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We suggest a scheme to probe critical phenomena at a quantum phase transition (QPT) using the 
quantum correlation of two photonic modes simultaneously coupled to a critical system. As an ex-
perimentally accessible physical implementation, a circuit QED system is formed by a capacitively 
coupled Josephson junction qubit array interacting with one superconducting transmission line reso-
nator (TLR). It realizes an Ising chain in the transverse field (ICTF) which interacts with the two mag-
netic modes propagating in the TLR. We demonstrate that in the vicinity of criticality the originally in-
dependent fields tend to display photon bunching effects due to their interaction with the ICTF. Thus, 
the occurrence of the QPT is reflected by the quantum characteristics of the photonic fields. 

quantum phase transition, photon bunching, circuit QED 

Inspired by the fast developments of quantum informa-
tion[T1,2], quantum phase transition (QPT)[3] has renewed 
much attention in different fields of physics ranging 
from condensed matter physics to quantum optics[4,5]. Its 
close relation with entanglement was well explored in 
spin models[6,7]. It was found that[8] at the quantum 
critical point the dynamic evolution of a quantum criti-
cal system is so extremely sensitive that it can enhance 
the quantum decoherence of an external system coupled 
to it. This ultra-sensitivity is characterized by the Lo-
schmidt echo, which is a well-known concept in quan-
tum chaos[9]. In this sense, the quantum-classical transi-
tion from a pure state to a mixed one is induced by the 
quantum criticality of this surrounding system. This 
discovery motivated a new scheme to probe the QPT by 
exploring the quantum coherence in the external system 
and its losses[14]. 

Moreover, this probing mechanism for quantum critica-          
lity was illustrated by a circuit QED architecture[10－12], 
which was formed by a superconducting Josephson 
junction qubit array interacting with a one-dimensional 
superconducting transmission line resonator (TLR)[13]. 
The superconducting qubit array was modeled as an 
Ising chain in the transverse field (ICTF). This investi-
gation showed that the QPT phenomenon in the super-
conducting qubit array was evidently revealed by the 
correlation spectrum of TLR output. Though this 
mechanism for the circuit QED system has not been ex-
perimentally tested, an NMR simulation experiment[14] 
has been carried out to demonstrate the QPT-like phe-
nomenon (energy level crossing) as predicted in ref. [8] 
by exploring the increased sensibility of the quantum 
system to perturbation when it is close to a critical point. 

For the above circuit QED architecture to demon-          
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strate the probing of the QPT, we notice that with two 
modes simultaneously coupled to a charge qubit, their 
squeezing effect was investigated theoretically[15]. Here, 
we consider the full application of quantum optics ap-
proach[16] in the detection of the QPT by considering the 
higher order quantum coherence. To this end, we con-
sider that a Josephson junction qubit array modeled as 
the ICTF simultaneously couples to two modes propa-
gating in the TLR. Since all quasi-spins homogeneously 
interact with the fields, we can obtain the first (second) 
order correlation function of the two fields. According to 
our calculation, the second order quantum coherence is 
given in terms of the decoherence factor of the ICTF. As 
proven in Appendix A, the norm of the decoherence 
factor decreases exceptionally when the ICTF is at the 
critical point. Therefore, the photon bunching effect oc-
curs since the second order quantum coherence of the 
steady state is smaller compared with its initial value. 
And these results show genetic characteristics of the 
quantum spin chain in the vicinity of the critical point. 

The paper is structured as follows. The next section 
describes the ICTF formed by a capacitively coupled 
Josephson junction qubit array is coupled to two inde-
pendent fields propagating in the TLR. Then the detec-
tion scheme of the QPT and the correlation functions of 
two mode fields are given in Sec 2. A brief summary is 
given in Sec 3. Furthermore, in addition to the main 
body of the paper, Appendix A presents the details about 
the calculation of the decoherence factor. Since the 
theoretical deduction is based on the rotating wave ap-
proximation (RWA), its validity has been proven in 
Appendix B. 

