\partial u^{i}}. \end{split}$$

REFERENCES

- [1] J. Eells, L. Lemaire, *A report on harmonic maps*. Bull. London Math. Soc. **10** (1978) 1-68.
- [2] J. Eells, L. Lemaire, *Another report on harmonic maps*. Bull. London Math. Soc. **20** (1988) 385-524.
- [3] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA

EXTRINSIC VIEW OF HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. We see harmonic maps in an extrinsic point of view. This is [1, 1.3].

By the isometric embedding theorem of Nash [2], we may assume

$$(N^l,h) \hookrightarrow \mathbf{R}^L,$$

for some $L \ge 1$. Then

$$C^2(M;N) = \left\{ u = \left(u^1,\cdot,u^L\right) \in C^2(M;\boldsymbol{R}^L); \ u(M) \subset N \right\},$$

and

$$e(u) = \frac{1}{2} g^{\alpha\beta} u^i_{\alpha} u^i_{\beta}.$$

Since N is a closed submanifold of \mathbb{R}^L , we can construct the **nearest** point projection map

$$\Pi_N: N_\delta \to N$$

1. where

$$N_{\delta} = \left\{ y \in \mathbf{R}^{L}; \ d(y, N) \equiv \inf_{z \in n} |y - z| < \delta \right\};$$

2. for $y \in N_{\delta}$, $\Pi_N(y) \in N$ is such that

$$|y - \Pi_N(y)| = d(y, N);$$

Key words and phrases. harmonic map, extrinsic geometry.

3. and Π_N is smooth, the gradient of which,

$$P(y) = \nabla \Pi_N(y) : \mathbf{R}^L \to T_y N$$

is an orthogonal projection; the Hessian of which, induces the second fundamental form of $N \subset \mathbb{R}^L$:

$$A(y) \equiv \nabla P(y) : T_y N \times T_y N \rightarrow \left(T_y N\right)^{\perp}$$
$$(v , w) \mapsto \sum_{i=l+1}^{L} Hess\Pi_N(v, w)v_i(y),$$

where $\{v_i(y)\}_{i=l+1}^L$ is a local orthonormal frame of the normal bundle $(T_yN)^{\perp}$.

Now, we have

Proposition 1. $u \in C^2(M; N)$ is a harmonic map iff u satisfies

$$\Delta_{\varrho}u\perp T_{u}N.$$

Proof. For $\varphi \in C_0^2(M; \mathbb{R}^L)$, we have

$$0 = \frac{d}{dt}|_{t=0} \int_{M} |\nabla \Pi_{N}(u + t\varphi)|^{2} dv_{g}$$

$$= 2 \int_{M} \langle \nabla u, \nabla (P(u)\varphi) \rangle dv_{g}$$

$$= -2 \int_{M} \langle \Delta_{g}u, P(u)\varphi \rangle dv_{g}$$

$$= -2 \int_{M} \langle P(u) (\Delta_{g}u), \varphi \rangle dv_{g}.$$

Remark 2. *Notice that*

$$\Delta_g u \perp T_u N$$

is equivalent to the PDE:

$$\Delta_g u + A(u) (\nabla u, \nabla u) = 0$$
, in M .

In fact, we may write

$$\Delta_g u = \sum_{i=l+1}^L \lambda_i(x) \nu_i(u),$$

with

$$\lambda_{i} = \left\langle \Delta_{g} u, \nu_{i}(u) \right\rangle$$

$$= \operatorname{div}_{g} \left(\nabla u \cdot \nu_{i}(u) \right) - \nabla u \cdot \nabla \left(\nu_{i}(u) \right)$$

$$= -(\nabla \nu_{i}) \left(u \right) \left(\nabla u, \nabla u \right)$$

$$= -A(u) \left(\nabla u, \nabla u \right).$$

Example 3. *Let*

- (a) $M = T^n$ be the n-dimensional flat torus;
- (b) and $N = S^k \subset \mathbf{R}^{k+1}$ be the unit sphere.

Then $u \in C^2(T^n, S^k)$ is a harmonic map iff

$$\Delta u + |\nabla u|^2 u = 0, \text{ in } T^n.$$

REFERENCES

- [1] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.
- [2] J. Nash, The imbedding problem for Riemannian manifolds. Ann. of Math. 63 (1956) 20-63.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

A FEW FACTS ABOUT HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. We state some basic facts about the harmonic maps. This is [1, 1.5].

Proposition 1. Let

- 1. $\Phi: M \to M$ a C^2 -diffeomorphism;
- 2. and $u \in C^2(M; N)$ is a harmonic map with respect to (M, g).

Then

 $u \circ \Phi \in C^2(M; N)$ is a harmonic map with respect to (M, Φ^*g) .

Proof. For $v \in C^2(M; N)$, we have

$$\frac{1}{2} \int_{M} |\nabla v|_{g}^{2} dv_{g} = \frac{1}{2} \int_{M} |\nabla (v \circ \boldsymbol{\Phi})|_{\boldsymbol{\Phi}^{*}g}^{2} dv_{\boldsymbol{\Phi}^{*}g}.$$

Proposition 2. *Let*

- 1. (M, g_1) be a Riemann surface;
- 2. $\Phi:(M,g_1)\to (M,g_2)$ be a conformal map;
- 3. and $u \in C^2(M; N)$ is a harmonic map with respect to (M, g_2) .

Then

 $u \circ \Phi \in C^2(M; N)$ is a harmonic map with respect to (M, g_1) .

Key words and phrases. harmonic map, diffeomorphism, conformal geometry.

Proof. By setting $\Phi^* g_2 = e^{2\varphi} g_1$, we have

$$E(v \circ \Phi, g_{1}) = \frac{1}{2} \int_{M} tr_{g_{1}} ((v \circ \Phi)^{*} h) dv_{g_{1}}$$

$$= \frac{1}{2} \int_{M} tr_{e^{-2\varphi}\Phi^{*}g_{2}} (\Phi^{*} (v^{*}h)) e^{-2\varphi} dv_{\Phi^{*}g_{2}} (n = \dim M = 2)$$

$$= \frac{1}{2} \int_{M} tr_{\Phi^{*}g_{2}} (\Phi^{*} (v^{*}h)) dv_{\Phi^{*}g_{2}} \left((cA)^{-1} = \frac{1}{c} A^{-1} \right)$$

$$= \frac{1}{2} \int_{M} tr_{g_{2}} (v^{*}h) dv_{g_{2}}$$

$$= E(v, g_{2}),$$

for all $v \in C^2(M; N)$.

Remark 3. 1. Harmonic maps from S^1 to N correspond to closed geodesic in N.

- 2. The set of harmonic maps from a Riemannian surface M depends only on the conformal structure of M.
- 3. Let $Id:(M,g)\to (M,g)$ be the identity map. then Id is a harmonic map.

Proof. Since u(x) = Id(x) = x, we have

$$\tau^{k}(u) = g^{\alpha\beta} \left[u_{\alpha\beta}^{k} - \left(\Gamma^{M} \right)_{\alpha\beta}^{\gamma} u_{\gamma}^{k} + \left(\Gamma^{N} \right)_{ij}^{k} (u) u_{\alpha}^{i} u_{\beta}^{j} \right]$$

$$= g^{\alpha\beta} \left[0 - \left(\Gamma^{M} \right)_{\alpha\beta}^{\gamma} \delta_{\gamma}^{k} + \left(\Gamma^{M} \right)_{ij}^{k} \delta_{\alpha}^{i} \delta_{\beta}^{j} \right]$$

$$= 0.$$

4. For $n=\dim M=2$, any conformal map $\Phi:(M,g_1)\to(M,g_2)$ is a harmonic map.

Proof.

$$(M, g_1) \xrightarrow{\Phi} (M, g_2) \xrightarrow{Id} (M, g_2).$$

REFERENCES

[1] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

BOCHNER IDENTITY FOR HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. Considered in this paper is one of the most important formulas for a harmonic map.

Theorem 1. If $u \in C^2(M; N)$ is a harmonic map, then in a local coordinate system, there holds

$$\Delta_g e(u) = |\nabla du|^2 + R^M_{\alpha\beta} u_\alpha u_\beta - R^N_{ijkl}(u) u^i_\alpha u^j_\beta u^k_\alpha u^l_\beta.$$

Proof. Fix an $x_0 \in M$, let (x_α) be a normal coordinate system around x_0 , then

$$\Delta_{g}e(u) = \partial_{\beta}\left(u_{\alpha}, u_{\beta\alpha}\right) \\
= \left|u_{\alpha\beta}\right|^{2} + \left\langle u_{\alpha}, u_{\beta\alpha\beta}\right\rangle \\
= \left|u_{\alpha\beta}\right|^{2} + \left\langle u_{\alpha}, R_{\alpha\beta}^{M} u_{\beta} + u_{\beta\beta,\alpha}\right\rangle \\
= \left|u_{\alpha\beta}\right|^{2} + R_{\alpha\beta}u_{\alpha}u_{\beta} + \left\langle u_{\alpha}\left(\Delta_{g}u\right)_{\alpha}\right\rangle; \\
\left|u_{\alpha\beta}\right|^{2} = \left|P(u)(u_{\alpha\beta})\right|^{2} + \left|A(u)\left(u_{\alpha}, u_{\beta}\right)\right|^{2} \\
= \left|\nabla du\right|^{2} + \left|A(u)(u_{\alpha}, u_{\beta})\right|^{2}; \\
\left\langle u_{\alpha}, \left(\Delta_{g}u\right)_{\alpha}\right\rangle = -\left\langle u_{\alpha}, \left(A(u)\left(\nabla u, \nabla u\right)\right)_{\alpha}\right\rangle \\
= \left\langle \Delta_{g}u, A(u)\left(\nabla u, \nabla u\right), A(u)(\nabla u, \nabla u)\right\rangle \\
= -\left\langle A(u)(\nabla u, \nabla u), A(u)(\nabla u, \nabla u)\right\rangle$$

Key words and phrases. harmonic map, Bochner identity.

$$= -\langle A(u)(u_{\alpha}, u_{\alpha}), A(u)(u_{\beta}, u_{\beta}) \rangle.$$

Thus

$$\Delta_g e(u) = |\nabla du|^2 + R^M_{\alpha\beta} u_\alpha u_\beta - R^N_{ijkl}(u) u^i_\alpha u^j_\beta u^k_\alpha u^l_\beta,$$

by Gauss-Kodazzi equations.

Proposition 2. Let

- 1. (M, g) be a closed manifold with $Ric^M \ge 0$;
- 2. the sectional curvature of N, $K^N \leq 0$.

Then

- 1. any harmonic map $u \in C^2(M; N)$ is totally geodesic.
- 2. If $Ric^M > 0$ at some point in M, then u is constant.
- 3. If $K^N < 0$, then either u is constant or u(M) lies in a closed geodesic.

Proof. 1.

$$\Delta_g e(u) \geq 0$$

- \Rightarrow e(u) is subharmonic in M
- \Rightarrow e(u) is constant (maximum principle).

2.

$$Ric^M(x_0) > 0$$

$$\Rightarrow \nabla u(x_0) = 0$$

$$\Rightarrow e(u) \equiv 0$$

 \Rightarrow *u* is constant.

3.

$$K^N < 0$$

 \Rightarrow the linear span of $\{u^1, \dots, u^n\}$ is at most of one dimension

$$\Rightarrow u(M) \begin{cases} \text{ is a point} \\ \text{ or lies in a closed geodesic} \end{cases} \text{ in } N.$$

REFERENCES

[1] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

E-mail address: uia.china@gmail.com

SECOND VARIATION FORMULA OF HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. The second variation formulae of harmonic maps into spheres and general target manifolds are derived. This is [1, 1.6].

Considered in this paper is the second variation formulae for harmonic maps into spheres and general target manifolds.

Proposition 1. *Let*

1. $u \in C^2(M; S^k)$ is a harmonic map;

2.
$$\varphi \in C_0^2(M; \mathbf{R}^{k+1})$$
.

Then

$$\frac{d^2}{dt^2}\Big|_{t=0}\left[\frac{1}{2}\int_M\left|\nabla\left(\frac{u+t\varphi}{|u+t\varphi|}\right)\right|^2\mathrm{d}v_g\right] = \int_M\left(|\nabla\varphi|^2 - |\nabla u|^2\,|\hat{\varphi}|^2\right)\mathrm{d}v_g,$$

where $\hat{\varphi} = \varphi - \langle \varphi, u \rangle u$ is the tangent component of φ .

