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MONOTONICITY METHODS IN PDE
ZUJIN ZHANG

ABSTRACT. In this paper, we renormalize the huts 5.1.3 and 6.1.1
in [1], so as to be more accessible, see more details in [4]. Roughly
speaking, monotonicity is the natural substitution of convexity in

building solutions of PDE .

CONTENTS

1. Minty-Browder method in L?
2. Minty-Browder method in L*
Acknowledgements
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1. Minty-Browder method in L?. In this hut, we introduce the mono-
tonicity method due to Minty and Browder. As as illustrative prob-

lem, we consider the following quasi-linear PDE :

~div (E(Dw)) = f, inU,
u=0, onaU,
where E : R" — R" is given.
Observe that (1) can be solved by calculations of variations in case

FE = DF for some convex F : R* — R.

Key words and phrases. Monotonicity method, weak convergence method.



2 ZUJIN ZHANG

Our problem is then what natural conditions on F so that (1) may
be directly tackled, when E is no longer the gradient of a convex
function.

This is the work of Minty and Browder, who give

Definition 1. A vector field E on R" is called monotone if
(E(p)-E@) (p~q) 20, ¥ p,qgeR’, 2)

and show (1) can be tacitly worked out as

Theorem 2. Assume E is monotone and satisfies the growth condition
|E(p)l < C( +pD), p € R™.

Let {u} € Hy(U) be weak solutions of the approximating problems

{ —div (E(Dw) = fi, inU, 3)

u, =0, onaoU,

with f, — fin L*(U).

Suppose uy — u in Hy(U). Then u is a weak solution of (1).

Proof. We first write down

0

IA

f [E(Duy) — E(Dv)] [Du;, — Dv]dx (Monotonicity)
U

fU [fu = fiv = E(Dv)(Duy — Dv)] dx, ¥ v € Hy(U)
(integration by parts and weak formulation) .
Then taking k — oo yields

0< j; [f(u—v) — E(Dv) - (Du— Dv)] dx.
Choosing v = u + Aw, with 1 € R, w € H}(U) furthermore gives

0< sgn(/l)f [E(Du + ADw) - Dw — fw]dx.
U
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Passing 4 — 0 finally, we have as desired

0= f [E(Du) - Dv — fw]dx, Y w € Hy(U).
U

2. Minty-Browder method in L*. We consider the strong solutions
of PDE , instead of weak solutions in (1). Hence the Minty-Browder
method moves from L? to L™.

To illustrate how it works, let us consider the following fully non-

linear PDE :

F(D*u) = f, inU,
u=0, onodU,

(4)

where F : §™" — Ris given. Here §™" is the space of real, symmetric

n X n matrices.

Definition 3. The problem (4) is elliptic, if F is monotone decreasing

with respect to matrix ordering on ™", and so
F(S)< F(R), ifS >R, S,ReS™". (5)

Remark 4. This very definition of ellipticity, coincides with the classical
ones. In fact, we say PDE

Tr[A-Dul=f

is elliptic if A is a non-positive definite symmetric matrix. One then read-
ily verifies
S >R = S — R non-negative definite
= Trl[A-(S-R)]<0

= Tr[A-S]1<Tr[A-R], S,ReS™".
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Now, suppose fi — f uniformly, and consider the approximating

problems

(6)

F(Dw) = fr, inU,
u, =0, onoU.

Assume (6) has a smooth solution u, a priori bounded in W**(U).

Then, up to a subsequence,
e — uuniformly, D*u, — D*uin L®(U; S™"),

for some u.

Our problem is then: does u satisfies (4)?

If F is uniformly elliptic and convex, then strong estimates are
available and passing to limit is simple, see [3]. The main interest
is consequently for the nonconvex F, as in hut 1.

Recall that in hut 1, the main assumption leading to the existence
of a weak solution is the monotonicity inequality (2). We shall then
furnish a similar monotonicity in this current circumstance, replac-
ing the ellipticity of F.

For this purpose, we need

Proposition 5. Let (X, ||-||) be a Banach space. Then the limit

lg + AfIP - llgll®
21

[f.8] = lim %

exists for all f, g € X.

Proof. Writing

llg + AfI° = ligll® _ llg+ 71+ llgll g + Af11 -~ llgll
24 2 A ’

llg + AS1l — llgll
A
and increasing in A. In fact, we have

we need only show that { } is bounded from below
>0
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g+ 71— llgl =1l
1 le f; gll ﬂf Sy

2. for0< <2,

g + A1 = lig [l + ]| - ligl

A A
g + 4] - il - [|ag + adf]| + el
- A1
S e O
N A2 -

O

Remark 6. In case X is a Hilbert space, (f, g| is simply the inner prod-

uct.
We now give an useful property of [, -] as

Proposition 7. The map XxX > {f, g} ¥ [f, g| is upper semicontinous,
that is,

lim sup [ fu, gx] < [ - 8] (8)

n—oo

forall f,geX, f, = f, g. > gin X.

Proof. Observe that in the proof of (7), we have {W} is
A>0

increasing in 4, for f, g € X fixed.

Thus

n /l n 2 - n 2
limsup[f,.g,] = limsup lim 182+ A%l = gl

n—oo n—oo A—04 24
_ { . {llgn + ASull + 1Igall IIgn+/1fn||—||gn||]}
= limsup{ lim .
n—oo A-04 2 /1
o - lgn + Afall = lignll
= hgﬂlp [Ilgnll-ﬂlga g

IA

: lgn + Afull = llgnll
ligll - lim sup

n—oo A
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+ Af]l =
< ||g”_llg il IIgII,\M>O_
A
Taking 4 — 0., we obtain
. g+ Af1 = ligll
limsup [, g,] = llgll- lim ===

2 all2
_ lim llg + Af1" = llgll
A—04 2/1

[f.8].

Then an explicit formula in case X = C(U) as

Proposition 8. Let X = C(U), then

[f. 8] = max { f(x)g(xo)s x0 € T.1gxo) = ligllecan) » o € CD).
Proof. Denote by

My, ={x € U: |h(x)| = |Ihll}, h € C(O).

Then
1. due to
llg le/l llgll S (g(x0) f(;))) 2(xo) P
we have

[f.g] > RHS of (9).

2. for any sequence {14,} \, 0, x, € My, 1,

g + AfIP — N8l (8Cxn) + Anf ()" — g(x)?
24, - 24,

A
= f(xn)g(-xn) + ?f(xn)z

©)

- [f(*¥e)8(Xx), asn — oo, (10)
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for some U 3 xo « X,,.

Meanwhile, taking n — oo in

lg(xa) + Anf(xa)| = 1lg + Sl 5
gives
lg(xe0)l = il -
This together with (10) shows that
[f.&] < RHS of (9).
The proof is then completed. m

With this explicit formula for [f, g], we show that monotonicity is

a consequence of ellipticity as
Proposition 9. If F is convex, then the operator Alu] = F(D*u) satisfies
0 < [Alu] - A[v],u—v], Y u,v € C3(D). (11)
Here C3(U) is the subspace of C*(U), with vanishing boundary data.
Proof. Suppose (u - v) (xo) = [lu = Vllc@), X0 € U, then

D*(u—v)(x) <0
= F(D’u)(xo) > F(D™)(xo) (by ellipticity)
= [Alu] - Alv],u = v] = (F(D*u) = F(D*V)) (x) - (1t = v) (x0) 2 0,

by invoking (9).

The case (v — u) (x9) = |lu = Vllc@), Xo € U is similarly treated. O

With all the above preparations above, we now state and prove

our main result in this hut.



8 ZUJIN ZHANG

Theorem 10. Consider problem (4) and its approximating problems (6).
If Alu) = F(D*u) satisfies the monotonicity inequality:

0 < [Alu] - A[v],u —v], Y u,v € C5(D). (12)
Then u solves (4) a.e..

Proof. 1. For the approximating solution {u;}, we have

)
A

[Alue] = Alv], u = V]

IA

[fi — ADV], g — v], Y v e C3(O).

Taking k — oo upon a subsequence, we obtain by invoking (8)

that
0<[f-ADllLu-v], YveC5O). (13)

2. Our strategy to prove u solves (4) is then to choose appropriate
vin (13).

In fact, since u € W>*(U), Rademacher’s theorem (see [2, 5])

implies then u is C* a.e.. Fix any x, € U where D*u(x,) exists. We

handcraft a C* function v having the form

= u(xo) + Du(xp)(x — xo)

| , ., XTear xop;
+35D%u(xo)(x — X0, X — Xp) + &|x — xo|" — 1
V(X) = 0, X € 6U, (14)
€ (u(x) — 3.u(x) + %) otherwise.

(The & > 0 is chosen so that u — v 1ooks like a parabola for x near
xo.) Then |u — v| attains its maximum over U only at xo. But then

(13) and (9) say (f — Alul) (xo) > O, that is,

F(x0) 2 F (D’u(xo) + 2¢l).
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Sending £ — 0., we find

f(x0) = F(D*u(xo)).

The opposite inequality follows by replacing |x — xo|* — 1 by

—&|x — xo|* + 1in (13). Consequently, we have

F(D?*u(xy)) = f(xp), a.e.xy € U.