1  Circuit QED based setup for probing 
quantum criticality 

We consider a circuit QED system illustrated in Figure 1. 
N Cooper pair boxes (CPBs) are capacitively coupled 
one by one. Formed by a superconducting island con-
nected with two Josephson junctions, each CPB is a di-
rect current superconducting quantum interference de-
vice (dcSQUID). Since the magnetic flux Φx threading 
the dcSQUID is tunable, the effective Josephson tunnel-
ling energy can be varied. With proper bias voltage, the 
CPB behaves as a qubit near the degeneracy point and 
then Josephson junction qubit array becomes a spin 
chain with N 1/2-spins. When the coupling capacitance 
Cm between two CPBs is much smaller than the total one  

 
 

Figure 1  Schematic diagram of superconducting Ising chain interacting 
with two largely detuned modes (↑1=3↑2) individually transmitted in the 
TLR. Since the CPBs are located at the antinodes of both modes, i.e,    
xj =( j−1/2)πv/ω2, they only interact with the magnetic fields. 
 
CΣ to each CPB, the high order terms in Hamiltonian can 
be neglected and only the nearest neighbor interaction is 
considered. Then the qubit array can be approximated as 
an ICTF with ref. [14]: 

  (1) 0
1

,
N

x z z
j j j

j
H B λσ σ σ +

=
= +∑ 1

where 0 1 1 0xσ = − −  and 0 0 1 1zσ = −  with 

n  being the state of n extra Cooper pairs on the su-

perconducting island, /xB Bλ =  and 2 2/ ,mB e C CΣ=  

J cos(π / )x xB E 0Φ Φ=  is the Josephson energy of each 
CPB with  the Josephson energy of single junction, JE

0 / 2h eΦ =  the flux quantum. 
In a one dimensional TLR, the electric current and 

voltage at the position x are given as 
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k

k xV x t i a a
Lc L
ω
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where  is the creation operator with frequency †
ka ,kω  

L the length of TLR, l and c the induction and capaci-
tance of per unit length of TLR respectively, k positive 
integer. Therefore, a CPB located at the antinode is only 
coupled to the magnetic field since the electric field 
vanishes. According to Ampere’s circuital law, when a 
dc SQUID loop is placed at a distance r with respect to 
the center of the TLR, the quantum magnetic flux that 
threads it is 

 †0 0 π( ) ( )sin ,
2π 2π

k
q kk

k

IS S k xx a
r r Lc L

μ μ ω
Φ = = +∑ a  (4) 

where 0μ  is the vacuum magnetic permeability, S the 
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area of dc SQUID loop. The interaction between the 
CPBs and the magnetic field is written as 

 q
J

0

π ( )
cos . j x

j
j

x
H EΦ

Φ
σ

Φ
= ∑  (5) 

In our consideration, two independent modes with fre-
quencies 1 3 2ω ω=  are propagating in the TLR. All the 
CPBs are placed the antinodes of the both modes with 
the positions 

 
2

1 π
2 ,j

j v
x

ω

⎛ ⎞−⎜ ⎟
⎝ ⎠=  (6) 

where 

 2
π ,vL
M

ω =  (7) 

j and M are positive integers, v the velocity of the light. 
Since  under the RWAq 0 ,Φ Φ [16], the interaction 

Hamiltonian is approximated to the second order, 
2 2

J 1 1 1 2 2 2
11 [ (2 1) (2 1)] , 
2

x
j

j
H E a a a aΦ η η+ +⎧ ⎫= − + + +⎨ ⎬

⎩ ⎭
∑ σ (8) 

where the coupling constants between the two modes 
and individual spins are 

 0

0

π
.

2π
k

k
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r Ll
μ ω

η
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=  (9) 

For realistic parameters,  aF, Cm = 30 aF, L0 = 1 
cm, S0 = 10 μm2, r = 1 μm, N = 500, EJ = 13 GHz, we 
have B = 1.6 GHz, ω2 ≈ 120 GHz, 

600CΣ =

1 3 ,2η η=  and 2η ≈  
0.1[14]. 

