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Abstract. We theoretically explore the possibility of creating spin entanglement by simultaneously coupling
two electronic spins to a nuclear ensemble. By microscopically modeling the spin ensemble as a single mode
boson field, we use the time-dependent Fröhlich transformation (TDFT) method developed recently [Y.
Li, C. Bruder, C.P. Sun, Phys. Rev. A 75, 032302 (2007)] to calculate the effective coupling between the
two spins. Our investigation shows that the total system realizes a solid state based architecture for cavity
QED. Exchanging such kind of effective boson in a virtual process can result in an effective interaction
between two spins. It is discovered that a maximum entangled state can be obtained when the velocity of
the electrons matches the initial distance between them in a suitable way. Moreover, we also study how
the number of collective excitations influences the entanglement. It is shown that the larger the number of
excitation is, the less the two spins entangle each other.

PACS. 68.65.Hb Quantum dots – 03.67.Mn Entanglement production, characterization, and manipulation
– 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and
nanoscale systems

1 Introduction

Since Shor and Grover algorithms [1,2] were proposed
with various following significant developments, e.g., [3],
quantum computing has been displaying its more and
more amazing charm against classical computing. As more
progress has been made in this area, it is urgent to dis-
cover robust, controllable and scalable two-level systems
— qubits as the basic elements for the future architecture
of quantum computers. Generally speaking, electron spins
are a natural qubit, especially the single electron spin con-
fined in a quantum dot for its well separation and easy
addressability. In reference [4], electron spins in quantum
dots were employed as qubits and two-qubit operations
were performed by pulsing the electrostatic barrier be-
tween neighboring spins. Thereafter, Kane’s model made
use of the nuclear spins of 31P donor impurities in sili-
con as qubits [5]. It combined the long decoherence time
of nuclear spins and the advantage of the well developed
modern semiconductor industry.

In practice, it seems difficult to control the coupling
between qubits because the coupling is based on the over-
lap of two adjacent spin wave functions [4,5]; the coupling

a e-mail: suncp@itp.ac.cn

is given to be fixed once photolithography of the chip has
been finished. Another feasible way to induce the control-
lable inter-spin interaction is to couple two spins by spin-
orbit interaction [6]. However, because of the weakness
of spin-orbit coupling, it is very crucial to find a scheme
to manipulate two spin coupling in the strong interaction
regime. In the present paper, we consider the possibility of
creating quantum entanglement of two electron spins by
making them pass through a 2D quantum well containing
many “cooled” nuclear spins (see Fig. 1). It was discov-
ered that the effective coupling intensity was increased by
a factor of

√
N when an electron spin was coupled with

an ensemble of N nuclear spins [7]. Such an electron spin
coupled to the nuclei has been considered for cooling the
nuclear ensemble [8]. Moreover, people have proposed a
quantum computing scheme using a scanning tunneling
microscopy with a moving tip as a commuter to perform
the control-not gate between two qubits on the silicon sur-
face [9,10]. Here, the tip played the role of the quantum
data bus to coherently link the qubits.

Enlightened by these works, we suggested a new
scheme to entangle two electron spins by a tip since it
could be modeled as an ensemble of many spins [11]. In-
deed, when the couplings of the spin to the nuclear en-
semble are quasi-homogeneous, the interaction between
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the electron spin and the collective excitation of nuclear
spins can be well described in terms of artificial cavity
QED [12]. Here, the collective excitation can behave as a
single mode boson to realize a quantum data bus, while
the electron spin acts as a two-level artificial atom. With
the frequency selection due to the resonance effect, there
is only one mode of collective excitations interacting with
the two spins. Especially, when the Zeeman splits of all
nuclear spins are the same, the single mode excitation can
decouple with other modes [12]. Then, the coupling system
including two qubit spins and nuclear ensemble just acts as
a typical cavity QED system or spin-boson system. To co-
herently manipulate the indirect interaction between the
two spins, which is induced by the above mentioned collec-
tive excitation, we need to let two electrons go through the
quantum well to realize a two qubit logical gate operation.
Since the moving of electrons leads to a time-dependent
coupling, we need to use some new method to derive the
effective Hamiltonian for the inter-spin coupling. Fortu-
nately, a recent paper suggested such a time-dependent
approach [13].