Acknowledgements. Thanks are due to the discussion group of Pro-
fessor Yin at Sun Yat-sen University, in particular Dr. Liu’s lectures

w} in the proof of (7),
A >0

setting forth the simple observation of the proof of (8) by the author

on the monotone property of {

through suffering two misleading applications of L" Hospital’s law

in calculus.
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MEAN-VALUE PROPERTY OF THE HEAT EQUATION
ZUJIN ZHANG

ABSTRACT. In this paper, we detailed the proof of the mean-value

theorem for the heat equation, see [1] for example.

Let U c R" be open and bounded, and T > 0. We give

Definition 1. 1. The parabolic cylinder is the parabolic interior

of U [0,T]:
Ur = U x(0,T].
2. The parabolic boundary of Uy is
I'r = UT - Uy,

which comprises the bottom and vertical sides of U X [0, T, but not

the top.

In this parabolic cylinder Uy, we want to derive a kind of analogue
to the mean-value property for harmonic function. For this purpose,

we introduce
Definition 2. The heat ball E(x, t; r)(r > 0) at (x,t) € R is
1
E(x,t;r) = {(y, s) € R™1 D(x—y,t—s5) = —}.
rn

Remark 3. 1. The heat ball is a region in space-time, the boundary of
which is a level set of @(x —y,t — ).

Key words and phrases. heat equation, mean-value property, fundamental

solution.
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2. Written explicitly, we have

1 _lzi\?lz) @( " ) > 1
_ e M9 = X—y,t—5)=2—,
[4n(t — $)]"? g r

lx—yl

2
Fle” = > [4n(t — 5)]"? .

Applying the logarithmical function, we obtain

=y _n
A=) > 51n[47r(t—s)],

ninr -

2

e 9N —
|x —y|” < 2n(t—s)In v
One then verifies easily that RHS of the above inequality equal O if
2
.

s=t——ors==1.
T

This echoes the notion of heat ball, a region in space-time, with the

scale in t is twice that in x.

. By the above calculations, we find that the function

Ix — yI*
4t - s)

ws—gmmﬂpwﬂ— +nlnr, (1)

vanishes on OE(x,t;r), which is helpful in integration by parts for-

mula, as we shall in later on. Notice also that

___ Y
=3 @

nos  lx=yP
2t—s  4(t—s)*

©)

Now, we state and prove our mean-value theorem for the heat

equation as
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Theorem 4. (A mean-value property for the heat equation). Let u €

Cf(UT) solve the heat equation. Then

u(x,t) =

for each E(x,t;r) C Ur.

Proof.

ff u(y, s)—dyds
E(x,t;r)

1. An useful identity:

ff ﬂda’ =4,
5

where E(1) = E(0,0; 1).

Indeed,

yI*

ff M gy
a 5

0 1 s
—ds II” dy
—4]7 N IyIZS—ZnSInﬁ
. 1
fO ds f[—2n31n4m
1
- S 0
0

na(n)
n+2

] /
na(n)r"~2dr

s [27r (=5)In

na(n)(2n)’s f4'n 2( 1 )22
_— S 2 ln —_—
0 4rs

n+?2
n-2
1 - z ==
j;, (47re )

na(n)(2n)% 1

n+2

na(n)(2n) =
n+2

n+2  (dny2
. ntd
na(n)2n)'s 1 ARV
n+2 '(47r)”/2 0 n £rendt
8 F(n + 2)
(n + 2)n"/2 2
8 n'? n n
. =+ I)F(— + 1)
(n + 2)n"/? r(g + 1) (2 2

4.

(4)

(5)
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. We now prove (4). Without loss of generality, we may assume

that (x,7) = (0,0). Write E(r) = E(0,0; r) and set

1
— f u(y, s)ﬂdyds
" JJEw)

ff u(ry, rzs)%dyds.
E(1) N

o (r) = ff [y D, ﬂ+2rD lyl ]a’yd
E(1)
f f @+2D 'yl dyds
rn+1 E0)

A+ B.

@(r)

Then

Next, we calculate B as

= — ff 2D u%dyds
r E(r) S
= =5 [ panse-saras @)
E(r)

4 4
i f y - DsDyupdyds — ,:1 f f Djugpdyds
r E(r) r E0)

(integration by part w.r.t. y)

n oyl
- Dyu dyd
e (B B ]

f Dupdyds (mtegratlon by part w.r.t. s and (3))
E(r)

rn+1

= r”+1 ff —xy Dyu — nA ucp] dyds (Dsu —Au = O)
E(r)

= - (mtegra’aon by part w.r.t. y and (2)) .

Hence,

t—0,

p(r)y = hm () = lim ff u(ry,r s)—dyds
E(1)
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2
= ff u(0, O)%dyds = 4u(0,0).
E(1) N

The proof of the mean-value property of the heat equation is thus

completed. O

Acknowledgements. The author would like to thank Dr. Zhang at
Sun Yat-sen University, who are still on his road to Alexandrov ge-

ometry, and who showed me

\usepackage{palatino}

to display with the font here.
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ON SOLUTION FORMULAE OF IBVP FOR THE HEAT
EQUATION

ZUJIN ZHANG

ABSTRACT. In this paper, we give a solution formula of the initial /boundary-
value problem for the heat equation via reflection method. This

problem is 2.5.13 in [1].

Given a smooth g : [0, ) — R, with g(0) = 0, we have the solution
formula

X

12
u(x, 1) = Ej(; me 4(”5>g(S)dS

for the initial/boundary-value problem
u—uy =0, inR; X (0,00),
u=0, onR, x{r=0},
u=g, on {x=0}X][0,c0).

Proof. Setting v(x, 1) = u(x, t) — g(t), due to the fact that
v=0, on {x=0}x]0,00),
we may odd reflect v. Still denoting the resulting function by v yields

gl‘a x < 0 .
Vi—=Vxx = s lnRx (07 OO),
-8, x>0

v = 0, onR x {r = 0}.

Solution formula for the heat equation in one dimension then gives

u(x, 1) — g(7)

Key words and phrases. heat equation, solution formula, reflection method.
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v(x, 1)

t 0 )
f gs(s)ds [f D(x —y,t—s)dy — f D(x—y,t— s)dy]
0 —00 0
f gs(s) [— fx D(y,t — s)dy] ds
0 —-X

— f g(s) fx D,(y,t — s)dy] ds — g(t) lim fx D(y, t — s)dy
0 LJ— =y

X

! [ * 1 b2
— Ky D, (v, t — s)dy|ds —2g(t) im ————¢ H5d
J e [ a0 )y] colim [ ey

1 -2y w2 [*

_\f; g(S) gdsy(t,y - S) = [471-(1. ~ s)]l/Z . 4(t — S)e_4(r—A') _x] ds

29(t) .. e 2
—% lim f e dz
/2 soi 0

X ! 1 Jxi2 <, r'/?
- “#5g(s)ds — gt 2z =""),
(4ﬂ)1/2£ (t—S)3/ze ( g(S) S g() (fo‘ e Z 2 )

O

Acknowledgements. The author would like to thank Professor L.C.

Evans for showing him a rough integrating by parts formula.
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EQUIPARTITION OF ENERGY
XUAN]JI JIA AND ZUJIN ZHANG

ABSTRACT. In this paper, we show the equipartition of energy for
the 1D wave equation [2], and suggest a challenging open prob-

lem.

Let u € C*(R X [0, o)) solve the initial-value problem for the wave
equation in one dimension:
Uy — iy =0, InR X (0, 00),
u=g, u;=h, onRx{r=0}.

Suppose g, h have compact support. The kinetic energy is

1
k() = 5 fR urdx,

and the potential energy is

1
p(t) = E‘[Ruidx.

Prove
1. k(t) + p(?) is constant in 7;

2. k(t) = p(¢) for all large enough times 7.

Proof. 1. Since

00 (o)
f [usttyy + utt ] dx = f (st oy + wtt ] dx
- —00

(9]

= f [t1,], dx = 0,

Key words and phrases. equipartition of energy, wave equation, d’Alembert’s for-

d
= [k(r) + p(1)]

mula, Paley-Wiener theorem, Brownian motion.
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we see

(o9

k(1) + p(t) = k(0) + p(0) = % f | + 1?| dx.

—00

. In view of d’Alembert’s formula,

— X+t
T
2 2 x—t
and thus
u,(x, 1) = gx+1-gx—-1 . h(x+z)+h(x_t)’
2 2
wy(x, 1) = g+t +g(x—1 N h(x+t)—h(x_t).
2 2
Consequently,
I/ltz - l,t2 = [ut + ux] . [ut _ ux]

= [x+D+hx+0]-[-gx—-0)+N(x—1)]

= —gx+ngx-0+gx+0h(x—1)
—h(x+1)g'(x—1t)+ h(x + Hh(x — 1)

= 0, for all large t,

the last equality holding since both g and 4 have compact sup-
port:

supp (g,h) C [a,b]

= either x + ¢ or x — t leaves away [a,b], V ¢ > _ a’ x €R.
We obtain finally that
_ 1 ” 2 2 _
k() — p(t) = 5 Im [u, - ux] dx =0,

for all large .
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Remark 1. 1. This result can be extended to the wave equation in
general odd space dimensions. However, it involves Fourier analysis,
mainly the Paley-Wiener theorem [1].