Thus, the total Hamiltonian is written as 
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The validity of the RWA is proven in Appendix B. Fur-
thermore, since there is no energy exchange between the 
fields and the ICTF, the total Hamiltonian can be de-
composed into invariant subspaces with respect to the 
Fock state of the fields, 

 ( , )
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where 
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Generally speaking, the Hamiltonian of ICTF H0 is 
transformed into a quadratic Fermion form with Jor-
dan-Wigner transformation[3]
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Then, by introducing quasi-particle operator[17]
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H0 is diagonalized as 

 †
0

1
2k kk

k
H ε γ γ⎛= ⎜

⎝ ⎠
∑ ⎞− ⎟  (16) 

with single particle spectrum being 

 2( ) 2 1 2 cos .k Bε λ λ λ= + − k  (17) 

And the ground state G  corresponds to no quasiparti-

cle excitation at all. 

2  Photon bunching effect 

Followed by a series of advances, i.e., resonance fluo-
rescence, the Hanbury-Brown-Twiss experiment[18] re-
opens philosophical debate about photons[19] and sets 
itself as the milestone in the development of quantum 
optics. All these experimental phenomena are associated 
with the correlation functions of the field. Here, we con-
sider it as the method to detect the QPT since the two 
fields propagating in the TLR interact with the 
quasi-spins respectively. 

First of all, we define an operator 
 1 2i .A a a= +  (18) 
The first order correlation function is written as 

† ( )A t A . Here, the bracket  denotes average over 

the initial state, with the Ising chain in the ground state 
G  and the two fields being in arbitrary pure states 

mm c m∑  and nn d n∑  respectively. Therefore, 

 

2 2 ( , ) ( , )†
1, , 1

,

( 1, 1)* *
1 1 1,

( 1, 1)* *
1 1 , 1

( ) ( )

 i ( 1)

i ( 1)

m n m n
m n m n m n

m n

m n
m m n n m n

m n
m m n n m n

A t A c d mr nr

c c d d m n r

c c d d m nr

− −

− +
− + −

+ −
+ − −

= +

− +

+ +

∑

,

 

(19)

 

1900 Ai Q et al. Sci China Ser G-Phys Mech Astron | Dec. 2009 | vol. 52 | no. 12 | 1898-1905 



 

where 

 
( , ) ( , )( , ) i i

, ( ) e e
m n m nm n H t H t

m nr t G G
′ ′−

′ ′ =  (20) 

is the decoherence factor[8] which measures the overlap 
of the ground state evolving under two different Hamil-
tonians. Details about its calculation is presented in Ap-
pendix A. In ref. [12], it was discovered that for the 
same amount of environment dissipation the first order 
correlation function of the single mode decreased more 
rapidly in the vicinity of the QPT than in the other re-
gion. Moreover, the second order correlation function is 
analytically written as 
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(21) 
Thus, for the fields initially in the state ( 0 1 ) / 2,+  

it is straightforward to obtain 

 1 2(1,0) i( )† †
0,1

1( ) ( ) [1 Re( e )],
2

tA A t A t A r ω ω−= +  (22) 

where Re(x) means the real part of x. 
As proven in Appendix A, in the vicinity of the QPT, 

the square of the norm of  decreases more rap-

idly than exponential, i.e, 

(1,0)
0,1 ( )r t
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where  2 2 2
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 with Nc being the nearest 
integer to  
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It can be seen that there is a vanishing numerator 

 as . It is doubtful that the exponential 

decay of 

( )cE k N → ∞
2(1,0)

0,1 ( )r t  can truly occur since the QPT takes 

place in the thermodynamical limit. However, as the size 
of the ICTF gets larger, we can adjust the parameter 

0,1λ  closer to the critical point to make the denominator 
2

0,1( 1λ )−  small enough. In that case, γ stays as a con-

stant and the 
2(1,0)

0,1 ( )r t  decreases exponentially with 

time. For a real system, N is finite for the demonstration 
of the QPT. To test the validity of the above analysis, we 
resort to numerical simulation. In Figure 2, we plot the 

evolution of 
2(1,0)

