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ABSTRACT

The nested association mapping (NAM) strategy promises to combine the advantages of linkage map-
ping and association mapping. The objectives of my research were to (i) investigate by computer simu-
lations the power and type I error rate for detecting quantitative trait loci (QTL) with additive effects
using recombinant inbred line (RIL) populations of maize derived from various mating designs, (ii)
compare these estimates to those obtained for RIL populations of Arabidopsis thaliana, (iii) examine for
both species the optimum number of inbreds used as parents of the NAM populations, and (iv) provide
on the basis of the results of these two model species a general guideline for the design of NAM
populations in other plant species. The computer simulations were based on empirical data of a set of 26
diverse maize inbred lines and a set of 20 A. thaliana inbreds both representing a large part of the genetic
diversity of the corresponding species. I observed considerable differences in the power for QTL detection
between NAM populations of the same size but created on the basis of different crossing schemes. This
finding illustrated the potential to improve the power for QTL detection without increasing the total
resources necessary for a QTL mapping experiment. Furthermore, my results clearly indicated that it is
advantageous to create NAM populations from a large number of parental inbreds.

MANY traits that are important for fitness and agri-
cultural value of plants are quantitative traits.

Such traits are affected by many genes, the environ-
ment, and interactions between genes and the envi-
ronment (Holland 2007). In plants, quantitative trait
locus (QTL) mapping is a key tool for studying the
genetic architecture of quantitative traits (Yano 2001).
This method enables the estimation of (i) the number
of genome regions affecting a trait, (ii) the distribution
of gene effects, and (iii) the relative importance of addi-
tive and nonadditive gene action.

Until now, most of the plant QTL mapping studies
have been based on linkage mapping methods using
individual biparental populations. The major limita-
tions of such approaches are a poor resolution in de-
tecting QTL and that with biparental crosses of inbred
lines only two alleles at any given locus can be studied
simultaneously (Flint-Garcia et al. 2005). Association
mapping methods, which are successfully applied in
human genetics to detect genes coding for human
diseases (e.g., Willer et al. 2008), promise to overcome
these limitations (Kraakman et al. 2004). However, in

comparison with linkage mapping approaches, associa-
tion mapping approaches have only a low power to
detect QTL in genomewide scans (Yu and Buckler

2006).
The nested association mapping (NAM) strategy

proposed by Yu et al. (2008) uses recombinant inbred
line (RIL) populations derived from several crosses of
parental inbreds. Due to diminishing chances of recom-
bination over short genetic distance and a given number
of generations, the genomes of these RILs are mosaics
of chromosomal segments of their parental genomes.
Consequently, within the chromosomal segments, the
linkage disequilibrium (LD) information across the
parental inbreds is maintained. Thus, if diverse parental
inbreds are used, LD decays within the chromosomal
segments of the RILs over a short physical distance
(Wilson et al. 2004). Therefore, the NAM strategy
allows to exploit both recent and ancient recombina-
tion and, thus, will show a high mapping resolution (Yu

et al. 2008). Furthermore, due to the balanced design
underlying the proposed mapping strategy as well as the
systematic reshuffling of the genomes of the parental
inbreds during RIL development, NAM populations are
expected to show a high power to detect QTL in
genomewide approaches (Buckler et al. 2009).

Exploitation of the advantages of the NAM strategy
requires developing, genotyping, and phenotyping of
RIL populations from several crosses of diverse parental
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inbreds. This, however, requires large financial resour-
ces (cf. Yu et al. 2008). Therefore, it is mandatory that
the available resources are spent in an optimum way.

Stich et al. (2009) examined the optimum allocation
of resources for NAM in maize with respect to the
number of RILs derived from the reference design as
well as the number of environments and replications
per environment used for phenotypic evaluation. The
power for QTL detection, however, is expected to be
influenced not only by these factors but also by the
crossing scheme from which RIL populations are de-
rived. To my knowledge, no study has so far compared
RIL populations derived from various mating designs
regarding the power for detecting QTL with additive
effects. Furthermore, no information is available on the
optimum number of inbreds used as parents of the
NAM populations.

For Arabidopsis thaliana, more advanced genomic
tools are available than for most other plant species
(e.g., Alonso et al. 2003; Clark et al. 2007). This fact
increases the prospects of success of NAM approaches.
However, A. thaliana differs from maize with respect to
the genome size and the allele frequency, which both
have the potential to influence the power for QTL
detection. Nevertheless, to my knowledge, no study has
so far examined the power of NAM in A. thaliana.

The objectives of my research were to (i) investigate
by computer simulations the power and type I error
rate for detecting QTL with additive effects using RIL
populations of maize derived from various mating
designs, (ii) compare these estimates to those obtained
for RIL populations of A. thaliana, (iii) examine for both
species the optimum number of inbreds used as parents
of the NAM populations, and (iv) provide on the basis
of the results of these two model species a general
guideline for the design of NAM populations in other
plant species.