2. To the authors” best knowledge, this equipartition of energy was first
introduced by Einstein in 1901s. Since then, many mathematicians
have been devoted to studying this problem.

3. Just in May 2010, some experiments established in Texas showed that
equipartition of energy was valid for Brownian motion. This would
give a challenging and interesting open problem whether we

can give a mathematical proof of it.

Acknowledgements. The authors would like to thank C. Chen at
CUHK for sending them a copy of [1].
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THE CURVATURE OF A 2D CURVE
ZUJIN ZHANG

ABSTRACT. In this paper, we establish various curvature formu-

lae for a two dimensional curve.

1. Arclength parametrization. Let « : [ — R? with |&| = 1. Then
(o, &) = 0.
We call
K(s) = |& (1)
the curvature of « at s.

2. Parametrization. Assume a curve C' C R? is given parametri-

cally as

And thus
dt dt
dt ds
N SIS e o\ iy
| ‘(x,y)\/x + 97— (@9) o
Vi + 2 % + g2

Key words and phrases. curvature, curve, arc length, polar coordinate, level set.

21



22 ZUJIN ZHANG
(&, ) (&% + 9°) — (&, §) (& + )
(42 +§2)°
(9 (9 — i) . & (45 — §i))
(42 +4?)°

9

iy —

= 7 I 2
(#2 + 92)* ?

3. Polar coordinates. Let the curve C be given in polar coordinates

as
p=p), a<d<b
Then
1 . . .
t:ﬁ(,000519—p81n19,psmz9+pcos19),
PP+ p
n — dt dv
T ds
1
= W [(ﬁcosﬂ—2psim9—pcosq?,ﬁsinﬁ—i—Qp’cosﬁ—psim?)-\/p2+,0'2
PP+ p
+(p'cosﬁ—psinﬁ,psinﬁ—l—pcosﬂ)-M :
VRt
VIO + 82 (5= p) = (pp+ 99 3 + (6% + §2) - 2 — (pp+ i) o
K =
(7 + )’
Vo2 (0 = 20% — 020 + (2 (0 — 20° — ?)°

(5 + )
pp = 2p° = p°|
(p?+ )"
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4. Level sets. Suppose at last the curve C'is given by the level set of

a function v : R> — R as

for some C' € R, and s is the arc length.

Then
Du-a&a =0, Du//é;
D*u (¢, &) + Du - é = 0;
1 2
2 2 .
kKW = — |Du(o, o
1 Du  Du \|?
= —  |Au— D%u (—, _)
| Dul” |Dul” [Dul
(The trace is an invariant of a matrix)
1
- 1 HDU|2AU—DQU(Du7Du) 2;
| Dul
1 9 )
" TP || Dul? Au — D*u (Du, Du)
1
— |DU|2 |<u3:1 + U?gz) (Umm + Umm) - ( iluml’l + 2um1um2umlx2 —+ Uzzugmm)‘
1 5 )
- ’DU‘2 |uz2uz1xl = 20Uy Uy Uiy 25 + Ugy Uzoaq | 5

div Vu - [Du|* — D?*u (Du, Du)
| Dul?

. Du
- ‘d” (|Du|)"

) Du 1
div (M) ‘ N |D 2 |U§2Ux1x1 - 2ux1ux2ux1$2 + ui1u$2$2’ ) (3)
ul

In conclusion,

K =
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DIRICHLET PRINCIPLE OF HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. We define harmonic maps as the critical point of Dirich-

let energy functional. This is [1, 1.1].

Let

1. (M", g) be a Riemanninan manifold with or without boundary;
2. (N', h) be a compact Riemanninan manifold without boundary

(closed).

The we may define the Dirichlet energy functional

E(u)zfe(u)dvg,
M

where e(u) is the Dirichlet energy density function, the expression

of which in local coordinates (U, x*), (V, u') is

L L o o
e(u) = > |Vul, = 28 () j(u(x) o O

Definition 1. A map u € C*(M, N) is a harmonic map if it is a critical
point of the Dirichlet energy functional E.
Proposition 2. A map u € C*(M; N) is a harmonic map iff u satisfies

. . out Ou* ]
Agul + gaﬁr;k(u)éa—zﬁ =0,inM, 1<i<l

Here

Key words and phrases. harmonic map, Dirichlet principle.
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1. A, is the Laplace-Beltrami operator on (M, g) given by

1 0

2. and I is the Christoffel symbol of the metric h on N given by

, 1.

Proof. 1. Let U Cc M be any coordinate chart and ¢ € C3(U; R)).

Then we have
d 1 : , . ,
= — — abp.. i i J 7
0 = dtl,:() [2 f];]g hij (u + tp) (ua + tgoa) (uﬁ + tgaB) \/§dx]
1 . o
= 5 f & hijr(w)pr ), \gdx + f 8 hij(wyuy ey +gdx.
2Ju M

2. Direct computations show

fM Agud'hij(u)p’dv, = fM %(\@gaﬁ %)hy(u)soﬂx
= - fM V28 (e’ + hij(uyp]) dx
= _% fM Va8 g (i + hui = hige) () dx
- fM QT ()i g dv,.
This implies that

A’ + g (udguy; = 0, ¥V 1 < i < L.
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INSTRINSIC VIEW OF HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. We see harmonic maps in an intrinsic point of view.

This is [3, 1.2].

Viewing
.0 ou 0
du=du'— = —— @ dx"
" " oul  Ox® ou' ®
we may write
ou' Hu/

e(u) = 8" hij(u)7— 5 {du. dit)r- Ty ;

ox* 9P

and noticing

a 0 ou Ou R
7] A By (CLANCON RSN
“ (axa’axﬁ) (Gx“’(?xﬁ) Sl

we shall further see
L.
e(u) = =try (u'h).
2
Proposition 1. [1, 2] u € C*(M; N) is a harmonic map iff u satisfies
T(u) = try (Vdu) = 0, in M.
Here V is the covariant derivative on T*M ® u*TN.
Remark 2. Component-wise, t(u) = 0 is equivalent to
k o
™) = “B[ (FM) (FN)“(u)u;ué] =0, inM, 1<k<l.
ij
Key words and phrases. harmonic map, intrinsic geometry.
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Vaodu = Va(ai@)dx)
.5 ou!

aﬁaa ® dx” +(FN) (u)uﬂmébdx —(I"M)yuf,%@dxy

= [uéﬁ—(FM)a u +(FN) (u)uf]aitxdx

tre (Vdu) = g® [u;ﬁ — (FM) u + (FN) (w)u, ]
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EXTRINSIC VIEW OF HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. We see harmonic maps in an extrinsic point of view.

Thisis [1, 1.3].

By the isometric embedding theorem of Nash [2], we may assume
(N'.h) > R,
for some L > 1. Then
CA(M;N) = {u = (u',- u*) € CA(M; R"); (M) c N},
and
1 aB, i i
e(u) = Eg Uy Ug.

Since N is a closed submanifold of RY, we can construct the nearest

point projection map
IIy: Ns > N
1. where
Ny ={y e RY do.N) = infly - 2] < 3}
2. for y € N;, IIy(y) € N is such that
ly =yl = d(y, N);

Key words and phrases. harmonic map, extrinsic geometry.
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3. and Ily is smooth, the gradient of which,
P(y) = VIIy(y) : R* > T,N

is an orthogonal projection; the Hessian of which, induces the

second fundamental form of N ¢ R%:
Ay)=VPy): T,N x T,N — (1,N)”
v oW o X HessTIyv, wyvi(y),

where {v;(y)}%,,, is a local orthonormal frame of the normal bun-
dle (T,N) .

Now, we have

Proposition 1. u € C*(M; N) is a harmonic map iff u satisfies

Aqu L T,N.

Proof. For ¢ € C5(M; R"), we have

<
dt t=0

= 2 f (Vu, V (P(u)p)) dv,
M
- 22 fM (Agu., Pu)p) dv,

) fM (P(u) (Agu) . @) dv.

0 = f IVITy (u + tp)|* dv,
M

Remark 2. Notice that
Agu L T,N
is equivalent to the PDE :

Aqu + A(u) (Vu,Vu) = 0, in M.
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In fact, we may write

L
Agu = > Alx)vi(u),

i=l+1

with

A = <Agu,v,-(u)>

div o (Vu - vi(u)) — Vu - V (vi(u))

—(Vv) () (Vu, Vu)

= —A)(Vu,Vu).

Example 3. Let
(a) M = T" be the n-dimensional flat torus;
(b) and N = S* ¢ R*! be the unit sphere.
Then u € CX(T", S*) is a harmonic map iff

Au+ |VuPu=0, inT"
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A FEW FACTS ABOUT HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. We state some basic facts about the harmonic maps.

Thisis [1, 1.5].

Proposition 1. Let

1. @ : M — M a C*-diffeomorphism;
2. and u € C*(M; N) is a harmonic map with respect to (M, g).

Then
uo @ e C*(M;N) is a harmonic map with respect to (M, *g).