The rest of our paper is organized as follows. In Sec-
tion 2, in the low excitation limit, we simplify the total
system we considered above as two spins interacting with a
single mode of the collective excitation of the nuclei, which
forms a cavity-QED under the quasihomogeneous condi-
tion. In Section 3, we derive the effective Hamiltonian
between the two electron spins by the time-dependent
Fröhlich transformation (TDFT) method developed re-
cently in reference [13]. We remark that the TDFT method
can be used to derive an effective Hamiltonian for a class of
cavity QED systems with time-dependent perturbations.
Here, we use this transformation for the case of time-
dependent couplings of two spins to a many spin ensemble.
Section 4 contains the discussion of entanglement induced
by the effective Hamiltonian and collective excitation’s ef-
fect on the entanglement. In Section 5 we review most of
the significant results. Finally, technical details are given
in Appendices A and B.

2 Model description

We consider a system illustrated in Figure 1. Two elec-
trons go through a quantum well one after the other. The
electron spins described by Gaussian packets with a width
a/2 are initially located at z(i)

0 (i = 1, 2) and move along
the z-direction with a uniform speed v. The 2D quantum
well consists of many polarized nuclear spins located in po-
sition (xj , yj , zj) with |xi| ≤ a, |yi| ≤ a, |zi| ≤ a/5. When
a static magnetic field is applied to the total system, the
Hamiltonian reads

HS = Ωz(S(1)
z + S(2)

z ) + ωz

∑

i

I(i)
z

+ S(1)
z

∑

i

g
(i)
1 I(i)

z + S(2)
z

∑

i

g
(i)
2 I(i)

z

+ S
(1)
+

∑

i

g
(i)
1

2
I
(i)
− + S

(2)
+

∑

i

g
(i)
2

2
I
(i)
− + h.c., (1)

v

Fig. 1. Schematic diagram of two electron spins going through
a quantum well consisting of nuclear spins. Two electrons ini-

tially located at z
(1,2)
0 move with a uniform speed v.

where S
(l)
z and S

(l)
± (= S

(l)
x ± iS

(l)
y ) (l = 1, 2) are the

spin operators for the lth electron spin, I(j)
z and I

(j)
±

(= I
(j)
x ±iI(j)

y ) (j = 1, 2, · · · , N) the spin operators for the
jth nuclear spin, g(j)

l (l = 1, 2, j = 1, 2, · · · , N) the hyper-
fine coupling constants between lth electron and jth nu-
clear spin. The first and second terms of Hamiltonian (1)
are the Zeeman energies for the electron spins and the nu-
clear spins respectively, and the terms besides them are
the hyperfine interaction between the electrons and nu-
clear spins.

In our setup, the nuclear spins are restricted in a flat
square box with |xi| ≤ a, |yi| ≤ a, |zi| ≤ a/5. We have
(for the necessary details please refer to Appendix A)

g
(i)
1 � g

(i)
0 f1(t), g

(i)
2 � g

(i)
0 f2(t). (2)

In reference [12], the collective excitation of an ensem-
ble of polarized nuclei fixed in a quantum dot was stud-
ied. Under the approximately homogeneous condition the
many-particle system behaves as a single-mode boson in-
teracting with the spin of a single conduction-band elec-
tron confined in this quantum dot. Likewise, we introduce
a collective operator

B =
∑N

i=1 g
(i)
0 I

(i)
−√

2I0
∑

j [g
(i)
0 ]2

and its conjugate B+ to depict the collective excitations
in the ensemble of nuclei with spin I0 from its polarized
initial state

|G〉 =
N∏

i=1

|−I0〉i

which is the saturated ferromagnetic state of nuclear en-
semble. In our model, the nuclear spins are fixed in GaAs
crystal lattice with I0 = 3/2, a = 4 nm and the den-
sity of nuclei n0 = 45.6 nm−3. For simplicity, we assume
the nuclei are located in a simple cubic lattice. Thus, we
have the average distance between two neighboring nu-
clear spins d = 0.28 nm, g2

max/g
2 � 11.7,N = 5046, where
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gmax is the maximum of g(i)
0 and g2 =

∑
i(g

(i)
0 )2/N . On

condition that the number of excitations in the system
n � NI0g2/g2

max, we have [B,B+] → 1. In other words,
the collective excitation described by B can behave as a
boson mode in the large N limit with an initial polariza-
tion of all spins in ground (spin down) state.