Proof. 1. For $\varphi \in C_0^2(M; \mathbb{R}^{k+1})$ and small $t \in \mathbb{R}$, by denoting

$$u_t = \frac{u + t\varphi}{|u + t\varphi|},$$

we have

$$\frac{du_t}{dt} = \frac{\varphi |u + t\varphi| - (u + t\varphi) \frac{\langle u + t\varphi, \varphi \rangle}{|u + t\varphi|^2}}{|u + t\varphi|^2}
= \frac{\varphi |u + t\varphi|^2 - (u + t\varphi) \langle u + t\varphi, \varphi \rangle}{|u + t\varphi|^3},$$

$$\frac{du_t}{dt}_{t=0} = \varphi - \langle u, \varphi \rangle \varphi = \hat{\varphi};$$

Key words and phrases. harmonic map, second variation formula.

$$\begin{split} \frac{d^2 u_t}{dt^2} &= \frac{1}{|u+t\varphi|^3} \left[2\varphi \left\langle u+t\varphi,\varphi \right\rangle - \varphi \left\langle u+t\varphi,\varphi \right\rangle - (u+t\varphi) \left|\varphi\right|^2 \right] \\ & \left[\varphi \left| u+t\varphi \right|^2 - (u+t\varphi) \left\langle u+t\varphi,\varphi \right\rangle \right] \frac{-3/2}{\left[\left| u+t\varphi \right|^2 \right]^{5/2}} 2 \left\langle u+t\varphi,\varphi \right\rangle, \end{split}$$

$$\frac{d^{2}u_{t}}{dt^{2}}|_{t=0} = 2\varphi \langle u, \varphi \rangle - \varphi \langle u, \varphi \rangle - u |\varphi|^{2} - 3 \langle u, \varphi \rangle [\varphi - u \langle u, \varphi \rangle]$$

$$= 3 \langle u, \varphi \rangle^{2} u - |\varphi|^{2} u - 2 \langle u, \varphi \rangle \varphi.$$

2. Direct computations show

$$\frac{d^{2}}{dt^{2}}|_{t=0} \left[\frac{1}{2} \int_{M} \left| \nabla \frac{u + t\varphi}{|u + t\varphi|} \right|^{2} dv_{g} \right] \\
= \int_{M} \left[\left| \nabla \left(\frac{du_{t}}{dt} \right|_{t=0} \right) \right|^{2} + \left\langle \nabla u, \nabla \left(\frac{d^{2}u_{t}}{dt^{2}} \right|_{t=0} \right) \right\rangle \right] dv_{g} \\
= \int_{M} \left[\left| \nabla \hat{\varphi} \right|^{2} - \left\langle \Delta_{g}u, 3 \langle u, \varphi \rangle^{2} u - |\varphi|^{2} u - 2 \langle u, \varphi \rangle \varphi \right\rangle \right] dv_{g} \\
= \int_{M} \left[\left| \nabla \hat{\varphi} \right|^{2} + \left| \nabla u \right|^{2} \left(3 \langle u, \varphi \rangle^{2} - |\varphi|^{2} - 2 \langle u, \varphi \rangle^{2} \right) \right] dv_{g} \\
= \int_{M} \left[\left| \nabla \hat{\varphi} \right|^{2} - \left| \nabla u \right|^{2} \left(|\varphi|^{2} - \langle u, \varphi \rangle^{2} \right) \right] dv_{g} \\
= \int_{M} \left[\left| \nabla \hat{\varphi} \right|^{2} - \left| \nabla u \right|^{2} |\hat{\varphi}|^{2} \right] dv_{g}.$$

Proposition 2. Let

1. $u \in C^2(M; N)$ be a harmonic map;

2. $u_t \in C^2([0,1] \times M; N)$ be a family of smooth variations of u, i.e. $u_0 = u$.

Then

$$\frac{d^2}{dt^2}\Big|_{t=0}\left[\frac{1}{2}\int_M |\nabla u_t|_g^2 dv_g\right] = \int_M \left[|\nabla v|_g^2 - tr_g \left\langle R^N\left(v, \nabla u\right)v, \nabla u\right\rangle\right] dv_g,$$

where

$$v = \frac{du_t}{dt}|_{t=0} \in C^2(M; u^*TN).$$

In particular,

$$K^N \le 0 \Rightarrow u \text{ is stable: } \frac{d^2}{dt^2}|_{t=0} \left[\frac{1}{2} \int_M |\nabla u_t|_g^2 \, \mathrm{d}v_g \right] \ge 0.$$

Proof. 1. In local coordinates,

$$\frac{d}{dt}|_{t=0}\frac{\partial u_t}{\partial x^{\alpha}} = \nabla^{u^*TN}_{\frac{\partial}{\partial t}}\frac{\partial u_t}{\partial x^{\alpha}}|_{t=0} = \nabla^{u^*TN}_{\frac{\partial}{\partial x^{\alpha}}}v;$$

$$\frac{d^{2}}{dt^{2}}|_{t=0}\frac{\partial u_{t}}{\partial x^{\alpha}} = \nabla_{\frac{\partial}{\partial t}}^{u^{*}TN}\nabla_{\frac{\partial}{\partial x^{\alpha}}}^{u^{*}TN}\frac{\partial u_{t}}{\partial t}|_{t=0}$$

$$= \nabla_{\frac{\partial}{\partial x^{\alpha}}}^{u^{*}TN}\nabla_{v}^{u^{*}TN}v + R^{N}\left(\frac{\partial u}{\partial x^{\alpha}}, v\right)v.$$

2. Direct computations show

$$\begin{split} &\frac{d^{2}}{dt^{2}}|_{t=0}\left[\frac{1}{2}\int_{M}\left|\nabla u_{t}\right|_{g}^{2}\,\mathrm{d}v_{g}\right]\\ &=\int_{M}\left[\left|\nabla v\right|_{g}^{2}+\left\langle\nabla u,\nabla\left(\frac{d^{2}u_{t}}{dt^{2}}\right|_{t=0}\right)\right\rangle\right]\mathrm{d}v_{g}\\ &=\int_{M}\left[\left|\nabla v\right|_{g}^{2}+\left\langle\frac{\partial u}{\partial x^{\alpha}},\nabla_{v}^{u^{*}TN}\nabla_{v}^{u^{*}TN}v\right\rangle+tr_{g}\left\langle\boldsymbol{R}^{N}\left(\nabla u,v\right)v,\nabla u\right\rangle\right]\mathrm{d}v_{g}\\ &=\int_{M}\left[\left|\nabla v\right|_{g}^{2}-\left\langle\nabla_{\frac{\partial}{\partial x^{\alpha}}}^{u^{*}TN}\frac{\partial u}{\partial x^{\alpha}},\nabla_{v}^{u^{*}TN}v\right\rangle_{g}-tr_{g}\left\langle\boldsymbol{R}^{N}(v,\nabla u)v,\nabla u\right\rangle\right]\mathrm{d}v_{g}\\ &=\int_{M}\left[\left|\nabla v\right|_{g}^{2}-tr_{g}\left\langle\boldsymbol{R}^{N}\left(v,\nabla u\right)v,\nabla u\right\rangle\right]\mathrm{d}v_{g}. \end{split}$$

REFERENCES

[1] F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

E-mail address: uia.china@gmail.com

AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

ZUJIN ZHANG

ABSTRACT. In this paper, we show the existence of a solution to the stationary compressible Navier-Stokes equations under Dirichlet boundary conditions. This is [1, Page 121], and is delivered on Dec. 4th, 2010.

Theorem 1. (Existence/Dirichlet BVP). Let $\gamma = 5/3$, N = 3, $p \in (1,2)$. Then $\exists a$ continuum $C(\subset L^q \cap W^{1,q}, 1 \leq q < 2)$ of solutions of

$$\begin{cases} div (\rho u) = 0, & in \Omega \\ div (\rho u \otimes u) - \mu \Delta u - \xi \nabla div u + a \nabla \rho^{\gamma} = \rho f + g, \end{cases}$$
 (1)

such that

- 1. $C \cap \{(\rho, u, M); 0 \le M \le R\}$ is bounded in $L^2 \times H^1_0, \forall R > 0$;
- 2. $(0, u_0) \in C$ where u_0 satisfies

$$\begin{cases} -\mu \Delta u_0 - \xi \nabla div \ u_0 = g, & in \ \Omega, \\ u_0 = 0, & on \ \partial \Omega; \end{cases}$$
 (2)

3.
$$\forall M > 0, \exists (\rho, u) \in C \text{ such that } \int_{\Omega} \rho^p = M.$$

Proof. Step I: Bounds for solution of the approximate problems:

$$\begin{cases} \alpha \rho^{p} + \operatorname{div}(\rho u) = \alpha \frac{M}{|\Omega|}, \\ \alpha \rho^{p} u + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, \end{cases}$$
 in Ω . (3)

1.
$$\int_{\Omega} \rho^p = M;$$

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, Dirichlet boundary value problem.

2. $||u||_{H^1} \le C(1 + ||\rho||_{6/5})$, $||\rho||_{\gamma} \le C(1 + ||u||_{H^1}^{3/2})$; which follows form the energy identity:

$$\int_{\Omega} \left\{ \alpha \frac{M}{|\Omega|} \frac{|u|^2}{2} + \alpha \rho^p \frac{|u|^2}{2} + \frac{a\alpha\gamma}{\gamma - 1} \left(\rho^{\gamma} - h\rho^{\gamma - 1} \right) + \mu |Du|^2 + \xi |\operatorname{div} u|^2 - \rho u \cdot f - u \cdot g \right\} = 0.$$

3. $\|\rho\|_2 \le C$, $\|u\|_{H^1} \le C$.

Direct computations show

$$\begin{split} \|\rho^{\gamma}\|_{r} & \leq \left\| \rho^{\gamma} - \int_{\Omega} \rho^{\gamma} \right\|_{r} + |\Omega|^{1/r} \int_{\Omega} \rho^{\gamma} \\ & \leq C \|\nabla \rho^{\gamma}\|_{W^{-1,r}} + C + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho \|u\|_{r}^{2} + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho\|_{\gamma r} \|u\|^{2} \|_{\frac{\gamma}{\gamma-1}r} + C \|u\|_{H^{1}}^{5/2} \\ & \leq C + C \|\rho\|_{\gamma r} \|u\|_{6}^{2} + C \|u\|_{H^{1}}^{5/2} \quad \text{(if } \gamma r = 3(\gamma - 1) = 2) \,. \end{split}$$

Thus

$$\|\rho\|_{2}^{\gamma} \le C \left(1 + \|\rho\|_{2} \|\nabla u\|_{2}^{2} + \|u\|_{H^{1}}^{5/2}\right),$$

$$\|\rho\|_{2}^{1/3} \le C \left(1 + \|\rho\|_{6/5}\right).$$

To proceed further, we split into two cases.

- (a) When $6/5 \le p < 2$, $\|\rho\|_{6/5} \le |\Omega|^{1/p-5/6} \|\rho\|_p \le C$.
- (b) In case $1 , <math>\|\rho\|_{6/5} \le \|\rho\|_p^{1-\vartheta} \|\rho\|_2^{\vartheta}$ with $\frac{5}{6} = \frac{1-\vartheta}{p} + \frac{\vartheta}{2} \Rightarrow \vartheta = \frac{6-5p}{3(2-p)} < \frac{1}{3}.$

Step II: The second approximation scheme and continuum.

We approximate (3) further by

$$\alpha \rho^{p} + \operatorname{div} (\rho u) - \varepsilon \Delta \rho = \frac{\alpha M}{|\Omega|},$$

$$\frac{\alpha M}{|\Omega|} \frac{u}{2} + \frac{1}{2} \rho u \cdot \nabla u + \alpha \rho^{p} \frac{u}{2} + \frac{1}{2} \operatorname{div} (\rho u \otimes u)$$

$$-\mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} + \delta \nabla \rho^{2} = \rho f + g,$$

$$\frac{\partial \rho}{\partial n} = 0, \quad u = 0,$$
on $\partial \Omega$,

where $\varepsilon, \delta \in (0, 1]$. Here we add **viscosity and artificial pressure**.

We shall next establish the existence of a continuum (parameterized by M) of solutions of (4), and by taking $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, in the next step, to conclude the proof of Theorem 1.

Before invoking Leray-Schauder's fixed point theorem to show such a solution continuum, we first establish some a priori estimates, which shall be useful later on.

1.
$$\int_{\Omega} \rho^p = M.$$

2. Energy identity:

$$\int_{\Omega} \left\{ \frac{\alpha}{2} h |u|^2 + \frac{1}{2} \alpha \rho^p |u|^2 + \mu |Du|^2 + \xi |\operatorname{div} u|^2 + \varepsilon a \gamma \rho^{\gamma - 2} |\nabla \rho|^2 + 2\varepsilon \delta |\nabla \rho|^2 \right.$$
$$\left. \frac{a \alpha \gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} - h \rho^{\gamma - 1} \right) + 2\delta \alpha \left(\rho^{p + 1} - h \rho \right) \right\} = \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}.$$

3. $\|\rho\|_3 \le C$, $\|u\|_{H^1} \le C$, independent of $\varepsilon \in (0, 1]$.