Proof. For v € C*(M; N), we have

1 1
3 fM |Vv|§dvg=z fM IV (v 0 @D)[gey vy

Proposition 2. Let

1. (M, g1) be a Riemann surface;
2. @:(M,g) — (M, g,) be a conformal map;
3. and u € C*(M; N) is a harmonic map with respect to (M, g,).

Then
uo @ e C*(M;N) is a harmonic map with respect to (M, g,).

Key words and phrases. harmonic map, diffeomorphism, conformal geometry.
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Proof. By setting @*g, = e*g,, we have

E(vod,g))

lf trg, (v o @) h)dvy,
2J0mu

1
> f T2 qrg, (P (V') e‘z“’dv@g2 (n=dimM =?2)
M

1 B 1
5 f tr(ﬁ*gz (QD* (V*h)) dV@*gz ((CA) 1 = —A 1)
M C

1

- f trg, (V'h) dv,,
2 Ju

E(V,g2)7

for all v € C*(M; N). O

Remark 3. 1. Harmonic maps from S' to N correspond to closed

geodesic in N.

2. The set of harmonic maps from a Riemannian surface M depends only

on the conformal structure of M.

3. Let Id : (M,g) — (M, g) be the identity map. then Id is a harmonic

map.

Proof. Since u(x) = Id(x) = x, we have

™ (u)

g” [ufw - (F M )Zﬁ uf; + (F N)Z. (M)uflu[{,]

&0~ (1)), 6 + (), 8.9}

= 0.

O

4. For n = dim M = 2, any conformal map @ : (M, g,) — (M, g,) is a

harmonic map.

Proof.

(M. g1)) S (M.g2) > (M. g,).
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BOCHNER IDENTITY FOR HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. Considered in this paper is one of the most important

formulas for a harmonic map.

Theorem 1. If u € C*(M; N) is a harmonic map, then in a local coordi-

nate system, there holds
Age(u) = \Vdul* + R%uauﬁ — Rfjl.kl(u)u" uéugué

a

Proof. Fix an xy € M, let (x,) be a normal coordinate system around

Xo, then
Ace) = O (tar upa)
= |”aﬁ|2+<”m”ﬁmﬁ>
= ] + (s Rt + g
= Jutag|” + Ropttatts + (10 (Agut) )
g = [P (o) + ‘A(u) (1t uﬁ)‘2

IVdul® + |AG) gy up)|

(ttar (Agut) )

- <I/ta,, (A(M) (VI/{, Vu))a'>

(Agu, A(w) (Vu, Vu))

—(A(w)(Vu, Vu), A(u)(Vu, Vu))

Key words and phrases. harmonic map, Bochner identity.
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= = (Ao, a), AW) (5, 1p))
Thus
Age(u) = |Vdul* + R%uauﬁ - Rﬁkl(u)ugu;guﬁué,
by Gauss-Kodazzi equations. m

Proposition 2. Let
1. (M, g) be a closed manifold with Ric > 0;
2. the sectional curvature of N, KN < 0.
Then
1. any harmonic map u € C*(M; N) is totally geodesic.

2. If RicM™ > 0 at some point in M, then u is constant.

3. If KN <0, then either u is constant or u(M) lies in a closed geodesic.

Proof. 1.
Age(u) >0
= e(u) is subharmonic in M
= e(u) is constant (maximum principle).
2.
Ric™(x0) > 0
= Vu(xg) =0
= eu)=0
= uis constant.
3.

KN <0
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= the linear span of {ul, cee u"} is at most of one dimension

is a point _
= u(M) in N.
or lies in a closed geodesic
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SECOND VARIATION FORMULA OF HARMONIC MAPS
ZUJIN ZHANG

ABSTRACT. The second variation formulae of harmonic maps into

spheres and general target manifolds are derived. This is [1, 1.6].

Considered in this paper is the second variation formulae for har-

monic maps into spheres and general target manifolds.

Proposition 1. Let

1. u € C*(M;S*) is a harmonic map;

2. ¢ € C5(M; R*Y).

Then
1 u+ip 2
- V d — V 2_V 2A2d ’
2fM (|M+t<p|)‘ Vg] fM(I ol = [Vul’ |pF) dv,

d2
where $ = ¢ — (@, u) u is the tangent component of ¢.

ﬁ't:O

Proof. 1. For ¢ € C5(M; R**') and small 7 € R, by denoting

u+tp
U= —m"—",
lu + to|

we have

(u+tp,p)
du, @lu+ 1| = (u+ 1) 0

dt |t + t<,0|2

@lu+ tol* — (u+ 1) (u + tp, )
|t + t<,0|3

b

du,

— =9 —{u, = ;
Qo ¥ (U, ) =@

Key words and phrases. harmonic map, second variation formula.
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d*u, 1 5
T P |26 (u+ 10, 0) — 0 u + 10, ) — (u + 1) ||
~3/2
[0l + 1 = (u + 1) (e + 160, 0)| — 2 + 19, ),
lu + t]
d*u, )
—ale0 = 20€.0) — 9 @) —ulel” =3 u.p) [¢ — ulu, ¢)]

3 (u, @) u— gl u =2 (u, ) .

o
| {ree (e

Vol — (A, 3 () u = 0P u = 2, ) )] dv,

2. Direct computations show

I/t+[

du,
VI—
(dl |IO

Il
TS S

|
VP + Vul? (3¢, @) — P = 2 (. 0)?)| v,

Vel = Vul (1 = (. 0)?)| dv,

{
|
|
|
|

VP — IVul 16| dv,.

Proposition 2. Let

1. u € C*(M; N) be a harmonic map;
2. u, € C*([0,1] X M;N) be a family of smooth variations of u, i.e.

d2 1 2 2 N
gﬁhm[EtL)Vu¢#h4::J;Dvwg—tQ<R (v, Vu) v, Vu) | dv,



SECOND VARIATION FORMULA OF HARMONIC MAPS
where

d
v ="l € C(M:u'TN).
In particular,

d2
KN <0 = uis stable: —|,—

1
- [5 M|vu,|§dvg]zo.

Proof. 1. Inlocal coordinates
d ou au, .
— Vu *TN VM,TN .
dt i 0 oxe & oxe firaa Y
d? ou, ou
— Vu TNvu TN 4
4G g Vi g0
0
V2 TNVu TN, RN (_” v)v
on‘ a.xa/
2. Direct computations show

d? 1
ﬁh:o [Ef |Vuz|éz, dVg]
d2
= |Vv| +<Vu V(d2 |i= )>]dvg

f Vv +<§— eIy >+trg (R (Vu,v)v, w)] dv,
ML
f |VV| <Vu TN 77 Ou Vu TN >
ML
- L

e Oxe’ . —trg <RN (v, Vu)v, Vu)] dv,

|Vv| —tr RN(v Vu)v, Vu)|dv
8 8"
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AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH DIRICHLET BOUNDARY

CONDITIONS

ZUJIN ZHANG

ABSTRACT. In this paper, we show the existence of a solution to the stationary

compressible Navier-Stokes equations under Dirichlet boundary conditions. This

is [1, Page 121], and is delivered on Dec. 4th, 2010.

pp. 43-48

Theorem 1. (Existence/Dirichlet BVP). Let vy = 5/3, N = 3, p € (1,2). Then A a

continuum C (c LinWh 1<qg< 2) of solutions of

div (ou) = 0, ,
in Q
div (pu ® u) — uAu — EVdiv u + aVp? = pf + g,
such that

1. Cn{(p,u,M); 0 < M <R} is bounded in L* x H), ¥ R > 0;

2. (0,up) € C where uy satisfies
—uAuy — EVdiv ug = g, in Q,
up =0, on 0Q;

3.VM>0,3 (p,u)eCsuchthatfp”:M.

Q

Proof. Step I: Bounds for solution of the approximate problems:

ap” +div (pu) = agg;,
apPu + div (pu @ u) — uAu — EVdiv u + aVp’ = pf + g,

1. fp”:M;
Q

in Q.

()

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, Dirichlet

boundary value problem.
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2. lullgr < C(l + ||p||6/5), llll, < C(l + ||u||3/2) which follows form the energy iden-

tity:
M |uf® uf  aay 1
B e QLI Y — ho?
‘ﬁ{%ﬁ|2 ap’ S+ e =)
+;1|Du|2+§|divu|2—pu-f—u~g}:0,

3. llpll, < C, lullmn < C.

Direct computations show

py—fpy +IQI”’J[;07
Q r Q

CIIVo|ly-1, + C + C ||u||5/2

IA

o711,

IA

IA

C+C|pluP|, +Clul)?

IA

C + Cllpll,,

ﬂl A+ Clull?

IA

C+CWMIMk+CWW”ﬁhW=%7—D=2)
Thus

llolly < € (1 + llolly IVal} + 11l

ol < € (1 +llolles) -

To proceed further, we split into two cases.
(a) When 6/5 < p <2, llpllgs < 1917/ |jpll,, < C.
(b) Incase 1 < p < 6/5, llpllg;s < lloll, " lloll; with

S_1-9 8 _ o 6-5p |1
6 p 2 _3(2p)3'

Step II: The second approximation scheme and continuum.