In addition to the basic mode denoted by B and B+,
there exist auxiliary modes

Ck =
∑N

i=1 h
[k]
i I

(i)
−√

2I0(h[k])2

for k = 1, 2, . . . , N . Here,

h[k] = (h[k]
1 , h

[k]
2 , . . . , h

[k]
N )

are N orthogonal vectors in N -dimensional space RN ,
which can be systematically constructed by making use of
the Gram-Schmidt orthogonalization method [14] starting
from

h[1] = (g(1)
0 , g

(2)
0 , . . . , g

(N)
0 ) ∈ RN .

Therefore, the Hamiltonian (1) is rewritten as

HS � (Ωz − f1I0
∑

i

g
(i)
0 )S(1)

z + (Ωz − f2I0
∑

i

g
(i)
0 )S(2)

z

+ f1Ω(S(1)
+ B + S

(1)
− B+) + f2Ω(S(2)

+ B + S
(2)
− B+)

+ ωz

∑

k

C+
k Ck + ωzB

+B +HS
p . (3)

Here, the effective Rabi frequency

Ω =

√
1
2
I0

∑N

i=1

[
g
(i)
0

]2

.

describes the enhanced coupling of the electron spin to
the collective excitation. And the single particle excitation
term

HS
p = (S(1)

z f1 + S(2)
z f2)

∑

i

g
(i)
0 (I(i)

z + I0) (4)

can be treated as a perturbation term in the low-excitation
limit, which originates from the inhomogeneity of the cou-
plings.

3 Effective inter-spin coupling description

As shown in Hamiltonian (3), there are only couplings of
two electron spins with the single mode boson respectively.
By making use of the canonical transformation [13], we can
eliminate the boson operator and obtain the effective in-
teraction between the two electron spins. Former research
mainly focused on the case where f1(t)Ω and f2(t)Ω were
time independent [15]. However,the time-independent ap-
proach may not work well in practice. Now, because of the
motion of the electrons, we take the time-dependence of
interaction into consideration, namely, f1(t)Ω and f2(t)Ω
depend on time.

Let us first summarize the main idea of the time-
dependent Fröhlich transformation [13] so that our paper
is self consistent for reading. Generally speaking, Fröhlich
transformation [16,17] is frequently used in condensed
matter physics to obtain effective interaction between two
electrons by exchanging virtual phonons. For a quantum
system described by Hamiltonian H(t) = H0 + H1(t),
where H0 is time independent and |H0| 	 |H1(t)|, we
can make a canonical transformation

|ψ(t)〉 → e−F (t)|ψ(t)〉, H(t) → e−F (t)H(t)eF (t), (5)

where F (t) is an anti-Hermitian operator and ψ(t) the
state of the system. When F (t) is appropriately chosen
to make the first-order term of the effective Hamiltonian
vanishing, i.e., H1 + [H0, F ] − i∂tF = 0, we obtain an
effective Hamiltonian to the second order Heff = H0 +
[H1, F ]/2 in principle, and the above equation explicitly
determines F = F (t).

In this section, the canonical transformations are made
to obtain the effective Hamiltonian. In the interaction pic-
ture with respect to

HS
0 = ωz(S(1)

z + S(2)
z ) + ωz(B+B +

∑

k

C+
k Ck),

the Hamiltonian HI = HI
0 +HI

1 +HI
p contains three parts

HI
0 = Δ1S

(1)
z +Δ2S

(2)
z , (6)

HI
1 =

∑

i=1,2

fiΩ(S(i)
+ B + S

(i)
− B+), (7)

HI
p = eitHS

0 HS
p e

−itHS
0 ≡ HS

p . (8)

Here,

Δj = Ωz − ωz + fjI0
∑

i

g
(i)
0 (j = 1, 2)

are the detunings of electron spin and nuclear spin and
hyperfine interaction.