Notice that the improved regularity of ρ comes from the artificial pressure:

$$\frac{5}{3} \rightarrow 2$$
, $2 \rightarrow 3$.

We now show the existence of a solution continuum $C_{\alpha}^{\delta,\varepsilon}$ to (4) by invoking the following

Theorem 2. (Leray-Schauder). Let X be a Banach space, and $T: X \times [0,1] \to X$ be compact. Assume

- 1. $T(x, 0) = x, \forall x \in X$;
- 2. $\exists M > 0$, s.t. $x = T(x, \sigma)$, $\sigma \in [0, 1] \Rightarrow ||x|| \le M$.

Then $T(\cdot, 1)$ has a fixed point.

The Banach space we live is chosen to be $X = W^{1,\infty} \times (W^{1,\infty})^N$; and [0,1] is rescaled to be [0,M]. The compact mapping is defined as

$$T(M, \varphi, v) = (\rho, u) - (0, u_0)$$

where (ρ, u) satisfy

$$\begin{array}{l} \alpha \rho^p + \operatorname{div} \; (\rho v) - \varepsilon \Delta \rho = \frac{\alpha M}{|\Omega|}, \\ \frac{\alpha M}{|\Omega|} \frac{u}{2} + \rho v \cdot \nabla v + \frac{1}{2} \varepsilon \Delta \rho v - \mu \Delta u - \xi \nabla \operatorname{div} \; u + a \nabla \rho^\gamma + \delta \nabla \rho^2 = \rho f + g, \\ \frac{\partial \rho}{\partial n} = 0, \quad u = 0, \end{array} \qquad \text{on } \partial \Omega.$$

Notice that the compactness follows from the fact that $\bigcap_{1 \leq q < \infty} W^{2,q} \hookrightarrow \hookrightarrow W^{1,\infty}$, and the uniform bounds in Condition 2 of Theorem 2 follows readily from the classical elliptic estimates in $W^{2,q}$, $1 \leq q < \infty$ and a bootstrap argument.

Step III: Passage to limits.

Before passing to limit $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, we recall

Lemma 3. ([1, Appendix D]). Let (E,d) be a complete metric space and $\{C_n\}$ be a sequence of continua (closed, connected subsets) in $E \times [0, \infty)$ with

- (A1) C_n is unbounded in $E \times \mathbf{R}$;
- $(A2) \exists x_0 \in E, \ s.t. (x_0, 0) \in C_n;$
- (A3) $C_n \cap (E \times [0, R]) \subset K_R$, K_R compact in $E \times \mathbb{R}$, $\forall R > 0$; or equivalently
- (A3') $C_n \cap (E \cap [0, R])$ is compact:

$$(x_n, t_n) \in C_n$$
, t_n bounded $\Rightarrow x_n$ relatively compact in E .

Then the limit continuum

$$C = \{(x, t) \in E \times [0, \infty); \exists \{n_k\}, \exists x_{n_k} \to x, \exists t_{n_k} \to t, (x_{n_k}, t_{n_k}) \in C_{n_k}\}$$

satisfies

(C1) C is unbounded in $E \times \mathbf{R}$:

$$\forall t \ge 0, \exists x \in E, s.t. (x, t) \in C;$$

- $(C2)(x_0,0) \in C$;
- (C3) $C \cap (E \times [0, R]) \subset K_{R'}, \forall R' > R \ge 0.$

We now commence our passage to limits, $\varepsilon \to 0_+$, then $\delta \to 0_+$, then $\alpha \to 0_+$, by invoking Lemma 3 to construct

$$C_{\alpha}^{\delta,\varepsilon} \to_{\varepsilon} C_{\alpha}^{\delta} \to_{\delta} C_{\alpha} \to_{\alpha} C$$
 (this *C* being what we pursue).

1. $\varepsilon \to 0_+$, for $\alpha, \delta \in (0, 1]$ fixed.

The underlying $E = L^{q_1} \times (W^{1,q_2})^N$, $1 \le q_1 < 3$, $1 \le q_2 < 2$.

- (A1) holds since $\int_{\Omega} \rho^p = M$.
- (A2) holds since $(0, u_0) \in C_{\alpha}^{\delta, \varepsilon}$.
- (A3') Let $0 < \varepsilon_n \to 0$, $0 \le M_n \to M$, $(\rho_n, u_n) \in C_\alpha^{\delta, \varepsilon_n}$. We show the compactness of (ρ_n, u_n) in E as

$$\rho_n \rightharpoonup \rho \ge 0$$
 in L^3 ; $u_n \rightharpoonup u$ in H^1 , $u_n \rightarrow u$ in $L^p(1 \le p < 6)$, $u_n \rightarrow u$ a.e.;

$$\nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2 \right\} + \frac{\mu}{\mu + \xi} \text{curl curl } u$$

$$= (\rho u \cdot \nabla) u + \cdots \text{ bounded in } \left(L^3 \cdot L^6 \right) \cdot L^2 \subset \mathcal{H}^1$$

$$\Rightarrow \nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2 \right\}, \nabla \text{curl } u_n \text{ bounded in } \mathcal{H}^1$$

$$\Rightarrow$$
 div $u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} - \frac{\delta}{\mu + \xi} \rho_n^2$ compact in $L^s \left(1 \le s < \frac{3}{2} \right)$; curl u_n compact in $L^r (1 \le r < 2)$

- $\Rightarrow \rho_n \rightarrow \rho \text{ in } L^{q_1}(1 \le q_1 < 3)$
- \Rightarrow div u_n , curl u_n , and thus $Du_n \rightarrow \text{div } u$, curl u, Du in $L^{q_2}(1 \le q_2 < 2)$, respectively.

Thus we have a continuum C^{δ}_{α} of solutions of

$$\begin{aligned} &\alpha \rho^p + \operatorname{div} \ (\rho u) = \frac{\alpha M}{|\Omega|}, \\ &\alpha \rho^p u + \operatorname{div} \ (\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} \ u + a \nabla \rho^{5/3} + \delta \nabla \rho^2 = \rho f + g \end{aligned} \right\} \text{in } \Omega$$

satisfying (C1), (C2), (C3) in Lemma 3 and

$$C_{\alpha}^{\delta} \cap \{(\rho, u, M); \ 0 \le M \le R\}$$
 is bounded in $L^{3} \times H_{0}^{1} \times R, \ \forall R > 0$,

and the energy inequality

$$\begin{split} &\int_{\Omega} \left\{ \frac{\alpha}{2} h \left| u \right|^2 + \frac{1}{2} \alpha \rho^p \left| u \right|^2 + \mu \left| D u \right|^2 + \xi \left| \operatorname{div} \, u \right|^2 + \frac{a \alpha \gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} - h \rho^{\gamma - 1} \right) + 2 \delta \alpha \left(\rho^{p + 1} - h \rho \right) \right\} \\ &\leq \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}, \, \, \forall \, \, \left(\rho, u, M \right) \in C_{\alpha}^{\delta} \left(h = \frac{\alpha M}{|\Omega|} \right). \end{split}$$

2. $\delta \rightarrow 0_+$, for $\alpha \in (0, 1]$ fixed.

The space we live now is $E = L^q \times (W^{1,q})^N$, $1 \le q < 2$. And the crucial key point is the compact assertion (A3'), which is proved as

$$\nabla \left\{ \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} \right\} + \frac{\mu}{\mu + \xi} \text{curl curl } u_n$$

$$= (\rho_n u_n \cdot \nabla) u_n + \cdots \text{ bounded in } \left(L^2 \cdot L^6 \right) \cdot L^2 \subset \mathcal{H}^{6/7} \text{ (by Step I)}$$

$$\Rightarrow \begin{cases} \text{div } u_n - \frac{a}{\mu + \xi} \rho_n^{5/3} \text{ compact in } L^s \left(1 \le s < \frac{6}{5} \right) \\ \text{curl } u_n \text{ compact in } L^r (1 \le r < 2) \end{cases} \left(-1 + \frac{3}{6/7} = \frac{3}{6/5} \right)$$

$$\Rightarrow \rho_n \to \rho \text{ in } L^q (1 \le q < 2)$$

 \Rightarrow div u_n , curl u_n , and thus Du_n compact in $L^q(1 \le q < 2)$.

Thus we find a continuum of solutions of (3) satisfying (C1), (C2), (C3) and

$$C_{\alpha} \cap \{(\rho, u, M); 0 \le M \le R\}$$
 is bounded in $L^{\max\{2, p+2/3\}} \times H_0^1 \times \mathbb{R}, \ \forall \ R > 0$,

and the energy inequality

$$\int_{\Omega} \left\{ \frac{\alpha}{2} h |u|^{2} + \frac{\alpha}{2} \rho^{p} |u|^{2} + \mu |Du|^{2} + \xi |\operatorname{div} u|^{2} + \frac{a\alpha\gamma}{\gamma - 1} \left(\rho^{\gamma + p - 1} + h \rho^{\gamma - 1} \right) \right\}$$

$$\leq \int_{\Omega} \left\{ \rho u \cdot f + u \cdot g \right\}, \ \forall \ (\rho, u, M) \in C_{\alpha} \left(h = \frac{\alpha M}{|\Omega|} \right).$$

3. $\alpha \rightarrow 0_+$ finally.

The space we work in now is $E = L^p \times (W^{1,p})^N$, $1 \le p < 2$. The details being exactly the same as the passage to limit $\delta \to 0_+$. And we conclude the existence of such a continuum C of solutions of (1) stated in Theorem 1.

REFERENCES

[1] P.L. Lions, *Mathematical topics in fluid mechanics*. Vol. 2. Compressible models. The Clarendon Press, Oxford University Press, New York, 1998.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA *E-mail address*: uia.china@gmail.com

AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE NAVIER-STOKES EQUATIONS UNDER MODIFIED DIRICHLET BOUNDARY CONDITIONS

ZUJIN ZHANG

ABSTRACT. Four types of boundary conditions are considered for the stationary compressible Navier-Stokes equations. This is [1, Page 121], and is delivered on Dec. 11th, 2010.

1. **Introduction.** In this short paper, we consider the following stationary incompressible Navier-Stokes equations:

$$\operatorname{div}(\rho u) = 0$$

$$\operatorname{div}(\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + \nabla (a\rho^{\gamma}) = \rho f + g$$
in Ω , (1)

under boundary condition

(BC1)
$$u \cdot n = 0$$
 on $\partial \Omega$; or

(BC2)
$$\begin{array}{l} \operatorname{curl} u = 0 \ (N = 2) \\ \operatorname{curl} u \times n = 0 \ (N = 3) \end{array} \right\} \text{ on } \partial \Omega; \text{ or }$$

(BC3)
$$(d \cdot n + Au) \times n = 0$$
 on $\partial \Omega$, with

$$d = \frac{\nabla u + (\nabla u)^t}{2}$$
 is the deformation tensor,

A is a positive-definite matrix,

 $(Qx + u_0) \cdot n(x) \neq 0$ on $\partial \Omega$, \forall antisymmetric $N \times N$ matrix Q and $u_0 \in \mathbb{R}^N$, unless Q = 0, $u_0 = 0$,

$$\xi > \frac{N-2}{N}\mu$$
; or

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, modified Dirichlet boundary value problem.

$$(BC4)\left(\frac{\partial u}{\partial n} + Au\right) \times n = 0 \text{ on } \partial\Omega, \text{ with }$$

A is a nonpositive-definite (not necessarily symmetric) matrix,

$$\xi \ge -\frac{\mu}{N}$$
.

2. Existence Result. The main result now reads

Theorem 1. Let N=2 or N=3, $\gamma>0$, and $p=p(\gamma,N)$ is large enough. Then there exists a continuum $C(\subset L^q\times W^{1,q},\ 1\leq q<\infty)$ of solutions of (1) under (BC1), or (BC2), or (BC3), or (BC4), satisfying

1. $(0, u_0) \in C$, with u_0 solves

$$\begin{cases} -\mu\Delta u_0 - \xi\nabla div\ u_0 = 0, & in\ \Omega, \\ u_0\ satisfies\ (BC1),\ or\ (BC2),\ or\ (BC3),\ or\ (BC4). \end{cases}$$

2.
$$\forall M \in [0, \infty), \exists (\rho, u) \in C$$
, such that $\int \rho^p = M$.

Proof. 1. We approximate (1) by

$$\begin{cases}
\operatorname{div}(\rho u) = 0, \ \rho \ge 0, \ \operatorname{in} \Omega, \ \int_{\Omega} \rho^{p} = M, \\
\operatorname{div}(\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + \nabla (a\rho^{\gamma} + \alpha \rho^{p}) = \rho f + g, \ \operatorname{in} \Omega, \\
u \text{ satisfies (BC1), or (BC2), or (BC3), or (BC4),}
\end{cases}$$
(2)

with $\alpha \in (0, 1]$, and p > 3 is large enough.