We approximate (3) further by

ap? + div (ou) — eAp = IQI’

G5+ 3pu- Vu+apPs + 5div (ou ® u) in Q,

(4)
—uAu — EVdAiv u + aVp” + 6Vp* = pf + g,

%:O’ u =0, on 0L,
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where ¢,6 € (0, 1]. Here we add viscosity and artificial pressure.

We shall next establish the existence of a continuum (parameterized by M) of
solutions of (4), and by taking & — 0., then § — 0,, then & — 0., in the next step,
to conclude the proof of Theorem 1.

Before invoking Leray-Schauder’s fixed point theorem to show such a solution
continuum, we first establish some a priori estimates, which shall be useful later
on.

1. fp”:M.
Q

2. Energy identity:
1
f {%h |ul* + 5a,ol’ lul? + u |Dul + &|div ul* + eayp” % |Vpl* + 26 |Vpl?
Q

a9y (pV“’_] - hpy_l) + 26a (,oer1 - hp) = f lou-f+u-g}.
y-1 Q
3. llpll; < C, llully < C, independent of € € (0, 1].

Notice that the improved regularity of p comes from the artificial pressure:

>

-2

, 22— 3.

We now show the existence of a solution continuum C3° to (4) by invoking the

following

Theorem 2. (Leray-Schauder). Let X be a Banach space, and T : X x [0,1] — X be

compact. Assume

1. T(x,0) =x,Yx e X;
2.AM>0, st.x=T(x,0), o €[0,1] = ||x]| < M.

Then T(-, 1) has a fixed point.

The Banach space we live is chosen to be X = Whee x (Wl"”)N; and [0, 1] is rescaled

to be [0, M]. The compact mapping is defined as

T(M7 @, V) = (p’ l/t) - (07 I/l()) »
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where (p, u) satisfy

- _aM

ap? +div (pv) — eAp = i inQ.
T—éf%+pv-Vv+%sApv—,uAu—§VdiVu+an7+6Vp2:pf+g,

¥ -0, u=0, on Q.

an =
Notice that the compactness follows from the fact that N << W24 s W, and
the uniform bounds in Condition 2 of Theorem 2 follows readily from the classical
elliptic estimates in W>9,1 < g < co and a bootstrap argument.
Step III: Passage to limits.

Before passing to limit ¢ — 0., then 6 — 0., then @ — 0,, we recall

Lemma 3. ([1, Appendix D]). Let (E,d) be a complete metric space and {C,} be a
sequence of continua (closed, connected subsets) in E X [0, o) with

(A1) C, is unbounded in E X R;

(A2) Axy € E, s.t.(x9,0) € Cp;

(A3) C, N (E X [0,R]) C Kg, Kg compactin E X R, ¥ R > 0; or equivalently

(A3’) C, N (E N[0, R]) is compact:

(X4, t,) € Cy, t, bounded = x, relatively compact in E.
Then the limit continuum
C={(x,t) € Ex[0,00); A {m}, Ax,, = x, Aty, = 1, (X, 1) € Cp )}

satisfies

(C1) C is unbounded in E X R:
Vt>0,dx€E, st.(x,1) e C,

(C2) (x9,0) € C;
(C3)CN(EX[0,R))cKg, YR >R>0.

We now commence our passage to limits, £ — 0., then 6 — 0,, then a — 0., by

invoking Lemma 3 to construct

Co —,C° —5Cy —4 C (this C being what we pursue).
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1. ¢ - 0,, for a,6 € (0, 1] fixed.
The underlying E = L% x (WWZ)N, 1<q <3,1<q,<2.
(A1) holds since f pl =M.
(A2) holds since (Og,2 ug) € C2%.
(A3)LetO <&, = 0,0 <M, = M, (p,, u,) € C3*". We show the compactness
of (o,,u,) in E as

pp—=p>0inL%u, = uin H',u, » uin L(1 < p < 6), u, - u a.e.;

\Y {div Uy — ﬁpiﬁ - /%fp%} + -zeurl curl u

= (pu-V)u+--- bounded in (L3-L6)~L2C71(l

0
=V {div y — —— 3 — p,zl} , Veurl u, bounded in H'
H+& H+&
= div u, - ——p3 - Lpz compact in L’ (1 <s< g)'curl u, compactin L'(1 < r <2)
p+&E" p+éET 2 B

= p, = pin LY(1 < g, < 3)

= div u,, curl ,, and thus Du, — div u, curl u, Duin L”(1 < g, < 2), respectively.

Thus we have a continuum C? of solutions of
ap? + div (ou) = X,
apPu + div (pu ® u) — uAu — EVAiv u +aVp®? + 6Vp? = pf + g

satisfying (C1), (C2), (C3) in Lemma 3 and
C’ N {(p,u,M); 0 < M < R} isbounded in L* x H) x R, ¥V R > 0,

and the energy inequality

1
f gh lul* + —ap” Jul? + u |Dul* + &|div u|2 + aay (p7+p—1 _ hpy—l) 4250 (pp+1 _ hp)

aM

Sf{pu~f+u~g}, v (p,u,M)eCi (h:—).
Q Q|

2. 6 - 0,, fora € (0, 1] fixed.
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The space we live now is £ = L7 X (Wl’q )N, 1 < g < 2. And the crucial key
point is the compact assertion (A3’), which is proved as

\Y {div U, — lffpf/ 3} + yiﬂfcurl curl u,

= (Outy - V) U, + - - - bounded in (L2 : L6) -L? ¢ HO (by Step I)

ptE
curl u, compactin L'(1 < r < 2)

6/7  6/5

div u, — 0. compactin L*(1 < s < & 3 3
= P P ( 5) (—1 )

= pp—opinli(l1<g<?2)
= div u,, curl ,, and thus Du, compact in L/(1 < g < 2).
Thus we find a continuum of solutions of (3) satisfying (C1), (C2), (C3) and

CoN{(p,u,M); 0 <M <R}

is bounded in L™ *P*23 x HI x R, ¥ R > 0,

and the energy inequality

f ShluP + SpP P + wDuf + E1div uf + = (077 + o)
012 2 y_1

Sf{pu-f+u-g}, Y (o,u,M) € C, (h:%).
Q 1|

3. @ — 0, finally.
The space we work in now is E = L? X (Wl”’ )N, 1 < p < 2. The details
being exactly the same as the passage to limit 6 — 0,. And we conclude the

existence of such a continuum C of solutions of (1) stated in Theorem 1.

REFERENCES
[1] PL. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models. The Claren-

don Press, Oxford University Press, New York, 1998.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA

E-mail address: uia.china@gmail.com



Charleton University Mathematics Journal Website: http://www.sciencenet.cn/u/zjzhang/
Volume 1, Number 13, December 2010 pp- 49-53

AN EXISTENCE THEOREM FOR STATIONARY COMPRESSIBLE
NAVIER-STOKES EQUATIONS UNDER MODIFIED DIRICHLET
BOUNDARY CONDITIONS

ZUJIN ZHANG

ABSTRACT. Four types of boundary conditions are considered for the stationary
compressible Navier-Stokes equations. This is [1, Page 121], and is delivered on

Dec. 11th, 2010.

1. Introduction. In this short paper, we consider the following stationary incom-

pressible Navier-Stokes equations:

div (ou) =0 }
in Q, (1)
div (ou @ u) — uAu — EVdivu + V(ap?’) = pf + g

under boundary condition
(BC1) u-n =0on dQ; or

curlu =0(N =2)
(BC2) on 0Q; or
curluxn=0(N =3)

(BC3) (d - n + Au) X n = 0 on 9Q, with

_ Vu+ (Vu)'
B 2

d is the deformation tensor,

A is a positive-definite matrix,

(Ox + up) - n(x) # 0 on 99, ¥ antisymmetric N x N matrix Q and u, € RY, unless Q = 0,u, = 0,

E>

u; or

Key words and phrases. existence of a solution, compressible Navier-Stokes equations, modified

Dirichlet boundary value problem.
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ou .
(BC4) (8_ + Au) x n =0 on dQ, with
n

A is a nonpositive-definite (not necessarily symmetric) matrix,

u
> ——,
¢ N

2. Existence Result. The main result now reads

Theorem 1. Let N =2 o0r N =3,y > 0,and p = p(y,N) is large enough. Then there
exists a continuum C (c LixWh, 1<q< oo) of solutions of (1) under (BC1), or (BC2),
or (BC3), or (BC4), satisfying

1. (0,uy) € C, with uy solves

—uAuy — EVdiv uy = 0, in Q,
uy satisfies (BC1), or (BC2), or (BC3), or (BC4).

2. ¥ M €[0,00),3 (p,u) € C, such that fpp = M.

Proof. 1. We approximate (1) by

div (ou) =0, p 20, inQ, [ p” =M,
div (ou ® u) — uAu — EVdiv u + V (ap? + ap?) = pf + g, in Q, (2)
u satisfies (BC1), or (BC2), or (BC3), or (BC4),

with @ € (0, 1], and p > 3 is large enough.
2. Notice that the proof of
(a) the existence of a solution continuum C, to (2); and
(b) the passage to limit C, —, C;
are exactly the same as in [2].