It can be observed from the Hamiltonian HI that the
time-dependent term HI

1 can be considered as first-order
perturbation with respect to the zeroth-order term HI

0

(disregarding HI
p ). Then, we perform a transformation

exp(F (t)) to the Hamiltonian HI to eliminate the time-
dependent term HI

1 , that is, the condition

HI
1 + [HI

0 , F ] − i∂tF = 0 (9)

should be fulfilled, where TDFT operator is

F (t) = (x1(t)S
(1)
+ + x2(t)S

(2)
+ )B − h.c.

It follows from equation (9) that the corresponding coef-
ficients of S(1)

+ B, S(1)
− B+, S(2)

+ B and S
(2)
− B+ at the left

hand side of equation (9) vanish, i.e.,

f1Ω +Δ1x1 − iẋ1 = 0, (10)
f2Ω +Δ2x2 − iẋ2 = 0. (11)
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In case that the electrons go through the nuclear spins
with a uniform speed v, the solutions to the above equa-
tions are xj � −fjΩ/Δ (j = 1, 2), where Δ = Ωz − ωz is
used to replace Δ1 and Δ2 since Δ � Δ1 � Δ2 in the re-
alistic parameters (for the necessary details please refer to
Appendix B). Then, the effective Hamiltonian is obtained
approximately as follows:

HF �HI
0 +

1
2
[HI

1 , F ] +HI
p + [HI

p , F ]

�
[
Δ1 − f2

1Ω
2

Δ
(2

〈
B+B

〉
+ 1)

]
S(1)

z

+
[
Δ2 − f2

2Ω
2

Δ
(2

〈
B+B

〉
+ 1)

]
S(2)

z

− f1f2Ω
2

Δ
[S(1)

+ S
(2)
− + S

(2)
+ S

(1)
− ] +HI

p + [HI
p , F ],

(12)

where 〈B+B〉 denotes the average number of nuclear exci-
tation, and the fast-oscillating terms including the factor
exp(±iΔt) have been dropped off.

When almost all nuclear spins are in their ground
state, the system is in the low collective excitation limit,
i.e., 〈B+B〉 → 0. By using

|Δ1,2| � |Δ| 	 f1,2Ω,

we have

Δj −
f2

j Ω
2

Δ
(2

〈
B+B

〉
+ 1) � Δj � Δ.

Thus,

HF �Δ(S(1)
z + S(2)

z ) − f1f2Ω
2

Δ
(S(1)

+ S
(2)
− + h.c.)

+HI
p + [HI

p , F ]. (13)

In the following calculation, it will be shown that the com-
plex term [HI

p , F ] will be dropped in the interaction pic-

ture. With respect to H0 = Δ(S(1)
z + S

(2)
z ), the effective

interaction Hamiltonian is

Heff = V1 + V2, (14)

where

V1 = −eiH0t

[
f1f2Ω

2

Δ
(S(1)

+ S
(2)
− + S

(2)
+ S

(1)
− )

]
e−iH0t

= −f1f2Ω
2

Δ
(S(1)

+ S
(2)
− + S

(2)
+ S

(1)
− ), (15)

V2 = eitH0HI
pe

−itH0 = HS
p . (16)

In the above calculation, we have dropped the high-
frequency term exp(iH0t)[HI

p , F ] exp(−iH0t) including
the factors exp(±iΔt). It is a reasonable approximation
which is frequently used in the Jaynes-Cummings model.

Now, we study the time evolution driven by the above
effective Hamiltonian. First of all, we study a special case

that the total system is initially prepared without the col-
lective excitations of the bus spins. In this case, the effec-
tive interaction V2 does not play a role. In a Hilbert space
spanned by the two electron states |ee〉, |eg〉, |ge〉 and |gg〉,
it is clear that there exists an invariant subspace spanned
by |eg〉 and |ge〉. If the system starts from |Ψ(0)〉 = |eg〉,
at time t it would definitely evolve into

|ψ(t)〉 = cos θ(t) |eg〉 − i sin θ(t) |ge〉 ,

where

θ(t) = −
∫ t

0

f1f2Ω
2

Δ
dt′. (17)

In comparison with the result in reference [12], where Hp

was considered as a perturbation in the low excitation ap-
proximation, we examine the system evolving under total
Hamiltonian containing V1 and V2. Then we can get the
equations for the coefficients as follow

iĊge = −f1f2Ω
2

Δ
Ceg − (V2)egCge, (18)

iĊeg = (V2)egCeg − f1f2Ω
2

Δ
Cge, (19)

where (V2)jk = 〈jk|V2 |jk〉 and j, k = e, g. Similarly,
there’s an invariant subspace {|eg〉 , |ge〉}.