0,1 ( )r t  according to eq. (a9). It can be 

seen that despite some oscillations 
2(1,0)

0,1 ( )r t  decays 

exceptionally at the critical point. 
According to ref. [16], the photon bunching and an-

tibunching effects are associated with the second order 
degree of coherence 
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A A t A t A
g t

A A A t A t
=  (24) 

which is the normalized second order correlation func-
tion of the fields. For the fields both in the state 
( 0 1 ) / 2,+  the second order degree of coherence is 

simplified as  
1 2

1 2

(1,0) i( )
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2 1 Im( e )

t
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r
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ω ω

−

−

+
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with Im(x) being the image part of x. 
Since the norm of the decoherence factor decreases 

exponentially at the critical point, it is obvious that both 
the real and image parts of  will vanish 

in that limit. As a consequence, we expect the second 
order degree of coherence to be less than unity in the 
steady state, i.e., 

1 2(1,0) i( )
0,1 ( )e tr t ω ω−

(2) (2)( ) 1/ 2 (0) 1.g t g= < =  Generally 
speaking, classical fields, such as thermal light and co-
herent light, prefer to distribute themselves in bunches 
rather than at random. They exhibit less correlation for 
time longer than the correlation time. This is the so- 
called bunching effect[16]. On the contrary, in certain 
quantum optical systems, fewer quantum photons are 
detected close together than further apart. And the pho-
ton antibunching observed in fluorescent light from a 
two-level atom[19] is of such kind. Here, since the two 
fields involved are two independent modes, we expect 
photons to be neither bunching nor antibunching, re-
gardless of quantum mechanical fields or classical fields. 
However, as shown in Figure 3, when the Ising chain is 
at the critical point, the two independent fields initially  
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that the two initially independent quantum fields display 
the classical effect due to their common interaction with 
the quantum critical system. As illustrated in eq. (20), 
two initially identical states evolve under two slightly 
different Hamiltonians. Although the differences be-
tween these Hamiltonians are tiny, their evolution tra-
jectories are quite distinct in the vicinity of the QPT. 
Thus, this slight difference leads to the exponential de-     

 

 

 

 

Figure 2  The decoherence factor 
2(1,0)

0,1 ( )r t for both fields in 

( 0 1 ) / 2+  is plotted with λ = 8000. The blue dashed line for λ = 1, 

the red solid line for λ = 0.1, and the green dotted line for λ = 2. In all 
figures, t is in units of 1/B. 
 
in ( 0 1 ) / 2+  display the photon bunching effect. 

Further witness is also demonstrated in Figures 4(a)－
(c). It can also be proven that  for both 

fields in the coherent state 

(2) (2)( ) (0)g t g<

α  which is not shown 

here. In Figure 4(d), we plot the time evolution of the 
second order of coherence for this case. Here, we remark  

 

Figure 3  The second order degree of coherence g(2)(t) for λ = 4000 and 

( 0 1 ) / 2+  is plotted with (a) λ = 1, (b) λ = 0.1, (c) λ = 2. 
 

 
Figure 4  The second order degree of coherence g(2)(t) is plotted at the critical point for ( 0 1 ) / 2+  with (a) N = 2000, (b) N = 4000, (c) N = 8000. For 

(d), both fields are in the coherent α  with α = 1 and N = 8000. Note that at the steady state g(2)(t) is a little smaller than its original value 1 as indicated 
by the red horizontal line. 
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cay of their decoherence factor. It can be understood as a 
signature of quantum chaos[8]. 

Furthermore, for the parameters mentioned after eq. 
(9) and  both the real and imaginary parts 

of  decay with a rate of the order 

/10,cN N=

1 2(1,0) i( )
0,1 ( )e tr t ω ω− γ ≈  

2.5 GHz. Since the dissipation rate of the first excitation 
mode is about 6.3 MHz[10], we can neglect the influence 
due to the dissipation of TLR. 