3. Thus we need only to show a prior that

pbddin L, ubdd in W9,
(o,u, M) € C, . .
=4 divu - -Lp” — 2 p’ bdd in W', uniformly in « € (0,1].
0<M<R<o pret e
curl ubdd in W4, V 1 < ¢ < oo,
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For this purpose, we shall consider N = 3 (N = 2 being similar and simple).
Our strategy is the usual (by now) bootstrap argument involving the Hodge
decomposition.

Write (2), in the form

S 1’}+ A curl curl u = (ou - Vyu +--- . 3
ﬂ+§p ﬂ+§p H+é (v )

We use (3) to bootstrap the regularity of u, and then that of p by (2),. Take first

V{div u—

p €Ll Vue L% with py = p, go = 2, we have

1 1 1 1 1
V{divu— a o’ — @ p”},Dcurlu eL”',—:—+(———)+—;
u+é€ u+é .

1 1 1 1 2 2
Du, ap” + ap? € L', — = — ——-=—+ — — = (by (4)).
p v qi+1 ri 3 pioq 3(}’())
Notice that p;,; = p; = p, since we want to get the uniform bounds (indepen-

dent of @). Thus

1 1 2 2 .1 (1 2 :
= —+———:2’”—+(———)(1+2+--~+2’)
qi+1 pi q 3 q0 p 3
(1 2\ : 2 1 2 1
= 2 4[=-Z|]@" - =22 -=|+1|+Z-—
p 3 3.p 3.p

1
< =, if i large.
5 ifilarg
Hence Du € L%+>3 = y € L. From then on, we may bootstrap as
1 1 1 1 1 1 1 1 1 1
(L ) e
g1 \P 4i) 3 q \p 3] 2 \p 3
Consequently, Du € L?, 1 < g < oo, and
Vap” + ap’) =--- by (2), = V(ap” + ap”) € L7, 1 < g < 0.
m]

Remark 2. One may use many variants for the approximation of the stationary problem

(1), other than (2), or those in [2].

Remark 3. As we know, for (1),
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1. when M = 0, there exists an unique solution u of (1);
2. however, for M > 0 small, we do not have uniqueness of solutions of (1), see [1,

Remark 6.16, Page 117].

Thus, the existence result for small M > 0 could not be obtained by invoking (variants of)

implicit function theorem (to yield an unique branch of solutions).
3. A technical Lemma.

Lemma 4. Let

1. 0<pell(Q),1 <p<oo

2.ue WH(Q), 1 <g<ocowithu-n=0onoQ;
1 1

3. —+—-<1;and
po q .

4. div (pu) = 0in Q.

Then

le(o)ll, < ||div u— @(p)||, ¥ ¢ € C([0, 00)). (4)

Proof. We just prove (4) formally, with the verification being direct consequence of

regularizations.
div (ou) =0
= div [Bou] = u- VB() + Bo)div u = uVp(p) + [% [-u- Vp] = [ﬁ’(p) - ’%] u-Vp
B(o)

= - Volp) = div [Blpu] for ¢'(p) = B(p) - ==
(1B (1) = Bt) = 19’ (1) = |Bls) = B(e)| B (5) - Bls) = '/ (e"))

= o:fgdiv [ﬁ(p)u]:Lu-go(p):—Lgo(p)divu

= LIQD(P)I” = fQ[QD(,D) — div u] lp()I"* (p) < llp(p) — div ull, llpo)Il ™
= e, < llelp) — div ull,.
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1. Introduction. In this paper, we consider the following stationary compressible

Navier-Stokes equations:
div (ou) =0, p =0,
div (ou ® u) — uAu — £Vdiv u + aVp” = pf + g,
in
1. either (whole space case) Q = R";

2. (exterior case) Q = w°, with w a bounded smooth connected domain in R"; or

3. (tube case) Q = R x w, with w a bounded smooth connected domain in RV~!.

We couple (1) with physical relevant boundary conditions (that is, the flow is

constant at infinity),

1. in the whole space case,
p—p”, u—u>, as|x— oo

2. in the exterior case,

(o9)

p—p7, u—-u”, as x| - oo,
ulpo = 0;

3. in the tube case,
p—py, u—0, asx — too.

Notice that

1. If we insist the behavior of p, u at infinity to be zero, we would rather obtain
the trivial solution, see [1, Remark 6.2].

2. If we insist u® # 0, then the problem is closed related to the “inflow” open
problem, see Sect. 4. We shall investigate this issue in a forthcoming paper.

3. If we insist p? # p® in the tube case, we may construct however a non-

existence result. In fact, assuming

0°(Q), Du € LX(Q), u e L[> N L2(Q),

g =0, f =0or Vo with @ smooth, vanishing fast enough as |x;| — oo,
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and taking the inner product of (1), with u in L*((-R,R) X w), 0 < R < oo, we

find
1 x1=R (9 x1=R
fdx’ [—p lul* + ﬂp“y] - [,uu L, Eudiv u]
w 2 Y- 1 x1=—R 8'x1 x1=—R
R
+ f f dx' {u|Duf* + £|div ul*} = 0.
-R Jow

Sending R — oo, we deduce
Py <pZ.

Z In view of the aforementioned considerations, we shall concentrate ourselves

investigating (1) under boundary conditions stated above with

p= > 0or (pF =p= =p~ >0),

u® =0.

We end this introduction by outlining the rest of this paper. In Sect. 2, we consider
(1) in Q = RM. Three existence results are established. Section 3 is devoted to
extending the existence results in Sect. 2 to the exterior or tube cases. And finally,

an “inflow” open problem is polished in Sect. 4.

2. Stationary compressible Navier-Stokes equations in the whole space. De-

tailed in this section are various existence results for the problem

div (ou) =0, p > 0, in RN,
div (ou ® u) — uAu — éVdiv u+aVp?’ = pf +g, in RV, (2)
p—p°>0,u—0, as |x| — oo.

Here we assume
1. g € L' n L™(RY) for simplicity;
2. N > 3 for convenience ( to ensure the decay of Green’s function for second-

order elliptic operators, see Remark 3).
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2.1. (2) with general force f.
N . )
Theorem 1. Let N > 3, y > max {3, 5}' Then there exists a solution (p,u) of (2) such
that

| ey, if N =3,
p—p= €

Vu e L2(RY), ue Lv:(RY).
2N LFO"D(RN), ifN > 4

Remark 2. If N = 3, y > 3, we have p € L*(R"), and may bootstrap using the Hodge

decomposition the regularity of

div u —

a
oY, curlu
&

to be in
Wi = € WLARY: sup [+ IDl <oof, V1<q <o
’ yeRN Jy+B;

and Du € BMO(RM).

Remark 3. The behavior at infinity of (p,u) is not clear. However, the best possible
decay at infinity is:
C

C C
x)—p~| < , |lux)| £ ——, |Du(x)| < .
() =71 S e WS i IDUI S o

<

In fact,
1. ifwe take f = V& € L' N L™(RN), ® € L1 (R"), g =0, u = 0, then

y—1
ay
2.ifp=p=,f=0geCy(RY), divg =0, then u solves

avp? = pVd = p* 1 — (p=) ! = b,

—ulAu — EVdiv u = g,
thus u decays at most like =, Du decays at most like —-.
. . 1 N
Hence, it is natural to conjecture that (— € LZ""’)

|

Noy-1
N-1

p—p® e LV (RY), ueLv>>R"), DueLFT(R").
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Proof of Theorem 1. Our proof involves the invading domain and vanishing
damping techniques, and is divided into five steps.

Step I: Formal a priori estimates.

First, multiplying (2), by u, we obtain the usual local energy identity (by (2),):

Juf? }

—/JAT + | Dul? - &div (udiv u) + &|divul* = pu- f+u-g, in R".

. |M|2 ay coyy—1
div {u[pT + — (p’—(p ) p)

Integrating then over R" (taking into account of (2);), we deduce
| Jwipuk + exgiv ] = [ fou-su-g) ©)
RV RV
Using Sobolev inequality and assumptions of f, g, we have
lall 2+ 1Dl < C (1 + llolluosy)

where g is specified later on.

Second, taking the divergence of (2),, and using (2);, we see

ap” = a(p®) + (u+ & div u+ RiR; (pu;) - (=2 div (of +g), in RY; (4)
o llsz < C 1+ 1Dully + ol Py + lollosq | - )
y N+2
with
1. g32<oo(LqCLq‘+qu, G <9< q);
4
1 N-2
2. —+ <2
9 N ¢
ol .,e < [lohf] . (i) L+ L2 C LT+ L2, g1 < p1 < p2 < q2)
q

2
< Mlolloorg llutll 2y -

2
Recalling the bounds of solutions to the discretized stationary compressible Navier-

Stokes equations (see [1, Theorem 6.1]), we set

2y, if N =3,
Ny-1), N4
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Combining (3) with (5), we gather

2y
oIl g < C(l + ||p||£iq)~

Since y > 3, we have consequently the following a priori bounds on
1. pin L® + L9, u in L¥2, Du in L?;

2. when N = 3,by (4), p” — () in L* + L*:
pluP e (L°+ 1913 =13+ LV&+3) c 3 4 12

using the bootstrap argument involving Hodge decomposition (see [1, Theo-
rem 6.3 and its proof on Page 71]), p in L*;
thus p — p™ in (L + L¥) 0 L™ = L% + L™;

e Gl R PRI Il R P
>C |p _Poo| : 1|p—p°°|$§ = (p _poo) ' 1|p—p°°|£‘§ € L2 + L3,
p—p® €L+ LY & Lemma 5 = (E=p") 1 _epe eL!,
2
and by invoking Lemma 4 just before Step 2;
y—1
Y

3. when N > 4, by (4), p” — (0™) in L? + L¥27 :

pluf € (L® + L9) - L¥= = L¥2 + L¥25

thus p — p* in (L1 + Lz) N (L%(V‘” + L°°) = [> N L¥29D by the same reasoning
as the case when N = 3, and by using Lemma 4 just below.