4 Spin entanglement

In the above sections, we have obtained a typical spin-spin
coupling in the effective Hamiltonian, which is induced by
the collective excitations. Driven by this Hamiltonian, two
electron spins can be entangled dynamically. To charac-
terize the extent of entanglement, we use concurrence to
measure the induced entanglement. For an arbitrary state
of two-qubit system described by the density operator ρ,
a measure of entanglement can be defined as the concur-
rence [18,19],

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (20)

where the λi’s are the square roots of the eigenvalues of
the non-Hermitian matrix ρρ̃ in decreasing order. And

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),

where ρ∗ is the complex conjugate of ρ, σy the Pauli op-
erator. Actually, even from the original Hamiltonian (1)
we can also prove that the corresponding reduced density
matrix for two spins is of the form

ρ(12) =

⎛

⎜⎝

u+ 0 0 0
0 w1 z∗ 0
0 z w2 0
0 0 0 u−

⎞

⎟⎠ . (21)
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To prove the above result, we consider that, in the original
Hamiltonian the interaction terms

HI =S(1)
z

N∑

j=1

g
(j)
1 I(j)

z + S(2)
z

N∑

j=1

g
(j)
2 I(j)

z

+ S
(1)
+

N∑

l=1

g
(j)
1

2
I
(j)
− + S

(2)
+

N∑

j=1

g
(j)
2

2
I
(j)
− + h.c., (22)

conserves the total spin z-component

Sz =
N∑

j=1

I(j)
z + S(1)

z + S(2)
z ,

i.e., [HI ,Sz ] = 0. For such conserved system we express
the concurrence characterizing quantum entanglement in
terms of observables, such as correlation functions.

The complete basis vectors of the total system are de-
noted by

|S1, S2, {Ij}〉 = |S1, S2; I1, .., IN 〉

=
N∏

j=1

|Ij〉 ⊗ |S1〉 ⊗ |S2〉, (23)

where |Ij〉 is nuclear spin state and |S1,2〉 denote the elec-
tronic spins (Ij , S1,2 = 0, 1) respectively. The fact that
Sz is conserved can be reflected by the vanishing of some
matrix elements of the density operator ρ = ρ(H) on the
above basis for any state of the total system, that is,

ρ
S′

1,S′
2;I

′
1,..,I′

N

S1,S2;I1,..,IN
= ρ

{nj ,sj}
{nj ,sj}δ(s, s

′, I, I ′), (24)

where

δ(s, s′, I, I ′) = δ(S1 + S2 − S′
1 − S′

2 +
N∑

j=1

(Ij − I ′j)).

The functional ρ(H) of the Hamiltonian may be a ground
state or thermal equilibrium states. The reduced density
matrix ρ(12) = TrI [ρ(H)] for two spins, e.g., S1 and S2 are
obtained as

[ρ(12)]S
′
1,S′

2;
S1,S2;

= δ(s, s′, 0, 0)
∑

{Ij}
ρ

S′
1,S′

2;I1,..,IN

S1,S2;I1,..,IN
(25)

by tracing over all nuclear variables. The corresponding
reduced density matrix for two spins 1 and 2 is of the
form in equation (21). Using the observable quantities,
the quantum correlation

z = 〈ψ|S+
1 S

−
2 |ψ〉 , (26)

u± = 〈ψ| (1/2 ± Sz
1 ) (1/2 ± Sz

2 ) |ψ〉 ,

the concurrence is rewritten as a computable form

C12 = 2 max(0, |z| −
√
u+u−). (27)
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We note that this formula for the concurrence of two elec-
tron spins in the coupled system is the same as that
for a spin-1/2 coupling system modeled by the effec-
tive Hamiltonian [18,19]. This general form is consistent
with that obtained straightforwardly from the effective
Hamiltonian given in the last section.