MATERIALS AND METHODS

Simulations: The computer simulations were based on
empirical data of 653 single-nucleotide polymorphism (SNP)
markers of 26 diverse maize inbred lines, namely B73, B97,
CML52, CML69, CML103, CML228, CML247, CML277,
CML322, CML333, Hp301, IL14H, Ki3, Ki11, Ky21, M37W,
M162W, Mo18W, MS71, NC350, NC358, Oh7b, Oh43, P39,
Tx303, and Tzi8 (Yu et al. 2008). These inbreds were selected
on the basis of 100 simple sequence repeat markers from
a worldwide sample of 260 maize inbreds to capture the
maximum genetic diversity (Liu et al. 2003). Details about SNP
discovery, detection, and mapping were described by Yu et al.
(2008).

Furthermore, I used for my study empirical data of 653 SNP
markers of 20 A. thaliana inbreds, namely Bay-0, Bor-4, Br-0,
Bur-0, C24, Col-0, Cvi-0, Est-1, Fei-0, Got-7, Ler-1, Lov-5, Nfa-8,
Rrs-7, Rrs-10, Sha, Tamm-2, Ts-1, Tsu-1, and Van-0 (Clark et al.
2007). These inbreds were selected on the basis of poly-
morphisms in 876 genomewide distributed fragments from a
sample of 96 A. thaliana genotypes to capture the maximum

genetic diversity (Nordborg et al. 2005). The 653 SNP
markers were selected from a set of 648,570 nonredundant
SNP markers (MBML2 data set; Clark et al. 2007; Kim et al.
2007; ftp://ftp.arabidopsis.org/Polymorphisms/Perlegen_
Array_Resequencing_Data_2007/SNP_predictions/) to uni-
formly cover the chromosomes (supporting information, File
S1). Genetic map positions for these SNPs were lacking.
Therefore, a linear model was applied to project the physical
map position of the SNPs on the genetic map of Singer et al.
(2006).

Mating designs evaluated: The I ¼ 26 maize inbreds and the
I ¼ 20 A. thaliana inbreds were used to examine 10 different
mating designs using computer simulations (Figure S1). RILs
were derived from the crosses of each design, where each RIL
was assumed to be derived from a distinct F2 plant through
single-seed descent with selfing to the F6 generation.

For the reference (REF) design in maize, RIL populations
were derived from the crosses between B73 and the 25 diverse
inbreds (McMullen et al. 2009) (Table 1). In A. thaliana, RIL
populations were derived from the crosses between Col-0 and
the 19 inbred lines. For the diallel (DIA) design, a RIL
population was derived from each of the crosses in the diallel
(method 4; Griffing 1956) among all I maize or A. thaliana
parental inbreds. For the factorial (FCT) design, the 26 maize
inbreds or the 20 A. thaliana inbreds were randomly parti-
tioned into two subsets of equal size and a RIL population was
derived from each cross between the two sets of inbreds
(Comstock and Robinson 1948).

For the single round-robin (SRR) design (Verhoeven et al.
2006), RILs were derived from each of the chain crosses, i.e.,
inbred 1 3 inbred 2, inbred 2 3 inbred 3, . . . , inbred I 3
inbred 1. For the double round-robin (DRR) design, a RIL
population was derived from each of the double-chain crosses,
i.e., inbred 1 3 inbred 2, inbred 1 3 inbred 3, inbred 2 3
inbred 3, inbred 2 3 inbred 4, . . . , inbred I 3 inbred 1. For
reduced round robin (RRR), RILs were derived from the
reduced double-chain crosses, i.e., inbred 1 3 inbred 2, inbred
1 3 inbred 3, inbred 2 3 inbred 3, inbred 3 3 inbred 4, inbred
5 3 inbred 6, . . . , inbred (I � 1) 3 inbred I. For the
independent round-robin (IRR) design, a RIL population
was derived from each of the independent chain crosses
among the I inbreds, i.e., inbred 1 3 inbred 2, inbred 3 3
inbred 4, . . . , inbred (I � 1) 3 inbred I.

TABLE 1

Number of crosses NC underlying the segregating populations
derived from reference (REF), diallel (DIA), factorial
(FCT), single round-robin (SRR), double round-robin

(DRR), reduced round-robin (RRR), independent
round-robin (IRR), and distance-based (DB) designs

Mating design Maize NC A. thaliana NC

REF 25 19
DIA 325 190
FCT 169 100
SRR 26 20
DRR 52 40
RRR 25 20
IRR 13 10
DB15 50 30
DB30 100 60
DB60 200 120

For a detailed description of the designs, see materials

and methods.
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The data sets for the distance-based designs DBp were
established by selecting from all crosses in a diallel among
the I inbreds the p% combinations of parental inbreds,
which show, on the basis of all marker loci, the maximum
genetic dissimilarity (Nei and Li 1979). In the current study,
the designs DB15, DB30, and DB60 were examined.