- 2. Notice that the proof of
 - (a) the existence of a solution continuum C_{α} to (2); and
 - (b) the passage to limit $C_{\alpha} \rightarrow_{\alpha} C$; are exactly the same as in [2].
- 3. Thus we need only to show a prior that

$$(\rho, u, M) \in C_{\alpha}$$

$$0 \le M \le R < \infty$$

$$\Rightarrow \begin{cases} \rho \text{ bdd in } L^{\infty}, u \text{ bdd in } W^{1,q}, \\ \text{div } u - \frac{a}{\mu + \xi} \rho^{\gamma} - \frac{\alpha}{\mu + \xi} \rho^{p} \text{ bdd in } W^{1,q}, \text{ uniformly in } \alpha \in (\mathbf{0}, \mathbf{1}]. \\ \text{curl } u \text{ bdd in } W^{1,q}, \forall 1 \le q < \infty, \end{cases}$$

For this purpose, we shall consider N = 3 (N = 2 being similar and simple). Our strategy is the usual (by now) **bootstrap argument involving the Hodge decomposition**.

Write $(2)_2$ in the form

$$\nabla \left\{ \operatorname{div} u - \frac{a}{\mu + \xi} \rho^{\gamma} - \frac{\alpha}{\mu + \xi} \rho^{p} \right\} + \frac{\mu}{\mu + \xi} \operatorname{curl} \operatorname{curl} u = (\rho u \cdot \nabla) u + \cdots . \tag{3}$$

We use (3) to bootstrap the regularity of u, and then that of ρ by (2)₂. Take first $\rho \in L^{p_i}$, $\nabla u \in L^{q_i}$, with $p_0 = p$, $q_0 = 2$, we have

$$\nabla \left\{ \operatorname{div} u - \frac{a}{\mu + \xi} \rho^{\gamma} - \frac{\alpha}{\mu + \xi} \rho^{p} \right\}, \ D \operatorname{curl} u \in L^{r_{i}}, \ \frac{1}{r_{i}} = \frac{1}{p_{i}} + \left(\frac{1}{q_{i}} - \frac{1}{3} \right) + \frac{1}{q_{i}};$$

$$Du, a\rho^{\gamma} + \alpha \rho^{p} \in L^{q_{i+1}}, \frac{1}{q_{i+1}} = \frac{1}{r_i} - \frac{1}{3} = \frac{1}{p_i} + \frac{2}{q_i} - \frac{2}{3} \text{ (by (4))}.$$

Notice that $p_{i+1} = p_i = p$, since we want to get the uniform bounds (independent of α). Thus

$$\frac{1}{q_{i+1}} = \frac{1}{p_i} + \frac{2}{q_i} - \frac{2}{3} = 2^{i+1} \frac{1}{q_0} + \left(\frac{1}{p} - \frac{2}{3}\right) \left(1 + 2 + \dots + 2^i\right)$$

$$= 2^i + \left(\frac{1}{p} - \frac{2}{3}\right) (2^{i+1} - 1) = 2^i \left[-2\left(\frac{2}{3} - \frac{1}{p}\right) + 1\right] + \frac{2}{3} - \frac{1}{p}$$

$$< \frac{1}{3}, \text{ if } i \text{ large.}$$

Hence $Du \in L^{q_{i+1}>3} \Rightarrow u \in L^{\infty}$. From then on, we may bootstrap as

$$\frac{1}{q_{i+1}} = \left(\frac{1}{p} + \frac{1}{q_i}\right) - \frac{1}{3} = \frac{1}{q_0} - i\left(\frac{1}{p} - \frac{1}{3}\right) = \frac{1}{2} - i\left(\frac{1}{p} - \frac{1}{3}\right) < 0, \text{ if } i \text{ large.}$$

Consequently, $Du \in L^q$, $1 \le q < \infty$, and

$$\nabla (a\rho^{\gamma} + \alpha \rho^{p}) = \cdots$$
 by (2), $\Rightarrow \nabla (a\rho^{\gamma} + \alpha \rho^{p}) \in L^{q}, \ 1 \le q < \infty$.

Remark 2. One may use many variants for the approximation of the stationary problem (1), other than (2), or those in [2].

Remark 3. As we know, for (1),

- 1. when M = 0, there exists an unique solution u of (1);
- 2. however, for M > 0 small, we do not have uniqueness of solutions of (1), see [1, Remark 6.16, Page 117].

Thus, the existence result for small M > 0 could not be obtained by invoking (variants of) implicit function theorem (to yield an unique branch of solutions).

3. A technical Lemma.

Lemma 4. Let

- 1. $0 \le \rho \in L^p(\Omega)$, $1 \le p \le \infty$;
- 2. $u \in W^{1,q}(\Omega)$, $1 \le q \le \infty$ with $u \cdot n = 0$ on $\partial \Omega$;
- 3. $\frac{1}{p} + \frac{1}{q} \le 1$; and
- 4. $div(\rho u) = 0$ in Ω .

Then

$$\|\varphi(\rho)\|_{r} \le \|\operatorname{div} u - \varphi(\rho)\|_{r}, \ \forall \ \varphi \in C([0, \infty)). \tag{4}$$

Proof. We just prove (4) formally, with the verification being direct consequence of regularizations.

$$\operatorname{div} (\rho u) = 0$$

$$\Rightarrow \operatorname{div} [\beta(\rho)u] = u \cdot \nabla \beta(\rho) + \beta(\rho)\operatorname{div} u = u\nabla \beta(\rho) + \frac{\beta(\rho)}{\rho} \left[-u \cdot \nabla \rho \right] = \left[\beta'(\rho) - \frac{\beta(\rho)}{\rho} \right] u \cdot \nabla \rho$$

$$\Rightarrow u \cdot \nabla \varphi(\rho) = \operatorname{div} [\beta(\rho)u] \text{ for } \varphi'(\rho) = \beta'(\rho) - \frac{\beta(\rho)}{\rho}$$

$$\left(t\beta'(t) - \beta(t) = t\varphi'(t) \Rightarrow \left[\tilde{\beta}(s) = \beta(e^s) \right] \tilde{\beta}'(s) - \tilde{\beta}(s) = e^s \varphi'(e^s) \right)$$

$$\Rightarrow 0 = \int_{\Omega} \operatorname{div} [\beta(\rho)u] = \int_{\Omega} u \cdot \varphi(\rho) = -\int_{\Omega} \varphi(\rho)\operatorname{div} u$$

$$\Rightarrow \int_{\Omega} |\varphi(\rho)|^p = \int_{\Omega} [\varphi(\rho) - \operatorname{div} u] |\varphi(\rho)|^{p-2} \varphi(\rho) \leq ||\varphi(\rho) - \operatorname{div} u||_p ||\varphi(\rho)||_p^{p-1}$$

$$\Rightarrow ||\varphi(\rho)||_p \leq ||\varphi(\rho) - \operatorname{div} u||_p.$$

REFERENCES

- [1] P.L. Lions, *M*athematical topics in fluid mechanics. Vol. 2. Compressible models. The Clarendon Press, Oxford University Press, New York, 1998.
- [2] Z.J. Zhang, An existence theorem for stationary compressible Navier-Stokes equations with Dirichlet boundary conditions. Charleton Univ. Math. J., 12 (2010) 43-48.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA *E-mail address*: uia.china@gmail.com

EXTERIOR PROBLEMS AND RELATED QUESTIONS FOR THE STATIONARY COMPRESSIBLE NAVIER-STOKES EQUATIONS

ZUJIN ZHANG

ABSTRACT. In this paper, we consider the stationary compressible Navier-Stokes equations either in the whole space, in the exterior domain, or in a tube. Various existence results are obtained. This is [1, Sect. 6.8], and is delivered on Dec. 11th & 18th & 25th, 2010.

CONTENTS

1.	Introduction	55
2.	Stationary compressible Navier-Stokes equations in the whole space	56
2.1.	(2) with general force <i>f</i>	57
2.2.	(2) with small force f up to a gradient	67
2.3.	(2) with force f bounded by a normalization function	67
3.	Stationary compressible Navier-Stokes equations in an exterior domain	
	or a tube	67
4.	The "inflow" open problem	67
5.	Acknowledgements	67
REI	FERENCES	67

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, exterior domain, tube domain, invading domain technique, vanishing damping technique.

1. **Introduction.** In this paper, we consider the following stationary compressible Navier-Stokes equations:

$$\begin{cases} \operatorname{div} (\rho u) = 0, & \rho \ge 0, \\ \operatorname{div} (\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, \end{cases}$$
 (1)

in

- 1. either (whole space case) $\Omega = \mathbb{R}^N$;
- 2. (exterior case) $\Omega = \omega^c$, with ω a bounded smooth connected domain in \mathbb{R}^N ; or
- 3. (tube case) $\Omega = \mathbf{R} \times \omega$, with ω a bounded smooth connected domain in \mathbf{R}^{N-1} .

We couple (1) with physical relevant boundary conditions (that is, the flow is constant at infinity),

1. in the whole space case,

$$\rho \to \rho^{\infty}$$
, $u \to u^{\infty}$, as $|x| \to \infty$;

2. in the exterior case,

$$\begin{cases} \rho \to \rho^{\infty}, & u \to u^{\infty}, \text{ as } |x| \to \infty, \\ u|_{\partial\Omega} = 0; \end{cases}$$

3. in the tube case,

$$\rho \to \rho_{\pm}^{\infty}$$
, $u \to 0$, as $x_1 \to \pm \infty$.

Notice that

- 1. If we insist the behavior of ρ , u at infinity to be zero, we would rather obtain the trivial solution, see [1, Remark 6.2].
- 2. If we insist $u^{\infty} \neq 0$, then the problem is closed related to the "inflow" open problem, see Sect. 4. We shall investigate this issue in a forthcoming paper.
- 3. If we insist $\rho_+^{\infty} \neq \rho_-^{\infty}$ in the tube case, we may construct however a non-existence result. In fact, assuming

$$\rho^{\infty}(\Omega),\ Du\in L^2(\Omega),\ u\in L^2\cap L^{\infty}(\Omega),$$

g = 0, f = 0 or $\nabla \Phi$ with Φ smooth, vanishing fast enough as $|x_1| \to \infty$,

and taking the inner product of $(1)_2$ with u in $L^2((-R,R) \times \omega)$, $0 < R < \infty$, we find

$$\int_{\omega} dx' \left\{ \left[\frac{1}{2} \rho |u|^2 + \frac{a\gamma}{\gamma - 1} \rho^{\gamma} \right]_{x_1 = -R}^{x_1 = R} - \left[\mu u \cdot \frac{\partial u}{\partial x_1} + \xi u \operatorname{div} u \right]_{x_1 = -R}^{x_1 = R} \right\}$$
$$+ \int_{-R}^{R} \int_{\omega} dx' \left\{ \mu |Du|^2 + \xi |\operatorname{div} u|^2 \right\} = 0.$$

Sending $R \to \infty$, we deduce

$$\rho_+^{\infty} \leq \rho_-^{\infty}.$$

Z In view of the aforementioned considerations, we shall concentrate ourselves investigating (1) under boundary conditions stated above with

$$\begin{cases} \rho^{\infty} > 0 \text{ or } (\rho_{+}^{\infty} = \rho_{-}^{\infty} = \rho^{\infty} > 0), \\ u^{\infty} = 0. \end{cases}$$

We end this introduction by outlining the rest of this paper. In Sect. 2, we consider (1) in $\Omega = \mathbb{R}^N$. Three existence results are established. Section 3 is devoted to extending the existence results in Sect. 2 to the exterior or tube cases. And finally, an "inflow" open problem is polished in Sect. 4.

2. Stationary compressible Navier-Stokes equations in the whole space. Detailed in this section are various existence results for the problem

$$\begin{cases} \operatorname{div}(\rho u) = 0, \ \rho \ge 0, & \text{in } \mathbf{R}^{N}, \\ \operatorname{div}(\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, & \text{in } \mathbf{R}^{N}, \\ \rho \to \rho^{\infty} > 0, \ u \to 0, & \text{as } |x| \to \infty. \end{cases}$$
 (2)

Here we assume

- 1. $g \in L^1 \cap L^{\infty}(\mathbf{R}^N)$ for simplicity;
- 2. $N \ge 3$ for convenience (to ensure the decay of Green's function for second-order elliptic operators, see Remark 3).

2.1. (2) with general force f.