We now state and prove some technical lemmas we have utilized.

Lemma4. 1. letl<a<b<oo,1<c<oo. Then
L°NLY, ifc<a,
(L+ L) nLe =1 Ie, ifa<c<b, (7)
"N, ifc>b.
2. Let1<a<b<oo,<c<d< oo Then

(L”+L”)D(L"+Ld): oL, fhze (8)
L+ LY ifa<c<d<b.
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Proof. 1. Claim. If f € L* + L’, then
0<g, €L’ 0<g, e’ st |fl=g+g.
In fact,if f = fi + f» € L* + L”, then
If1 = min{lf], 1Al} + (f1 = 1AD.

with 0 <min {|f],|fil} < |fil € L%, 0 < (If1 = |iD), < |fol € L.
2. We now prove (7). If f € (L” + Lb) N L¢, then

O<gL&<|fl2@el'nl, gel’nL"

(@) Ifc<a,theng, e L"NLS, |fl=g1+g € L*NL".

(b) Ifc>b, theng, € L’ NL, |fl=g1 +g € L’ N L.

(©) Ifa<c<b, then feL = |fl=|f] Ly +1f]- Lyps € L9+ L.
3. We next show (8). If f € (L” + Lb) N (LC + Ld), then

0<gn@=lfl=gng el +L =g el n(L+ L"), gge L’ n(L +L7).

(@) Ifb<c,theng e L*NLCL’NL:, g e l’NL, |fl=g1+g €Ll + L.
(b) fa<c<d<b,then L+ L4 c L*+ L.

Lemmab5. Let fel?+1L7, 1< p<q<oco. Then
flps €L, YO<t<oco. 9)
Proof. As the claim in the proof of Lemma 4 shows
A0<g €el?, 0<g el st |fl=g +g.

Hence
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< fgl : 1g12§ + fgl : 1g22§ + ng : 1g|2§ + ng : 1g22§

=Lh+L+15+14. (10)

The terms Iy, I, are treated similarly as

2\

I = fgl . 1g125 < (;) fg’f,
2\

i fonaeff

Meanwhile, I, I; are dominated by Holder inequality as

1
p t
Iz:fgl'lgzzés(fgf) '{8225}
1
I: gl r < gqq.{g>£}
3 2 glzi— 2 1—2

Gathering the last four displayed inequalities, (10) becomes

_g(p=1)

2
< llgill, [; leall,|

p-1
P

_ plg=D)

2
< llgll, [; leill,

N
=1

q(p=1) plg=1)

2\ 2\ 2 ’ 2 7
flfl Az < (;) fglf + (;) fg‘; +lgill, [; ||g2||q] +lIg2ll, [; ||g1||p] < oo,
i
Remark 6. If f € L? + L®, 1 < p < oo, then checking the proof above yields
£ Lo, € LY (11)

for example. We will use this fact later in Step IL.

Sept II: Approximate problems and uniform bounds independent of R € (0, ).

We now approximate (2) by

ap + div (pu) = ap™,p =0, in Bg,
apu + div (ou @ u) — uAu — EVdAiv u + aVp” = pf + g, in Bg, (12)
u=20, on 0By,

where a € (0, 1], R € (0, ). The existence of a solution pair (p, . us.r) Of (12) is well

known (see [1, Sect. 6.2]).
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We shall establish the uniform bounds of the solution independent of R € (0, o),
so that we may pass to limit R — oo in Step IIL
For convenience of notations, we omit the subscript @, R in the solution pair

(Pa.r> Ua.r) i this step.

1. Bounds depending on R € (0, co)—Energy-type.

p € L2.(Bg) N L (Bg), u€ Wl (Bg), Y1 < p<co, if N=3,
o € L¥20-D(By), if N = 4.

2. Bounds independent of R € (0, o).
f p =p" |Brl;
Bg

ay oo
f{ "W+ Sl + Dl + E1div af + (07 -7 )}sf tou f+u-gh:
BR BR

fB {P ,07 1,000} L {pV pV 1 oo+(p )7 (poo)y—lp}
B fB P =™y o -p™) (2 0)
_ fB (1 = ™} (o = p™) - (Lpeage + Loy

> V[f lo—p%F  1ycppe +f o’ 1p>2pm]
BR BR

p>20" = p—p2>L p = () > (1= 55)pr!
P2 =7 = () = (v - DE - p).E € (5.207) |
0<p<G=p~2p7—p22 () —p > (1-z5) (™)
f {pu 'f+ u g} = f[; {[(p_poo) ’ 1p§2p°° +poo ’ 1p§2pcx> tp- 1p>2p°°:|u 'f+ u g}
< [lto = 0) - Lpaps|| Ml 2, W12, + [l0™ - Voo Mol 2, 12, + [l - sz | el 2, 1171,
[Gs)a)
—+|z—-=|+-=
vy \2 NJ a

2y
2 2 2 Y =
ellDully + CIAR + CllAy +&llo Lpsape|[) + ClIALT :
+
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a @ : o0
f {Ep ul? + 2 pll + pIDul? + £ |div u|2} - f {lo=p"F - Lpopm + 97 1o} < C.
Br Br

Thus
u is bounded in H,(Bg),
plul*, (p7‘1 - (p“)V‘I) (p — p™) are bounded in L',

(0 = p°) - 1ycp=, p - 1,50y~ are bounded in L',

p=p-lpcp +p- 1~ is bounded in L™ + L.

3. Bounds independent of R € (0, co)—higher regularity.
(a) JC p’ is bounded in L*.
Br

forelfl -

(b) pisbounded in L™ + L*” when N = 3.

V(py—f py):pf+g—apu—div (pu @ u) + uAu+ évVdivu = VF + div (ou®u) + G
Bg

(FGLZ, G:apue(Lw+U)-L2er6:(L% +L2)m(u% +L6):LZmL%by(8)),
<C(1 +lou® ull,)

" — f P’
Br 2+6

< C(1+llazy + 1]l

1 1 1
(§:Z+E,y>3:>1Sa<3),

||P||y < C(l + ||p||oo+2y) (LZV + L67 +1>® = L27 + LDO),

co+2y

l1olloos2y < €.
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(c) p—p~isbounded in L> N L*, when N = 3.
f |p _pool2 = |P _pool2 ' 1ps2p°° + f |P _poo|2 : 1p>2p°° < (1 + f Py ' 1p>2p°°) < C’
BR BR BR BR

o - p™ = f lo = o™ 1y + f lo = ™17 1psape
Bgr Bgr Bgr

< c( o= PP Lyeye + f P 1p>2pm) < C (by (11)).
BR BR

(d) p is bounded in L® + L&D p — p™ is bounded in L* N L¥2%D, when

N =4.

< 00, if N =3,
(e) D {div u— -2 py} isbounded in H;, , with r
H+é :l+(%—l)+l, if N > 4;
q N 2
. a ) . . 00, if N =3,
div u - p? is compactin L} , with p <
+¢& . AL, ifN >4,

Step III: Passage to limit R — oo.
We show in this step

(pa,R» ua,R) —R (pm ua) 5

by invoking [1, Theorem 6.4,Page 81]. The key point is to ensure

1
f { (,—pg"}wv%—m, asn — oo,
RN

where ¢ is a cut-off function, ¢, = ¢ (—) This is in fact true since
n
p—p=el?