With the above general consideration, we now study
quantitatively the concurrence for the quantum entangle-
ment of the two electrons passing the nuclear spins at a
uniform speed v. In Figure 2, the concurrence is plotted
while the speed v and the initial distance between the two
electrons z(1)

0 − z
(2)
0 are varied. It is obvious that the con-

currence fluctuates from 0 to 1 in the low speed region
(see also Fig. 3). When the electrons move with a relative
low speed, the concurrence oscillates rapidly since a lower
speed means more time for evolution from a direct product
state towards an entangled state. As the speed increases,
the concurrence falls monotonously if it is bigger than a
certain value. According to equation (17), the maximum
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Fig. 4. (Color online) The evolution of concurrence C on con-
dition that a = 4 nm, Δ = 8 × 1011 Hz, I0 = 3/2, v = 0.7
mm/s. Dashed line for n = 0, solid line for n = 1 and dot-
ted line for n = 10, corresponding to nuclear spin polarization
P = 100%, P = 99.993%, and P = 99.93%, respectively.

entangled state can be obtained when

θ = (n+ 1)
π

4
. (28)

However, the general relation between the concurrence
and z

(1)
0 − z

(2)
0 is a little more complicated. The further

the two electrons separate from each other, the longer time
both of them need to pass through the nuclear ensemble.
On the other hand, the matrix elements of the effective in-
teraction V1 in equation (15), i.e., 〈↑↓ |V1| ↓↑〉, h.c., drop
dramatically as the inter-spin distance increases. This ob-
servation is obviously correct from an intuitively physical
consideration. For a longer inter-spin distance, the spatial
wave functions of two spins have a smaller overlap, and
then the effective coupling is weak.

In the last section, we have only taken V1 into con-
sideration. However, due to the nuclear excitation, i.e.,
n > 0, V2 will lead to decoherence. According to refer-
ence [12], under the quasihomogeneous condition, we have∑

i g
(i)
0 (I(i)

z + I0) = ng, where g =
∑

i g
(i)
0 /N , n = 〈B+B〉

is the average number of collective excitation. Thus, the
single particle perturbation can be approximated as

V2 = HS
p � ng(f1S(1)

z + f2S
(2)
z ). (29)

In Figure 4, we plot the concurrence evolution under
Heff = V1 + V2. As shown in the figure, the two spins
evolve into a maximum entangled state with appropriate
parameters when n = 0. On the contrary, the concurrence
is suppressed when there exists collective excitation in the
nuclei. Moreover, as more nuclei are excited, the concur-
rence falls dramatically. In recent experiments, for a typi-
cal quantum dot, the nuclear spin polarization P is of the
order 60% [21]. And the relation between the number of
collective excitation and nuclear spin polarization P is

P = 1 − n

2NI0
. (30)

Thus, further progress in experiments, i.e., lowering the
temperature or optical excitation, is expected to prepare
all nuclear spins in their ground states in order to put this
scheme into practice.

5 Conclusion

In summary, we have proposed a scheme to entangle two
electron spins via an ensemble of nuclei. We also explore
the influence of its collective excitation on the concurrence
characterizing two spin entanglement. Theoretically, the
maximum entangled state can be obtained if the electrons
move in a suitable way. Furthermore, with the optimized
experimental parameters, the operation time is within the
relaxation time of electron spins in solid state systems,
i.e., the order of ms [20].

However, this scheme may encounter some challenges
from practical experiments since it is based on the low ex-
citation requirement of nuclear ensemble. Moreover, there
are only the collective excitations considered as the quan-
tum data bus to coherently link two spins so that the
inter-spin entanglement is induced. If there exist noncol-
lective excitations, then extra decoherence will be induced
to break our scheme presented in this paper. Further in-
vestigations are needed for these questions. However, if we
can cool the nuclear ensemble via some new mechanism,
e.g., similar to references [22,26], our scheme will probably
work well.
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Appendix A: Derivation of g
(i)
1 and g