Theorem 1. Let $N \ge 3$, $\gamma > \max \left\{3, \frac{N}{2}\right\}$. Then there exists a solution (ρ, u) of (2) such that

$$\rho - \rho^{\infty} \in \begin{cases} L^{3} \cap L^{\infty}(\mathbf{R}^{N}), & \text{if } N = 3, \\ L^{2} \cap L^{\frac{N}{N-2}(\gamma-1)}(\mathbf{R}^{N}), & \text{if } N \geq 4; \end{cases} \qquad \forall u \in L^{2}(\mathbf{R}^{N}), \quad u \in L^{\frac{2N}{N-2}}(\mathbf{R}^{N}).$$

Remark 2. If N = 3, $\gamma > 3$, we have $\rho \in L^{\infty}(\mathbb{R}^N)$, and may bootstrap using the Hodge decomposition the regularity of

$$div u - \frac{a}{\mu + \xi} \rho^{\gamma}$$
, curl u

to be in

$$W_{unif}^{1,q}(\boldsymbol{R}^N) = \left\{ \varphi \in W_{loc}^{1,q}(\boldsymbol{R}^N); \sup_{y \in \boldsymbol{R}^N} \int_{y+B_1} |\varphi|^q + |D\varphi|^q < \infty \right\}, \quad \forall \ 1 \leq q < \infty,$$

and $Du \in BMO(\mathbb{R}^N)$.

Remark 3. The behavior at infinity of (ρ, u) is not clear. However, the best possible decay at infinity is:

$$|\rho(x) - \rho^{\infty}| \le \frac{C}{|x|^{\frac{N-1}{\gamma-1}}}, \quad |u(x)| \le \frac{C}{|x|^{N-2}}, \quad |Du(x)| \le \frac{C}{|x|^{N-1}}.$$

In fact,

1. if we take $f = \nabla \Phi \in L^1 \cap L^{\infty}(\mathbb{R}^N)$, $\Phi \in L^{\frac{N}{N-1}}(\mathbb{R}^N)$, $g \equiv 0$, $u \equiv 0$, then

$$a\nabla \rho^{\gamma} = \rho \nabla \Phi \Rightarrow \rho^{\gamma-1} - (\rho^{\infty})^{\gamma-1} = \frac{\gamma - 1}{a\gamma} \Phi;$$

2. if $\rho = \rho^{\infty}$, $f \equiv 0$, $g \in C_0^{\infty}(\mathbb{R}^N)$, div g = 0, then u solves

$$-\mu\Delta u-\xi\nabla div\;u=g,$$

thus u decays at most like $\frac{1}{|x|^{N-2}}$, Du decays at most like $\frac{1}{|x|^{N-1}}$.

Hence, it is natural to conjecture that $\left(\frac{1}{|x|^q} \in L^{\frac{N}{q},\infty}\right)$

$$\rho - \rho^{\infty} \in L^{\frac{N(\gamma-1)}{N-1},\infty}(\boldsymbol{R}^{N}), \quad u \in L^{\frac{N}{N-2},\infty}(\boldsymbol{R}^{N}), \quad Du \in L^{\frac{N}{N-1},\infty}(\boldsymbol{R}^{N}).$$

Proof of Theorem 1. Our proof involves the **invading domain** and **vanishing damping** techniques, and is divided into five steps.

Step I: Formal a priori estimates.

First, multiplying $(2)_2$ by u, we obtain the usual local energy identity (by $(2)_1$):

$$\operatorname{div}\left\{u\left[\rho\frac{|u|^{2}}{2} + \frac{a\gamma}{\gamma - 1}\left(\rho^{\gamma} - (\rho^{\infty})^{\gamma - 1}\rho\right)\right]\right\}$$
$$-\mu\Delta\frac{|u|^{2}}{2} + \mu|Du|^{2} - \xi\operatorname{div}\left(u\operatorname{div}u\right) + \xi\left|\operatorname{div}u\right|^{2} = \rho u \cdot f + u \cdot g, \text{ in } \mathbf{R}^{n}.$$

Integrating then over \mathbb{R}^n (taking into account of $(2)_3$), we deduce

$$\int_{\mathbb{R}^N} \left[\mu |Du|^2 + \xi |\operatorname{div} u|^2 \right] = \int_{\mathbb{R}^N} \left[\rho u \cdot f + u \cdot g \right]. \tag{3}$$

Using Sobolev inequality and assumptions of f, g, we have

$$||u||_{\frac{2N}{N-2}} + ||Du||_2 \le C(1 + ||\rho||_{\infty+q}),$$

where q is specified later on.

Second, taking the divergence of $(2)_2$, and using $(2)_3$, we see

$$a\rho^{\gamma} = a\left(\rho^{\infty}\right)^{\gamma} + (\mu + \xi)\operatorname{div} u + R_{i}R_{j}\left(\rho u_{i}u_{j}\right) - (-\Delta)^{-1}\operatorname{div}\left(\rho f + g\right), \text{ in } \mathbf{R}^{N}; \tag{4}$$

$$\|\rho^{\gamma}\|_{\infty + \frac{q}{\gamma}} \le C \left[1 + \|Du\|_2 + \|\rho\|_{\infty + q} \|u\|_{\infty + q}^2 + \|\rho\|_{\infty + q} \right]; \tag{5}$$

with

1.
$$\frac{q}{\gamma} \le 2 < \infty$$
 ($L^{q} \subset L^{q_{1}} + L^{q_{2}}$, $q_{1} \le q \le q_{2}$);
2. $\frac{1}{q} + \frac{N-2}{N} \le \frac{\gamma}{q}$:
 $\|\rho |u|^{2}\|_{\infty + \frac{q}{\gamma}} \le \|\rho |u|^{2}\|_{\frac{N}{N+2}, 1/\left(\frac{1}{q} + \frac{N-2}{N}\right)} (L^{p_{1}} + L^{p_{2}} \subset L^{q_{1}} + L^{q_{2}}, q_{1} \le p_{1} \le p_{2} \le q_{2})$

$$\le \|\rho\|_{\infty + q} \|u\|_{\frac{2N}{N-2}}^{2}.$$

Recalling the bounds of solutions to the discretized stationary compressible Navier-Stokes equations (see [1, Theorem 6.1]), we set

$$q = \begin{cases} 2\gamma, & \text{if } N = 3, \\ \frac{N}{N-2}(\gamma - 1), & \text{if } N \ge 4. \end{cases}$$
 (6)

Combining (3) with (5), we gather

$$\|\rho\|_{\infty+q}^{\gamma} \le C\left(1 + \|\rho\|_{\infty+q}^{\frac{2\gamma}{\gamma-1}}\right).$$

Since $\gamma > 3$, we have consequently the following a priori bounds on

- 1. ρ in $L^{\infty} + L^{q}$, u in $L^{\frac{2N}{N-2}}$, Du in L^{2} ;
- 2. when N = 3, by (4), $\rho^{\gamma} (\rho^{\infty})^{\gamma}$ in $L^2 + L^3$:

$$\rho |u|^2 \in (L^{\infty} + L^q) \cdot L^3 = L^3 + L^{1/(\frac{1}{2\gamma} + \frac{1}{3})} \subset L^3 + L^2;$$

using the bootstrap argument involving Hodge decomposition (see [1, Theorem 6.3 and its proof on Page 71]), ρ in L^{∞} ;

thus
$$\rho - \rho^{\infty}$$
 in $(L^2 + L^3) \cap L^{\infty} = L^3 + L^{\infty}$:

$$\begin{cases} |\rho^{\gamma}-(\rho^{\infty})^{\gamma}| \cdot 1_{|\rho-\rho^{\infty}| \leq \frac{\rho^{\infty}}{2}} = \gamma \xi^{\gamma-1} |\rho-\rho^{\infty}| \cdot 1_{|\rho-\rho^{\infty}| \leq \frac{\rho^{\infty}}{2}} \\ & \geq C |\rho-\rho^{\infty}| \cdot 1_{|\rho-\rho^{\infty}| \leq \frac{\rho^{\infty}}{2}} & \Rightarrow \quad (\rho-\rho^{\infty}) \cdot 1_{|\rho-\rho^{\infty}| \leq \frac{\rho^{\infty}}{2}} \in L^2 + L^3, \\ \rho-\rho^{\infty} \in L^{2\gamma} + L^{3\gamma} \ \& \ \text{Lemma 5} & \Rightarrow \quad (\rho-\rho^{\infty}) \cdot 1_{|\rho-\rho^{\infty}| > \frac{\rho^{\infty}}{2}} \in L^1, \end{cases}$$

and by invoking Lemma 4 just before Step 2;

3. when $N \ge 4$, by (4), $\rho^{\gamma} - (\rho^{\infty})^{\gamma}$ in $L^2 + L^{\frac{N}{N-2} \frac{\gamma-1}{\gamma}}$:

$$\rho |u|^2 \in (L^{\infty} + L^q) \cdot L^{\frac{N}{N-2}} = L^{\frac{N}{N-2}} + L^{\frac{N}{N-2}\frac{\gamma-1}{\gamma}},$$

thus $\rho - \rho^{\infty}$ in $(L^1 + L^2) \cap (L^{\frac{N}{N-2}(\gamma-1)} + L^{\infty}) = L^2 \cap L^{\frac{N}{N-2}(\gamma-1)}$ by the same reasoning as the case when N = 3, and by using Lemma 4 just below.

We now state and prove some **technical** lemmas we have utilized.

Lemma 4. 1. Let $1 \le a \le b \le \infty$, $1 \le c \le \infty$. Then

$$\left(L^{a} + L^{b}\right) \cap L^{c} = \begin{cases}
L^{c} \cap L^{a}, & \text{if } c \leq a, \\
L^{c}, & \text{if } a \leq c \leq b, \\
L^{b} \cap L^{c}, & \text{if } c \geq b.
\end{cases}$$
(7)

2. Let $1 \le a \le b \le \infty$, $\le c \le d \le \infty$. Then

$$\left(L^{a} + L^{b}\right) \cap \left(L^{c} + L^{d}\right) = \begin{cases}
L^{b} \cap L^{c}, & \text{if } b \leq c, \\
L^{c} + L^{d}, & \text{if } a \leq c \leq d \leq b.
\end{cases}$$
(8)

Proof. 1. **Claim.** If $f \in L^a + L^b$, then

$$\exists 0 \le g_1 \in L^a, 0 \le g_2 \in L^b, \text{ s.t. } |f| = g_1 + g_2.$$

In fact, if $f = f_1 + f_2 \in L^a + L^b$, then

$$|f| = \min\{|f|, |f_1|\} + (|f| - |f_1|)_+,$$

with $0 \le \min\{|f|, |f_1|\} \le |f_1| \in L^a$, $0 \le (|f| - |f_1|)_+ \le |f_2| \in L^b$.

2. We now prove (7). If $f \in (L^a + L^b) \cap L^c$, then

$$0 \le g_1, g_2 \le |f| \Rightarrow g_1 \in L^a \cap L^c, g_2 \in L^b \cap L^c.$$

- (a) If $c \le a$, then $g_2 \in L^a \cap L^c$, $|f| = g_1 + g_2 \in L^a \cap L^c$.
- (b) If $c \ge b$, then $g_1 \in L^b \cap L^c$, $|f| = g_1 + g_2 \in L^b \cap L^c$.
- (c) If $a \le c \le b$, then $f \in L^c \Rightarrow |f| = |f| \cdot 1_{|f| \le 1} + |f| \cdot 1_{|f| \ge 1} \in L^a + L^b$.
- 3. We next show (8). If $f \in (L^a + L^b) \cap (L^c + L^d)$, then

$$0 \le g_1, g_2 \le |f| \Rightarrow g_1, g_2 \in L^c + L^d \Rightarrow g_1 \in L^a \cap \left(L^c + L^d\right), \ g_2 \in L^b \cap \left(L^c + L^d\right).$$

- (a) If $b \le c$, then $g_1 \in L^a \cap L^c \subset L^b \cap L^c$, $g_2 \in L^b \cap L^c$, $|f| = g_1 + g_2 \in L^b + L^c$.
- (b) If $a \le c \le d \le b$, then $L^c + L^d \subset L^a + L^b$.