3  Conclusion and remark 

To conclude, we have explored the possibility to probe 
quantum criticality in the ICTF by detecting the higher 
order quantum coherence of the two modes of cavity 
fields coupled to the spins. We suggest a physical im-
plementation of this theoretical scheme based on a cir-
cuit QED system where the capacitively coupled CPBs 
are coupled to the TLR. Situated at the antinodes of both 
modes propagating in the TLR, CPBs are only coupled 
to the magnetic fields. In a heuristic way, we show the 
decoherence factor decays exponentially with time in the 
vicinity of the critical point. The second order of coher-
ence is smaller than the one at the steady state. Thus, the 
two initially independent modes demonstrate photon 
bunching effect. This can serve as a witness of the QPT. 

On the other hand, we have not investigated deco-
herence originated from the dissipation of the CPBs. We 
notice that in a recent work[20], the QPT in the dissipa-
tive random transverse-field Ising chain was investi-
gated. It was discovered that the quantum critical point 
was ruined by the interplay between quantum fluctua-
tions and Ohmic dissipation. Further exploration may be 
done when such kind of effect is considered. 
 

Appendix A  Decoherence factor 

Following the method introduced in ref. [14], the deco-
herence factor  can be calculated in the fol-

lowing way. 

( , )
, ( )m n
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By introducing the spin-1 pseudospin operators[21]
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the Hamiltonian H0 can also be rewritten as 
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modes and the qubit array, the total Hamiltonian can be 
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With the pseudospin operators, we can also diagonalize 
the Hamiltonian as 
 ( , ) ( , )( , )

0
,m n m nm n

k zk
k

H ε
>

= ∑  (a4) 

where with  ( , ) ( , ) ( , )cos 2 sin 2 ,m n m n m n
zk xkzk k ks s sα α= + ( , )2 m n

kα
( , ) ,m n

kkθ θ= −    ( , )
,( ),m n

k m nkε ε λ= ( , )
,( ).m n

k m nkθ θ λ=

Therefore, the ground state of H0 is the product state 
of all pseudospins down ,k−  

0

( , ) ( , )( , ) ( , )

0
[cos sin ]

k
k

m n m nm n m n
xkk kk k

k

G

sα α

⊗

>
⊗

>

= −

= − + +

∏

∏
 

(a5)
 

with ( , )m n
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For a heuristic analysis, we obtain the short time behav-
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Since all factors kF  of 
2(1,0)

0,1 ( )r t  have a norm less 

than unity, we may expect the 
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0,1 ( )r t  to vanish un-

der certain conditions. Here, we set a cutoff frequency 
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Since  we focus 

on the short time behavior and therefore 
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As 1,0 1,λ →  we have 
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 with Nc being the nearest 
integer to  
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/ 2π.cNk

Appendix B  Validity of rotating wave approxima-
tion 

In this section, the validity of the RWA is proven for its 
application in obtaining eq. (10). 

The original Hamiltonian before the RWA is 
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Since 1,2 1,η  the Hamiltonian is approximated to the 

second order as 
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In the interaction picture with respect to 0 1 1 1H a aω +′ = +  
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Since the system evolution is determined by the time- 
dependent Schrödinger equation 

 ( ) i ( ) ,H t
t

ψ ψ∂
=

∂
t  (b4) 

its solution is formally written as 

 
0

( ) d i [ ( ) (0) ].
t
H t t tψ ψ ψ′ ′ = −∫  (b5) 

As long as    
EJη1η2, the fast oscillating terms including the following 
factors   

2
1 J 12 / 2,Eω η 2

2 J 22 / 2,Eω η 1 2ω ω±

1 2exp[ i( ) ],tω ω± ± 1exp[ 2i ],tω± 2exp[ 2i ]tω±  
can be dropped for their influences are averaged out in 
the long run. Fortunately, for parameters listed in our 
paper, such requirements are fulfilled. Thus, the effec-
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tive Hamiltonian is 
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which is exactly eq. (10). 

Notice that in the above deduction we have used 
Riemann-Lebesgue lemma[22]
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