(i)
2

According to reference [23], the hyperfine interaction con-
stant is mainly proportional to the electron spin density
located at the nucleus. Thus,

g
(i)
1 =

4μ0

3I0�
μBμI

∣∣∣ψ(i)
1

∣∣∣
2

, (31)

where μ0 is vacuum permeability, I0 total nuclear spin
quantum number, μB the Bohr magneton, μI the nu-
clear magnetic moment, ψ(i)

1 the wavefunction for elec-
tron 1 located at the ith nuclear spin. In a semiconductor
crystal, the wavefunction is given by the product of the
Bloch amplitude u(r) and an envelope function Ψ(r), i.e.,
ψ(r) = u(r)Ψ(r). In a realistic crystal η = |u(r)|2 reaches
a climax at the lattice positions. It was discovered that
ηAs = 4.5 × 103 and ηGa = 2.7 × 103 [24]. On account
of isotope abundance and their different nuclear magnetic
moments [25], μIη = 3.153 × 10−23 A.m2. In our simula-
tion, we assume that the wavefunction is a Gaussian wave
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packet with initial location z
(1)
0 and moves at a uniform

speed v, that is

∣∣∣ψ(i)
1

∣∣∣
2

=
(

4
πa2

)3/2

e−4[x2
i+y2

i +(z
(1)
0 +vt−zi)

2]/a2
, (32)

where ri = xix̂+yiŷ+ziẑ is the position of the ith nuclear
spin with respect to the center of nuclei.

Since the nuclei are distributed in a flat box with |xi| ≤
a, |yi| ≤ a, |zi| ≤ a/5. Therefore,

g
(i)
1 � 4μ0

3I0�
μBμIη

(
4
πa2

)3/2

e−4r2
i /a2

e−4(z
(1)
0 +vt)2/a2

= g
(i)
0 f1(t), (33)

where

g
(i)
0 =

4μ0

3I0�
μBμIη

(
4
πa2

)3/2

e−4r2
i /a2

, (34)

f1(t) = e−4(z
(1)
0 +vt)2/a2

. (35)

Here, we have neglected the term e−8(z
(1)
0 +vt)zi/a2

based
on the following consideration. On the one hand, the above
approximation tends to be exact as the quasi-2D quantum
well becomes narrower in the z-direction, e.g., |zi| → 0. On
the other hand, the effective coupling intensity is increased
as more nuclear spins are included when |zi| gets larger.
Thus, optimal value is chosen for the valid approximation.
Similarly, we have

g
(i)
2 � g

(i)
0 f2(t), (36)

where
f2(t) = e−4(z

(2)
0 +vt)2/a2

. (37)

Appendix B: Derivation of xi

According to equation (10), one has

x1 = −iΩe−i
∫

t
0 Δ1dt′

∫ t

0

f1e
i
∫

t′
0 Δ1dt′′dt′

� −iΩe−iΔt

∫ t

−∞
f1e

iΔt′dt′

=
−Ω
Δ

e−iΔt[f1eiΔt − 8v
a2

∫ t

−∞
f1e

iΔt′(z(1)
0 + vt′)dt′]

� −Ω
Δ

e−iΔt(f1eiΔt − 8v
a

∫ t

−∞
f1e

iΔt′dt′).

Here, we have replaced Δ1 by Δ = Ωz − ωz since

f1I0
∑

i

g
(i)
0 � 8.318 × 1010 Hz � Δ = 8 × 1011 Hz.

Furthermore, we have replaced

8v
a2

∫ t

−∞
f1e

iΔt′ [z(1)
0 + vt′]dt′

by
8av
a2

∫ t

−∞
f1e

iΔt′dt′,

since one notices the fact that z(1)
0 +vt′ ∼ a is the effective

integration range and the change of f1(t′) (also change of
vt′) is much slower than that of eiΔt′ . Thus,

x1 � −Ω
Δ

f1 − i
8v
Δa

x1.

Generally speaking, Δ depends on the applied magnetic
field. In case that Δ = 8×1011 Hz and a ∼ 4 nm, we have
8v/aΔ� 1 for all v � 400 m/s. Thus, we have

x1 � −Ω
Δ

f1. (38)

Similarly,

x2 � −Ω
Δ

f2. (39)
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