Lemma 5. Let $f \in L^p + L^q$, $1 \le p < q < \infty$. Then

$$f \cdot 1_{|f| \ge t} \in L^1, \ \forall \ 0 < t < \infty. \tag{9}$$

Proof. As the claim in the proof of Lemma 4 shows

$$\exists \ 0 \le g_1 \in L^p, \ 0 \le g_2 \in L^q, \ s.t. \ |f| = g_1 + g_2.$$

Hence

$$\{|f| \ge t\} \subset \left\{g_1 \ge \frac{t}{2}\right\} \cup \left\{g_2 \ge \frac{t}{2}\right\},$$

and consequently,

$$\int |f| \cdot 1_{|f| \ge t} \le \int (g_1 + g_2) \cdot \left(1_{g_1 \ge \frac{t}{2}} + 1_{g_2 \ge \frac{t}{2}} \right)$$

$$\leq \int g_{1} \cdot 1_{g_{1} \geq \frac{t}{2}} + \int g_{1} \cdot 1_{g_{2} \geq \frac{t}{2}} + \int g_{2} \cdot 1_{g_{1} \geq \frac{t}{2}} + \int g_{2} \cdot 1_{g_{2} \geq \frac{t}{2}}$$

$$\equiv I_{1} + I_{2} + I_{3} + I_{4}. \tag{10}$$

The terms I_1 , I_4 are treated similarly as

$$I_1 = \int g_1 \cdot 1_{g_1 \ge \frac{t}{2}} \le \left(\frac{2}{t}\right)^{p-1} \int g_1^p,$$

$$I_4 = \int g_2 \cdot 1_{g_2 \ge \frac{t}{2}} \le \left(\frac{2}{t}\right)^{q-1} \int g_2^q.$$

Meanwhile, I_2 , I_3 are dominated by Hölder inequality as

$$I_2 = \int g_1 \cdot 1_{g_2 \geq \frac{t}{2}} \leq \left(\int g_1^p \right)^{\frac{1}{p}} \cdot \left| \left\{ g_2 \geq \frac{t}{2} \right\} \right|^{\frac{p-1}{p}} \leq \left\| g_1 \right\|_p \left[\frac{2}{t} \left\| g_2 \right\|_q \right]^{\frac{q(p-1)}{p}},$$

$$I_{3} = \int g_{2} \cdot 1_{g_{1} \geq \frac{t}{2}} \leq \left(\int g_{2}^{q} \right)^{\frac{1}{q}} \cdot \left| \left\{ g_{1} \geq \frac{t}{2} \right\} \right|^{\frac{q-1}{q}} \leq \left\| g_{2} \right\|_{q} \left[\frac{2}{t} \left\| g_{1} \right\|_{p} \right]^{\frac{p(q-1)}{q}}.$$

Gathering the last four displayed inequalities, (10) becomes

$$\int |f| \cdot 1_{|f| \ge t} \le \left(\frac{2}{t}\right)^{p-1} \int g_1^p + \left(\frac{2}{t}\right)^{q-1} \int g_2^q + \|g_1\|_p \left[\frac{2}{t} \|g_2\|_q\right]^{\frac{q(p-1)}{p}} + \|g_2\|_q \left[\frac{2}{t} \|g_1\|_p\right]^{\frac{p(q-1)}{q}} < \infty.$$

Remark 6. If $f \in L^p + L^\infty$, $1 \le p < \infty$, then checking the proof above yields

$$f \cdot 1_{|f| \ge 2||g_2||_{\infty}} \in L^1, \tag{11}$$

for example. We will use this fact later in Step II.

Sept II: Approximate problems and uniform bounds independent of $R \in (0, \infty)$.

We now approximate (2) by

$$\begin{cases}
\alpha \rho + \operatorname{div} (\rho u) = \alpha \rho^{\infty}, \rho \ge 0, & \text{in } B_R, \\
\alpha \rho u + \operatorname{div} (\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, & \text{in } B_R, \\
u = 0, & \text{on } \partial B_R,
\end{cases}$$
(12)

where $\alpha \in (0, 1]$, $R \in (0, \infty)$. The existence of a solution pair $(\rho_{\alpha,R}, u_{\alpha,R})$ of (12) is well known (see [1, Sect. 6.2]).

We shall establish the uniform bounds of the solution independent of $R \in (0, \infty)$, so that we may pass to limit $R \to \infty$ in Step III.

For convenience of notations, we omit the subscript α , R in the solution pair $(\rho_{\alpha,R}, u_{\alpha,R})$ in this step.

1. Bounds depending on $R \in (0, \infty)$ —Energy-type.

$$\begin{cases} \rho \in L^{\infty}_{loc}(B_R) \cap L^{2\gamma}(B_R), \ u \in W^{2,p}_{loc}(B_R), \ \forall \ 1 \le p < \infty, & \text{if } N = 3, \\ \rho \in L^{\frac{N}{N-2}(\gamma-1)}(B_R), & \text{if } N = 4. \end{cases}$$

2. Bounds independent of $R \in (0, \infty)$.

$$\int_{B_R} \rho = \rho^{\infty} |B_R|;$$

$$\int_{B_R} \left\{ \frac{\alpha}{2} \rho^{\infty} |u|^2 + \frac{\alpha}{2} \rho |u|^2 + \mu |Du|^2 + \xi |\operatorname{div} u|^2 + \frac{a\gamma}{\gamma - 1} \left(\rho^{\gamma} - \rho^{\gamma - 1} \rho^{\infty} \right) \right\} \leq \int_{B_R} \left\{ \rho u \cdot f + u \cdot g \right\};$$

$$\begin{split} &\int_{B_R} \left\{ \rho^{\gamma} - \rho^{\gamma - 1} \rho^{\infty} \right\} = \int_{B_R} \left\{ \rho^{\gamma} - \rho^{\gamma - 1} \rho^{\infty} + (\rho^{\infty})^{\gamma} - (\rho^{\infty})^{\gamma - 1} \rho \right\} \\ &= \int_{B_R} \left\{ \rho^{\gamma - 1} - (\rho^{\infty})^{\gamma - 1} \right\} (\rho - \rho^{\infty}) \ (\geq 0) \\ &= \int_{B_R} \left\{ \rho^{\gamma - 1} - (\rho^{\infty})^{\gamma - 1} \right\} (\rho - \rho^{\infty}) \cdot \left(1_{\rho \leq 2\rho^{\infty}} + 1_{\rho > 2\rho^{\infty}} \right) \\ &\geq \nu \left[\int_{B_R} |\rho - \rho^{\infty}|^2 \cdot 1_{\rho \leq 2\rho^{\infty}} + \int_{B_R} \rho^{\gamma} \cdot 1_{\rho > 2\rho^{\infty}} \right] \\ &\left[\rho > 2\rho^{\infty} \Rightarrow \rho - \rho^{\infty} > \frac{\rho}{2}, \ \rho^{\gamma - 1} - (\rho^{\infty})^{\gamma - 1} > \left(1 - \frac{1}{2^{\gamma - 1}} \right) \rho^{\gamma - 1} \\ &\frac{\rho^{\infty}}{2} \leq \rho \leq 2\rho^{\infty} \Rightarrow \rho^{\gamma - 1} - (\rho^{\infty})^{\gamma - 1} = (\gamma - 1)\xi^{\gamma - 2}(\rho - \rho^{\infty}), \xi \in \left(\frac{\rho^{\infty}}{2}, 2\rho^{\infty}\right) \\ &0 \leq \rho < \frac{\rho^{\infty}}{2} \Rightarrow \rho^{\infty} \geq \rho^{\infty} - \rho \geq \frac{\rho^{\infty}}{2}, (\rho^{\infty})^{\gamma - 1} - \rho^{\gamma - 1} \geq \left(1 - \frac{1}{2^{\gamma - 1}} \right) (\rho^{\infty})^{\gamma - 1} \end{split};$$

$$\begin{split} &\int_{B_{R}} \{\rho u \cdot f + u \cdot g\} = \int_{B_{R}} \left\{ \left[(\rho - \rho^{\infty}) \cdot 1_{\rho \leq 2\rho^{\infty}} + \rho^{\infty} \cdot 1_{\rho \leq 2\rho^{\infty}} + \rho \cdot 1_{\rho > 2\rho^{\infty}} \right] u \cdot f + u \cdot g \right\} \\ &\leq \left\| (\rho - \rho^{\infty}) \cdot 1_{\rho \leq 2\rho^{\infty}} \right\|_{\infty} \|u\|_{\frac{2N}{N-2}} \|f\|_{\frac{2N}{N+2}} + \left\| \rho^{\infty} \cdot 1_{\rho \leq 2\rho^{\infty}} \right\|_{\infty} \|u\|_{\frac{2N}{N-2}} \|f\|_{\frac{2N}{N+2}} + \left\| \rho \cdot 1_{\rho > 2\rho^{\infty}} \right\|_{\gamma} \|u\|_{\frac{2N}{N-2}} \|f\|_{a} \\ &\left(\frac{1}{\gamma} + \left(\frac{1}{2} - \frac{1}{N} \right) + \frac{1}{a} = 1 \right) \\ &\varepsilon \|Du\|_{2}^{2} + C \|f\|_{N}^{2} + C \|f\|_{\frac{2N}{N}}^{2} + \varepsilon \left\| \rho \cdot 1_{\rho > 2\rho^{\infty}} \right\|_{\gamma}^{\gamma} + C \|f\|_{a}^{\frac{2\gamma}{\gamma - 2}}; \end{split}$$

$$\int_{B_R} \left\{ \frac{\alpha}{2} \rho^{\infty} |u|^2 + \frac{\alpha}{2} \rho |u|^2 + \mu |Du|^2 + \xi |\text{div } u|^2 \right\} + \int_{B_R} \left\{ |\rho - \rho^{\infty}|^2 \cdot 1_{\rho \le 2\rho^{\infty}} + \rho^{\gamma} \cdot 1_{\rho > 2\rho^{\infty}} \right\} \le C.$$

Thus

$$\begin{cases} u \text{ is bounded in } H_0^1(B_R), \\ \rho |u|^2, \left(\rho^{\gamma-1} - (\rho^{\infty})^{\gamma-1}\right)(\rho - \rho^{\infty}) \text{ are bounded in } L^1, \\ (\rho - \rho^{\infty})^2 \cdot 1_{\rho \le 2\rho^{\infty}}, \ \rho \cdot 1_{\rho > 2\gamma^{\infty}} \text{ are bounded in } L^1, \\ \rho = \rho \cdot 1_{\rho \le 2\rho^{\infty}} + \rho \cdot 1_{\rho > 2\rho^{\infty}} \text{ is bounded in } L^{\infty} + L^{\gamma}. \end{cases}$$

- 3. Bounds independent of $R \in (0, \infty)$ —higher regularity.
 - (a) $\int_{B_R} \rho^{\gamma}$ is bounded in L^{∞} .

$$\int_{B_R} \rho^{\gamma} \ge \left(\int_{B_R} \rho \right)^{\gamma} = (\rho^{\infty})^{\gamma};$$

$$\int_{B_R} \rho^{\gamma} = \int_{B_R} \rho^{\gamma-1} (\rho - \rho^{\infty}) + \rho^{\infty} \int_{B_R} \rho^{\gamma-1} \leq \frac{C}{R^N} + \rho^{\infty} \left(\int_{B_R} \rho^{\gamma} \right)^{\frac{\gamma-1}{\gamma}} \leq \frac{C}{R^N} + \frac{\gamma-1}{\gamma} \int_{B_R} \rho^{\gamma} + \frac{1}{\gamma} (\rho^{\infty})^{\gamma},$$

$$\int_{B_R} \rho^{\gamma} \le (\rho^{\infty})^{\gamma} + \frac{C\gamma}{R^N}.$$

(b) ρ is bounded in $L^{\infty} + L^{2\gamma}$ when N = 3.

$$\nabla \left(\rho^{\gamma} - \int_{B_R} \rho^{\gamma} \right) = \rho f + g - \alpha \rho u - \text{div } (\rho u \otimes u) + \mu \Delta u + \xi \nabla \text{div } u = \nabla F + \text{div } (\rho u \otimes u) + G$$

$$\left(F \in L^2, \ G = \alpha \rho u \in (L^{\infty} + L^{\gamma}) \cdot L^2 \cap L^6 = \left(L^{\frac{2\gamma}{\gamma + 2}} + L^2 \right) \cap \left(L^{\frac{6\gamma}{\gamma + 6}} + L^6 \right) = L^2 \cap L^{\frac{6\gamma}{\gamma + 6}} \text{ by (8)} \right),$$

$$\left\| \rho^{\gamma} - \int_{B_{R}} \rho^{\gamma} \right\|_{2+6} \le C \left(1 + \|\rho u \otimes u\|_{2} \right)$$

$$\le C \left(1 + \|\rho\|_{\infty+2\gamma} + \||u|^{2}\|_{2\cap a} \right)$$

$$\left(\frac{1}{2} = \frac{1}{2\gamma} + \frac{1}{a}, \gamma > 3 \Rightarrow 1 \le a < 3 \right),$$

$$||\rho||_{\infty+2\gamma}^{\gamma} \leq C\left(1+||\rho||_{\infty+2\gamma}\right)\left(L^{2\gamma}+L^{6\gamma}+L^{\infty}=L^{2\gamma}+L^{\infty}\right),$$

$$||\rho||_{\infty+2\gamma} \le C.$$

(c) $\rho - \rho^{\infty}$ is bounded in $L^2 \cap L^{2\gamma}$, when N = 3.

$$\begin{split} \int_{B_R} |\rho - \rho^{\infty}|^2 &= \int_{B_R} |\rho - \rho^{\infty}|^2 \cdot 1_{\rho \le 2\rho^{\infty}} + \int_{B_R} |\rho - \rho^{\infty}|^2 \cdot 1_{\rho > 2\rho^{\infty}} \le \left(1 + \int_{B_R} \rho^{\gamma} \cdot 1_{\rho > 2\rho^{\infty}}\right) \le C, \\ \int_{B_R} |\rho - \rho^{\infty}|^{2\gamma} &= \int_{B_R} |\rho - \rho^{\infty}|^{2\gamma} \cdot 1_{\rho \le 2\rho^{\infty}} + \int_{B_R} |\rho - \rho^{\infty}|^{2\gamma} \cdot 1_{\rho > 2\rho^{\infty}} \\ &\le C \left(\int_{B_R} |\rho - \rho^{\infty}|^2 \cdot 1_{\rho \le 2\rho^{\infty}} + \int_{B_R} \rho^{2\gamma} \cdot 1_{\rho > 2\rho^{\infty}}\right) \le C \text{ (by (11))}. \end{split}$$

(d) ρ is bounded in $L^{\infty} + L^{\frac{N}{N-2}(\gamma-1)}$, $\rho - \rho^{\infty}$ is bounded in $L^2 \cap L^{\frac{N}{N-2}(\gamma-1)}$, when N = 4.