Thus sending R — oo in (12), we obtain a solution pair (p,, u,) of

ap +div (ou) = ap®, in RY,
apu + div (pu ® u) — uAu — EVdiv u +aVp? = pf + g, in RV, (13)
lu| — 0, as |x| — oo,

and the following energy inequality:

a [04 . (04 coNY— S
f {EP tal? + S ltal? + 11Dt + €11V ol + —= (07 = 1= (0™ ) (o0 = p >}
RN v—1
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Sf {paua'f+ua'g}-
RN

Step IV: Uniform bounds independent of a € (0, 1]

This is done exactly the same as Step I. We omit the subscript a in the solution

pair (p,, u,) in this step.

lall 2.+ 11Dully < C (1 + llpllucsy)

@ fR {lul* + plur’} ( plu )1/2( p|f|2)1/2+llullzllgllz
:(a fR {lul® + o lu })U C (1 +lollory)

ap’ = a(p™) + (u+ &) div u+ RR; (puiu;) — (A" (of + g) — a (-A)" div (pu)

= [lollsq < (1 + ||p||w+q)

1/2 1_1 1
allpll., < C (|| voul,) I, with & =1+ L
1_1_N=2 ZYINZ—Z_L .
I_1l_ oy o] 27N S50 T if N >4
y N 4 1 1 1 1 _ v . _
3ty T3 <3 3, ifN=3

lollesy < C. llull 2x < C, [|Dull, < C.,
o llull, < C.allpully,, < C, Ve lull, < C, ve||ypul, <

o 3, if N=3
=>p—-p boundedin L +L" |r=
2, ifN>4
(L1+L3)mL°°:L3mL°°, if N =3

= p — p~ bounded in
(L1 + LZ) N+ L®) = [2NLF710-D, if N> 4

Step V: Passage to limit @ — 0,.
We now send @ — 0, in the solution pair (p,, u,) of (13). Up to a subsequence,
we may assume
L*’nL®, if N=3,

po — pin L] , withp e
LNl if N >4,
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. 2N_ . p N . 2N_ 2
Uy = u, iNL¥2, uy - u, inLy (1< p< 5 withu € L¥2, Du e L*;

div u, — ?—fpy converges strongly and a.e. in L} (1 <p< 2) .
Y

Thus to invoke Theorem 6.4 in [1, Page 81] to see the strong convergence of p,, we
L’nL>, ifN=3,

—1
need to verify, by writing r = p — p?’ € , that
L’NLi, ifN >4,

f rlu-Ve,| = 0, asn — oo, (14)
RN

where ¢ is a cut-off function, ¢, = ¢ (—)
n

1. Verification of (14) when N > 4.

1/2 =2 1/N
N
[owsw=([ ([ )" ()
RN n<|x<2n n<|x|<2n n<|x|<2n

1/2
SC(f |”|2) Nlul|2v. — 0, asn — oo,
n<|x|<2n N=2

2. Verification of (14) when N = 3.

Noticing
1/3 : 1/2
f rlu- V| < (f |r|3) (f |u|6) (f ) ; (15)
RN n<|x|<2n n<|x|<6 n<|x|<2n
C 1 . o yeces
and — -n? = Cn?, we need to find another way to overcome this difficulty.
n
Recall from [1, Page 84],
1-0 a — _— ——ta
OSTE{ 7+9—p7-p9}p9 <div (ur).

Thus multiplying the above inequality by ¢,, we get from (15) that

., 1_
f {pre0 = p7 - pf} pf"’ '<ont,
By,

1
Taking 6 = 5 and noticing that

N a _. b fb _ fb o __o _
I8 fb’{'f{, fz = f<fer . 7 (0<1 U,Z<1),
=1 =0 (1) a b
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we have

1-o

p=p<prnn i

y(d-1) yT

R +1/27+1/2 1/21/2 = _'y < ')’+l/2 .1_/2 o+ VT = l
pr = pY P ppr=p p Y

2

¢, yI-1) _ 1 _ o , T
y+1/2 + y+1/2 T 1= 1/2 + 1/2

_ . — _
= {py+]/2_py.pl/2}pl/2 > pp? —p? - p'/2 :py(p_p]/Z ):pyr

— 1
= p'r < Cn?
By

< C(fuapenn P+,
LS|X|S2H rs C( nslxlsan r+ n<|x|<2n

7 = (| riri)

= : _ 2 1/2 1 3
L _ 00\Y . 4 . )
= C(n2 + (LSIXISZn p7 (p ) | ) (LSIXISZn 7‘) ”r”3
1 1
= rSC(1+n2)SCn2
n<|x|<2n
C C N
= riu-Ve,| < — rél—/z—>0,asn—>oo(uEL).
n<|x|<2n n n<|x|<2n n

2.2. (2) with small force f up to a gradient.

2.3. (2) with force f bounded by a normalization function.

3. Stationary compressible Navier-Stokes equations in an exterior domain or a

tube.

4. The "inflow” open problem.

5. Acknowledgements. Thank all the brothers in the discussion group, for their
patient suffering during my lectures. It is not easy to deliver all of [1, Sect. 6.8] in
just three lectures. And hence some parts of this paper are left blank.

Happy Christmas!
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1. (a) Let {zx},_, C (0,7), and define

n
1
n
k=1

Show that

n . . n
sin sinz
[ < ()"
x x
=1 Tk

Proof. Direct computations show

sina)” —1 1
(ln ) = (Insinz —Inz)" = —— + = >0,

x sin“z T
sinw L.

for all x € (0,7). Thus In is a convex function in (0,7). Jensen's
inequality then yields

liln sin xy, < sinx.

n T T

k=1
The exponential of this above inequality is the desired result. O
(b) From

/e‘xzdx = ﬁ,
2
0

calculate the integral / sin (27) da.

0

Key words and phrases. S.T. Yau, College Mathematics Contests, analysis, differential equations.
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Proof. Consider the sector in R? enclosed by the following three curves

I: 0<z<R,
11 Rei9,0§9§%,
IIT: rei%,OSTSR.

Cauchy’s integration theorem then yields

0= /+/+/ ¢ dz. (1)
I 11

111
Noticing
R
0 [e*a= [e7a,
I 0
(i)
E
/ei"de = /6“%262“’ iRed0
1 0
I
< R/G—RQSiHQGde
0
-
< 3/6—32-5-20(19
0
™ 2
= E <1 —e R >
— 0, as R — oo,
i R
i) [z = [t char =t [t
111 0 )

we have, by sending R — oo in (1), that

[o¢] o0

.y . o,
/em dx:eu/e dr.
0 0



ANALYSIS AND DIFFERENTIAL EQUATIONS

Taking the imaginary part of this above equality gives

o0

/sin( N)dr = 2\/\/7?_

0

2. Let f : R — Rbe any function. Prove that the set

¢ = {u € R flan) = Jim 1)}
is a Gs-set.
Proof. By definition,
C=m,Cy,

where

Ci = {xo ER; 36, >0, sit. |[x— x| <dpy = |f(x) — flzo)| < =

is an open set. In fact,

xg € Cp = U(l’o, 5550) C (.

. Consider the ODE
T=—-x+ f(t,l'),

where

|f(t z)| < o(t)]z], (t,2) € Rx R,
fgo t)dt < oo.

Prove that every solution approaches zero as t — oo.

Proof. Forallt € [O, o0), we have

oo > ds>/‘

. ot

QDCD

ds

71
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> | [ateaton| = et~ x0)]

Thus
tllglo x(t) = tli)rgo e [efx(t)] = 0.
[
. Solve the PDE
Au=0, inR" x R,
{ug, on {r; =0} x R,
where

1, if Ty > O,

g(z2) = { ,
-1, if Te < 0.

Proof. 1t is standard (easy to verfiy) that
ww) = [ )G mas)
{y1=0}xR

where

1
G(z,y) = 5

—Mnly—z|—Inly — i
7T[n!y r| —Inly — ]

is the Green’s function for {z; > 0}, with Z the reflection of z in the plane

{1 =0}.

Direct computations show

aG( ) aG( ) 1 1 — I yl_'_xl
—(,y) = ——(r,y) =—5= -
on oy 2r [y —z|* |y — 7
1 —21’1 ~
ol
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u(r) = uly)—Lds
@ {w:{m ) 0S)

S 9(y2)

Y2
™ 21+ (y2 — x2)?
—00
0 e’}
T 1 —1 —x 1 1 —x
:_?1 x_/ 2dy2x 2+x_ 2dy2x 2
1 yo—2x 1 1 Yy2—z 1
S| 0 1+ ()
1 — y2=0 — Y2=00
= —— | —arctan Y2 2 + arctan 2 2
m T1 o fyp=—oo T1 =0
= —arctan —, x = (z1,22) € R".
™ T

]

5. Let K € C'(]0,1] x [0, 1]). For f € C0, 1], the space of continuous functions on
[0,1], define

1
7f() = [ K)oy
0
Prove that T'f € C[0, 1]. Moreover,
0= {Tf 1fap <1}

is precompact in C'[0, 1].

Proof. (a) Tf € C[0,1].

Tf () — Tf(w)| < / K (21,y) — K(e2,9)] ()| dy
0
— 0, as |LL’1 — Ig’ — 0, (2)

by the uniform continuity of K in = and y.
(b) 2 is precompact in C[0, 1].

This follows readily from
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(i) the unform boundedness of f € :

||f||sup S 17

(ii) the equicontinuity of f € (), thatis, (2),

(iii) and the Ascoli-Azera theorem.

6. Prove the Poisson summation formula

Z flx +2nm) = Zf etk

n=—00 k—foo
for
feS(R)={f € Ly (R); (1+|z[")[f™(x)| < Cr, Ym,n >0}
Here

Proof. Define

Then h is periodic with periodical 27. And hence the coefficients of its Fourier
series are

2

2m
o 1 —ikx o 1 . —ikx
ap = %/h(x)e dz = 5 Z /f(a:—i—Zmr)e dx

0 n=-0%0y

2(n+1)w

R

n=-—o00
2nm

- / Fle)e™odz = (k).
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Consequently,
Z flz+2n7m) = h(x) = Z ape™ = Z F(k)e™.
n=—oo k=—0o0 k=—oc0

]
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