(e)
$$D\left\{\operatorname{div} u - \frac{a}{\mu + \xi}\rho^{\gamma}\right\}$$
 is bounded in \mathcal{H}^{r}_{loc} , with $r\left\{\begin{array}{l} < \infty, & \text{if } N = 3, \\ = \frac{1}{q} + \left(\frac{1}{2} - \frac{1}{N}\right) + \frac{1}{2}, & \text{if } N \geq 4; \end{array}\right.$ div $u - \frac{a}{\mu + \xi}\rho^{\gamma}$ is compact in L^{p}_{loc} , with $p < \left\{\begin{array}{l} \infty, & \text{if } N = 3, \\ \frac{N}{N-2} \frac{\gamma-1}{\gamma}, & \text{if } N \geq 4. \end{array}\right.$

Step III: Passage to limit $R \to \infty$.

We show in this step

$$(\rho_{\alpha,R},u_{\alpha,R}) \to_R (\rho_\alpha,u_\alpha),$$

by invoking [1, Theorem 6.4, Page 81]. The key point is to ensure

$$\int_{\mathbb{R}^N} \left\{ \rho_{\alpha} - \overline{\rho_{\alpha}^{\theta}}^{\frac{1}{\theta}} \right\} u \cdot \nabla \varphi_n \to 0, \text{ as } n \to \infty,$$

where φ is a cut-off function, $\varphi_n = \varphi\left(\frac{\cdot}{n}\right)$. This is in fact true since

$$\rho - \rho^{\infty} \in L^2!$$

Thus sending $R \to \infty$ in (12), we obtain a solution pair (ρ_α, u_α) of

$$\begin{cases} \alpha \rho + \operatorname{div} (\rho u) = \alpha \rho^{\infty}, & \text{in } \mathbf{R}^{N}, \\ \alpha \rho u + \operatorname{div} (\rho u \otimes u) - \mu \Delta u - \xi \nabla \operatorname{div} u + a \nabla \rho^{\gamma} = \rho f + g, & \text{in } \mathbf{R}^{N}, \\ |u| \to 0, & \text{as } |x| \to \infty, \end{cases}$$
(13)

and the following energy inequality:

$$\int_{\mathbb{R}^{N}} \left\{ \frac{\alpha}{2} \rho^{\infty} |u_{\alpha}|^{2} + \frac{\alpha}{2} \rho_{\alpha} |u_{\alpha}|^{2} + \mu |Du_{\alpha}|^{2} + \xi |\operatorname{div} u_{\alpha}|^{2} + \frac{\alpha \gamma}{\gamma - 1} \left(\rho_{\alpha}^{\gamma} - 1 - (\rho^{\infty})^{\gamma - 1} \right) (\rho_{\alpha} - \rho^{\infty}) \right\}$$

$$\leq \int_{\mathbf{R}^N} \left\{ \rho_\alpha u_\alpha \cdot f + u_\alpha \cdot g \right\}.$$

Step IV: Uniform bounds independent of $\alpha \in (0, 1]$

This is done exactly the same as Step I. We omit the subscript α in the solution pair $(\rho_{\alpha}, u_{\alpha})$ in this step.

$$\|u\|_{\frac{2N}{N-2}}^{2N} + \|Du\|_{2} \leq C \left(1 + \|\rho\|_{\infty+q}\right);$$

$$\alpha \int_{R^{N}} \left\{ |u|^{2} + \rho |u|^{2} \right\} \leq \left(\int_{R^{N}} \rho |u|^{2} \right)^{1/2} \left(\int_{R^{N}} \rho |f|^{2} \right)^{1/2} + \|u\|_{2} \|g\|_{2}$$

$$\Rightarrow \left(\alpha \int_{R^{N}} \left\{ |u|^{2} + \rho |u|^{2} \right\} \right)^{1/2} \leq C \left(1 + \|\rho\|_{\infty+q}\right);$$

$$a\rho^{\gamma} = a \left(\rho^{\infty} \right)^{\gamma} + (\mu + \xi) \text{ div } u + R_{i}R_{j} \left(\rho u_{i}u_{j} \right) - (-\Delta)^{-1} \left(\rho f + g \right) - \alpha \left(-\Delta \right)^{-1} \text{ div } \left(\rho u \right)$$

$$\Rightarrow \|\rho\|_{\infty+q}^{\gamma} \leq C \left(1 + \|\rho\|_{\infty+q}^{\frac{2\gamma}{\gamma-1}} \right)$$

$$\left\{ \begin{array}{c} \alpha \|\rho\|_{2+s} \leq C \left(\alpha \|\sqrt{\rho}u\|_{2}\right) \|\rho\|_{\infty+q}^{1/2} \text{ with } \frac{1}{s} = \frac{1}{2} + \frac{1}{2q} \\ \frac{1}{s} - \frac{1}{N} < \frac{\gamma}{q} \Leftarrow \left\{ \begin{array}{c} \frac{1}{2} - \frac{1}{N} = \frac{N-2}{2N} < \frac{2\gamma-1}{\gamma-1} \frac{N-2}{2N} = \frac{\gamma}{q} - \frac{1}{2q}, & \text{if } N \geq 4 \\ \frac{1}{2} + \frac{1}{2\cdot 2\gamma} - \frac{1}{3} < \frac{1}{2} = \frac{\gamma}{2\gamma}, & \text{if } N = 3 \end{array} \right\}$$

$$\Rightarrow \left\{ \|\rho\|_{\infty+q} \leq C, \|u\|_{\frac{2N}{N-2}} \leq C, \|Du\|_{2} \leq C, \\ \alpha \|u\|_{2} \leq C, \alpha \|\rho u\|_{2+s} \leq C, |Du\|_{2} \leq C, \sqrt{\alpha} \|\sqrt{\rho}u\|_{2} \leq C; \\ \Rightarrow \rho - \rho^{\infty} \text{ bounded in } L^{1} + L^{r} \left(r = \begin{cases} 3, & \text{if } N = 3 \\ 2, & \text{if } N \geq 4 \end{cases} \right)$$

$$\Rightarrow \rho - \rho^{\infty} \text{ bounded in } \left\{ \begin{array}{c} \left(L^{1} + L^{3} \right) \cap L^{\infty} = L^{3} \cap L^{\infty}, & \text{if } N = 3 \\ \left(L^{1} + L^{2} \right) \cap (L^{q} + L^{\infty}) = L^{2} \cap L^{q=\frac{N}{N-1}(\gamma-1)}, & \text{if } N \geq 4 \end{array} \right\}$$

Step V: Passage to limit $\alpha \to 0_+$.

We now send $\alpha \to 0_+$ in the solution pair (ρ_α, u_α) of (13). Up to a subsequence, we may assume

$$\rho_{\alpha} \rightharpoonup \rho \text{ in } L_{loc}^{q}, \text{ with } \rho \in \begin{cases}
L^{3} \cap L^{\infty}, & \text{if } N = 3, \\
L^{2} \cap L^{q}, & \text{if } N \geq 4;
\end{cases}$$

$$u_{\alpha} \rightharpoonup u$$
, in $L^{\frac{2N}{N-2}}$, $u_{\alpha} \rightarrow u$, in $L^p_{loc}\left(1 \le p < \frac{2N}{N-2}\right)$ with $u \in L^{\frac{2N}{N-2}}$, $Du \in L^2$;

div
$$u_n - \frac{a}{\mu + \xi} \rho^{\gamma}$$
 converges strongly and a.e. in $L_{Loc}^p \left(1 \le p < \frac{q}{\gamma} \right)$.

Thus to invoke Theorem 6.4 in [1, Page 81] to see the strong convergence of ρ_{α} , we need to verify, by writing $r=\rho-\overline{\rho^{\frac{1}{\theta}}}\in \left\{ \begin{array}{ll} L^3\cap L^{\infty}, & \text{if }N=3,\\ L^2\cap L^q, & \text{if }N\geq 4, \end{array} \right.$, that

$$\int_{\mathbb{R}^N} r |u \cdot \nabla \varphi_n| \to 0, \text{ as } n \to \infty,$$
 (14)

where φ is a cut-off function, $\varphi_n = \varphi\left(\frac{\cdot}{n}\right)$.

1. Verification of (14) when $N \ge 4$

$$\int_{\mathbf{R}^{N}} r |u \cdot \nabla \varphi_{n}| \leq \left(\int_{n \leq |x| \leq 2n} |r|^{2} \right)^{1/2} \cdot \left(\int_{n \leq |x| \leq 2n} |u|^{\frac{2N}{N-2}} \right)^{\frac{N-2}{2N}} \cdot \left(\int_{n \leq |x| \leq 2n} \right)^{1/N}$$

$$\leq C \left(\int_{n \leq |x| \leq 2n} |r|^{2} \right)^{1/2} \cdot ||u||_{\frac{2N}{N-2}} \to 0, \text{ as } n \to \infty.$$

2. Verification of (14) when N = 3.

Noticing

$$\int_{\mathbb{R}^{N}} r |u \cdot \nabla \varphi_{n}| \le \left(\int_{n \le |x| \le 2n} |r|^{3} \right)^{1/3} \cdot \left(\int_{n \le |x| \le 6} |u|^{6} \right)^{\frac{1}{6}} \cdot \left(\int_{n \le |x| \le 2n} \right)^{1/2}, \tag{15}$$

and $\frac{C}{n} \cdot n^{\frac{3}{2}} = Cn^{\frac{1}{2}}$, we need to find another way to overcome this difficulty. Recall from [1, Page 84],

$$0 \le \frac{1 - \theta}{\theta} \frac{a}{\mu + \xi} \left\{ \overline{\rho^{\gamma + \theta}} - \overline{\rho^{\gamma}} \cdot \overline{\rho^{\theta}} \right\} \overline{\rho^{\theta}}^{\frac{1}{\theta} - 1} \le \operatorname{div} (ur).$$

Thus multiplying the above inequality by φ_n , we get from (15) that

$$\int_{B_n} \left\{ \overline{\rho^{\gamma+\theta}} - \overline{\rho^{\gamma}} \cdot \overline{\rho^{\theta}} \right\} \overline{\rho^{\theta}}^{\frac{1}{\theta}-1} \le C n^{\frac{1}{2}}.$$

Taking $\theta = \frac{1}{2}$ and noticing that

$$\left. \begin{array}{l} f_n \rightharpoonup f, \ f_n^a \rightharpoonup \overline{f^b}, \ f_n^b \rightharpoonup \overline{f^b} \\ f_n = f_n^{1-\sigma} f_n^\sigma = \left(f_n^a \right)^{\frac{1-\sigma}{a}} \left(f_n^b \right)^{\frac{\sigma}{b}} \end{array} \right\} \Rightarrow \overline{f} \le \overline{f^a}^{\frac{1-\sigma}{a}} \cdot \overline{f^b}^{\frac{\sigma}{b}} \left(0 < \frac{1-\sigma}{a}, \ \frac{\sigma}{b} < 1 \right),$$

we have

$$\begin{split} \rho &= \overline{\rho} \leq \overline{\rho^{\gamma+1/2}}^{\frac{1-\sigma}{\gamma+1/2}} \cdot \overline{\rho^{1/2}}^{\frac{\sigma}{1/2}} \\ \overline{\rho^{\gamma}} &\leq \overline{\rho^{\gamma+1/2}}^{\frac{\gamma(1-\tau)}{\gamma+1/2}} \cdot \overline{\rho^{1/2}}^{\frac{\gamma\tau}{1/2}} \\ &\frac{1-\sigma}{\gamma+1/2} + \frac{\gamma(1-\tau)}{\gamma+1/2} = 1 = \frac{\sigma}{1/2} + \frac{\gamma\tau}{1/2} \end{split} \\ \Rightarrow \left\{ \overline{\rho^{\gamma+1/2}} - \overline{\rho^{\gamma}} \cdot \overline{\rho^{1/2}} \right\} \overline{\rho^{1/2}} \geq \rho \overline{\rho^{\gamma}} - \overline{\rho^{\gamma}} \cdot \overline{\rho^{1/2}}^2 = \overline{\rho^{\gamma}} \left(\rho - \overline{\rho^{1/2}}^2 \right) = \overline{\rho^{\gamma}} r \\ \Rightarrow \int_{B_{2n}} \overline{\rho^{\gamma}} r \leq C n^{\frac{1}{2}} \\ \Rightarrow \left[\int_{n \leq |x| \leq 2n} r \leq C \left(\int_{n \leq |x| \leq 2n} \rho^{\gamma} r + \int_{n \leq |x| \leq 2n} |\overline{\rho^{\gamma}} - (\rho^{\infty})^{\gamma}| r^{\frac{1}{4}} r^{\frac{3}{4}} \right) \\ &\leq C \left(n^{\frac{1}{2}} + \left(\int_{n \leq |x| \leq 2n} |\overline{\rho^{\gamma}} - (\rho^{\infty})^{\gamma}|^2 \right)^{1/2} \cdot \left(\int_{n \leq |x| \leq 2n} r \right)^{\frac{3}{4}} \cdot ||r||_3^{\frac{3}{4}} \end{split} \\ \Rightarrow \int_{n \leq |x| \leq 2n} r \leq C \left(1 + n^{\frac{1}{2}} \right) \leq C n^{\frac{1}{2}} \\ \Rightarrow \int_{n \leq |x| \leq 2n} r |u \cdot \nabla \varphi_n| \leq \frac{C}{n} \int_{n \leq |x| \leq 2n} r \leq \frac{C}{n^{1/2}} \rightarrow 0, \text{ as } n \rightarrow \infty \ (u \in L^{\infty}) \ . \end{split}$$

- 2.2. (2) with small force f up to a gradient.
- 2.3. (2) with force *f* bounded by a normalization function.
- 3. Stationary compressible Navier-Stokes equations in an exterior domain or a tube.
- 4. The "inflow" open problem.
- 5. **Acknowledgements.** Thank all the brothers in the discussion group, for their patient suffering during my lectures. It is not easy to deliver all of [1, Sect. 6.8] in just three lectures. And hence some parts of this paper are left blank.

Happy Christmas!

REFERENCES

[1] P.L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models. The Clarendon Press, Oxford University Press, New York, 1998.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China *E-mail address*: uia.china@gmail.com

S.T. YAU COLLEGE MATHEMATICS CONTESTS 2010

ZUJIN ZHANG

ABSTRACT. In this paper, we give a reference answer to the Analysis and Differential Equations in S.T. Yau College Mathematics Contests 2010.

1. (a) Let $\{x_k\}_{k=1}^n \subset (0,\pi)$, and define

$$x = \frac{1}{n} \sum_{k=1}^{n} x_i.$$

Show that

$$\prod_{k=1}^{n} \frac{\sin x_k}{x_k} \le \left(\frac{\sin x}{x}\right)^n.$$

Proof. Direct computations show

$$\left(\ln \frac{\sin x}{x}\right)'' = (\ln \sin x - \ln x)'' = \frac{-1}{\sin^2 x} + \frac{1}{x^2} > 0,$$

for all $x \in (0,\pi)$. Thus $\ln \frac{\sin x}{x}$ is a convex function in $(0,\pi)$. Jensen's inequality then yields

$$\frac{1}{n} \sum_{k=1}^{n} \ln \frac{\sin x_k}{x_k} \le \ln \frac{\sin x}{x}.$$

The exponential of this above inequality is the desired result.

(b) From

$$\int_{0}^{\infty} e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2},$$

calculate the integral $\int_{0}^{\infty} \sin(x^2) dx$.

Key words and phrases. S.T. Yau, College Mathematics Contests, analysis, differential equations.

Proof. Consider the sector in \mathbb{R}^2 enclosed by the following three curves

$$\begin{cases} I: & 0 \le z \le R, \\ II: & Re^{i\theta}, \ 0 \le \theta \le \frac{\pi}{4}, \\ III: & re^{i\frac{\pi}{4}}, \ 0 \le r \le R. \end{cases}$$

Cauchy's integration theorem then yields

$$0 = \left[\int_{I} + \int_{II} + \int_{III} \right] e^{iz^2} dz. \tag{1}$$

Noticing

(i)
$$\int_{I} e^{iz^2} dz = \int_{0}^{R} e^{ix^2} dx,$$

(ii)

$$\left| \int_{II} e^{iz^2} dz \right| = \left| \int_{0}^{\frac{\pi}{4}} e^{iR^2 e^{2i\theta}} \cdot iRe^{i\theta} d\theta \right|$$

$$\leq R \int_{0}^{\frac{\pi}{4}} e^{-R^2 \sin 2\theta} d\theta$$

$$\leq R \int_{0}^{\frac{\pi}{4}} e^{-R^2 \cdot \frac{2}{\pi} \cdot 2\theta} d\theta$$

$$= \frac{\pi}{4R} \left(1 - e^{-R^2} \right)$$

$$\to 0, \text{ as } R \to \infty,$$

(iii)
$$\int_{III} e^{iz^2} dz = -\int_0^R e^{ir^2 e^{i\frac{\pi}{2}}} \cdot e^{i\frac{\pi}{4}} dr = e^{i\frac{\pi}{4}} \int_0^R e^{-r^2} dr,$$

we have, by sending $R \to \infty$ in (1), that

$$\int_{0}^{\infty} e^{ix^{2}} dx = e^{i\frac{\pi}{4}} \int_{0}^{\infty} e^{-r^{2}} dr.$$

Taking the imaginary part of this above equality gives

$$\int_{0}^{\infty} \sin(x^2) \mathrm{d}x = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

2. Let $f : \mathbf{R} \to \mathbf{R}$ be any function. Prove that the set

$$C = \left\{ x_0 \in \mathbf{R}; \ f(x_0) = \lim_{x \to x_0} f(x) \right\}$$

is a G_{δ} -set.

Proof. By definition,

$$C = \bigcap_{k=1}^{\infty} C_k$$

where

$$C_k = \left\{ x_0 \in \mathbf{R}; \ \exists \ \delta_{x_0} > 0, \ s.t. \ |x - x_0| < \delta_{x_0} \Rightarrow |f(x) - f(x_0)| < \frac{1}{k} \right\}$$

is an open set. In fact,

$$x_0 \in C_k \Rightarrow U(x_0, \delta_{x_0}) \subset C_k$$
.

3. Consider the *ODE*

$$\dot{x} = -x + f(t, x),$$

where

$$\begin{cases} |f(t,x)| \le \varphi(t) |x|, & (t,x) \in \mathbf{R} \times \mathbf{R}, \\ \int_{-\infty}^{\infty} \varphi(t) dt < \infty. \end{cases}$$

Prove that every solution approaches zero as $t \to \infty$.

Proof. For all $t \in [0, \infty)$, we have

$$\infty > \int_{0}^{t} \varphi(s) ds \ge \int_{0}^{t} \left| \frac{\dot{x}(s) + x(s)}{x(s)} \right| ds = \int_{0}^{t} \left| \frac{(e^{s}x(s))'}{e^{s}x(s)} \right| ds$$

$$\geq \left| \int_0^t d(e^s x(s)) \right| = \left| e^t x(t) - x(0) \right|.$$

Thus

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} e^{-t} \cdot \left[e^t x(t) \right] = 0.$$

4. Solve the *PDE*

$$\begin{cases} \Delta u = 0, & \text{in } \mathbf{R}^+ \times \mathbf{R}, \\ u = g, & \text{on } \{x_1 = 0\} \times \mathbf{R}, \end{cases}$$

where

$$g(x_2) = \begin{cases} 1, & \text{if } x_2 > 0, \\ -1, & \text{if } x_2 < 0. \end{cases}$$

Proof. It is standard (easy to verfiy) that

$$u(x) = \int_{\{y_1=0\}\times \mathbf{R}} u(y) \frac{\partial G}{\partial \mathbf{n}}(x, y) dS(y),$$

where

$$G(x,y) = \frac{1}{2\pi} \left[\ln|y - x| - \ln|y - \tilde{x}| \right]$$

is the Green's function for $\{x_1 > 0\}$, with \tilde{x} the reflection of x in the plane $\{x_1 = 0\}$.

Direct computations show

$$\frac{\partial G}{\partial \mathbf{n}}(x,y) = -\frac{\partial G}{\partial y_1}(x,y) = -\frac{1}{2\pi} \left[\frac{y_1 - x_1}{|y - x|^2} - \frac{y_1 + x_1}{|y - \tilde{x}|} \right]
= -\frac{1}{2\pi} \frac{-2x_1}{|y - x_1|^2} \left(|y - x| = |y - \tilde{x}| \right)
= \frac{x_1}{\pi |y - x|^2}.$$

Thus

$$\begin{split} u(x) &= \int\limits_{\{y_1=0\}\times\mathbf{R}} u(y) \frac{x_1}{\pi \, |y-x|^2} \mathrm{d}S(y) \\ &= -\frac{x_1}{\pi} \int\limits_{-\infty}^{\infty} \frac{g(y_2)}{x_1^2 + (y_2 - x_2)^2} \mathrm{d}y_2 \\ &= -\frac{x_1}{\pi} \left[\frac{1}{x_1} \int\limits_{-\infty}^{0} \frac{-1}{1 + \left|\frac{y_2 - x_2}{x_1}\right|^2} \mathrm{d}\frac{y_2 - x_2}{x_1} + \frac{1}{x_1} \int\limits_{0}^{\infty} \frac{1}{1 + \left(\frac{y_2 - x_2}{x_1}\right)^2} \mathrm{d}\frac{y_2 - x_2}{x_1} \right] \\ &= -\frac{1}{\pi} \left[-\arctan\frac{y_2 - x_2}{x_1} \Big|_{y_2 = -\infty}^{y_2 = 0} + \arctan\frac{y_2 - x_2}{x_1} \Big|_{y_2 = 0}^{y_2 = \infty} \right] \\ &= \frac{2}{\pi} \arctan\frac{x_2}{x_1}, \ x = (x_1, x_2) \in \mathbf{R}^2. \end{split}$$

5. Let $K \in C([0,1] \times [0,1])$. For $f \in C[0,1]$, the space of continuous functions on [0,1], define

$$Tf(x) = \int_{0}^{1} K(x, y)f(y)dy.$$

Prove that $Tf \in C[0,1]$. Moreover,

$$\Omega = \left\{ Tf; \ \|f\|_{sup} \le 1 \right\}$$

is precompact in C[0,1].

Proof. (a) $Tf \in C[0, 1]$.

$$|Tf(x_1) - Tf(x_2)| \le \int_0^1 |K(x_1, y) - K(x_2, y)| |f(y)| dy$$

 $\to 0$, as $|x_1 - x_2| \to 0$, (2)

by the uniform continuity of K in x and y.

(b) Ω is precompact in C[0,1]. This follows readily from

(i) the unform boundedness of $f \in \Omega$:

$$||f||_{\sup} \leq 1,$$

- (ii) the equicontinuity of $f \in \Omega$, that is, (2),
- (iii) and the Ascoli-Azerá theorem.
- 6. Prove the Poisson summation formula

$$\sum_{n=-\infty}^{\infty} f(x+2n\pi) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikx},$$

for

$$f \in \mathcal{S}(\mathbf{R}) = \left\{ f \in L^{1}_{loc}(\mathbf{R}); \ (1 + |x|^{m}) \left| f^{(n)}(x) \right| \le C_{m,n}, \ \forall \ m, n \ge 0 \right\}.$$

Here

$$\hat{f}(\xi) = \int_{\mathbf{R}} f(x)e^{-ix\xi} dx.$$

Proof. Define

$$h(x) = \sum_{n = -\infty}^{\infty} f(x + 2n\pi).$$

Then h is periodic with periodical 2π . And hence the coefficients of its Fourier series are

$$a_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} h(x)e^{-ikx} dx = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{0}^{2\pi} f(x+2n\pi)e^{-ikx} dx$$
$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{2n\pi}^{2(n+1)\pi} f(y)e^{-ik(y-2n\pi)} dy$$
$$= \int_{0}^{\infty} f(x)e^{-ikx} dx = \hat{f}(k).$$

Consequently,

$$\sum_{n=-\infty}^{\infty} f(x+2n\pi) = h(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx} = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikx}.$$

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA *E-mail address*: uia.china@gmail.com