In addition to the above-described simulations with I ¼ 26
and 20 parental inbreds for maize and A. thaliana, respectively,
I examined exemplarily for the REF and DIA designs scenarios
with the same total number of RILs N derived from crosses
between a reduced number of parents I: For maize, I set I¼ 23,
20, . . . , 5 and for A. thaliana I¼ 17, 14, . . . , 5. In the simulations
of the REF design, the same reference parent (B73; Col-0) was
chosen as initially described and the remaining I � 1 parents
were randomly selected from the entire set of parental in-
breds. In contrast, for the DIA design, I parents were ran-
domly selected from the entire set of parents.

For each of the above-described mating designs, which
differ with respect to the number of crosses NC (Table 1), I
assumed a total number of RILs N ¼ 1250, 2500, or 5000. The
number of RILs per cross NP was calculated as follows: In
scenarios with the number of remaining RILs r¼ N mod NC¼
0, NP ¼ N/NC. In contrast, in scenarios with r 6¼ 0, I chose for
r populations NP ¼ N/NC 1 1, whereas for the remaining
NC � r populations NP ¼ N/NC.

Definition of genotypic and phenotypic values: A total of 100
simulation runs were performed for each of the examined
mating designs. For each run, three subsets of SNPs (l¼ 25, 50,
100) were sampled at random without replacement from
the linkage map and were defined as QTL. The SNP markers
of my study are biallelic and, thus, the 25 diverse maize inbreds
or the 19 A. thaliana inbreds used as parents carry either the
same allele as the reference parent (B73; Col-0) or the non-
reference parent allele. At each QTL, one allele was assigned
the genotypic effect zero whereas the genotypic effect of the
other allele was drawn randomly without replacement from the
geometric series l(1 – a)[1, a, a2, a3, . . . , al�1], with a ¼ 0.90 (25
QTL), a ¼ 0.96 (50 QTL), or a ¼ 0.99 (100 QTL) (Lande and
Thompson 1990). Genotypic values of the inbreds were de-
termined by summing up the effects of the individual alleles.

From the genotypic values of the RILs of each cross, the
genotypic variance within the cross sg

2 was calculated. For the
progenies of each cross, the phenotypic values were generated
by adding a realization from a normally distributed variable
N ð0; ððð1� h2Þ=h2Þs2

gÞÞ to the genotypic values, where h2

denotes the heritability on an entry-mean basis. On the basis
of previous empirical studies, I examined h2 values of 0.5 and
0.8 (Flint-Garcia et al. 2005). All simulations were performed
with software PLABSOFT (Maurer et al. 2008), which is
implemented as an extension of the statistical software R (R
Development Core Team 2004).

Statistical analyses: The comparison of statistical analyses
concerning the power 1� b* requires an equal empirical type
I error rate a*. To meet this requirement, I applied the fol-
lowing two-step procedure for QTL detection, which corre-
sponds to that described by Stich et al. (2009). In a first step,
stepwise multiple linear regression implemented in PLABQTL
(Utz and Melchinger 1996) was used to select a set of
cofactors based on the Schwarz (1978) Bayesian criterion,
using the model

y ¼ m 1
X

i

bixi 1 e;

where y is the vector of the phenotypic values of all RILs, m is
the intercept, bi is the regression coefficient of the ith marker
locus, xi is an incidence vector of the genotypes of the RILs at
the ith marker, and e is the vector of residual errors. I assumed

that all RILs are genotyped with such a high number of
markers that each QTL has a marker that is in complete LD
with the QTL. Therefore, all SNPs, inclusive of those treated as
QTL, were included in the QTL detection procedure.

In the second step, I calculated a P-value for the association
of each marker q with the phenotypic value for an F -test with a
full model against a reduced model,

y ¼ m 1 bqxq 1
X

c 6¼q

bcxc 1 e;

where bq (bc) is the regression coefficient of the qth marker
locus (or cth cofactor) and xq (xc) is an incidence vector of the
genotypes of the RILs at the qth marker (cth cofactor). The c 6¼
q in the above formula indicates that from the total set of
cofactors only those cofactors are used in the F-test of a specific
marker that are not identical to the marker under consider-
ation. This constraint is inevitable to detect also those QTL for
which a cofactor was selected in the first step.

In addition to the above-described procedure for QTL
detection, I used a procedure that accounts for the structure of
the simulated RIL populations by including the mean value of
the RILs derived from each cross (cf. Yu et al. 2008) in the
model of each of the two above-described steps.

For each combination of N, l, and h2 examined for each
mating design, the nominal a-level was chosen in such a way
that the empirical type I error rate a* was 0.01 (Table S1). Due
to the fact that none of the simulated QTL was monomorphic
in any of the examined scenarios, the power for QTL detec-
tion (1 � b*) was calculated on the basis of this a-level as the
average proportion of QTL correctly identified from the total
number of QTL l.

RESULTS

For maize, the average map distance between the 653
SNP markers was 2.4 cM, whereas for A. thaliana the
average map distance was 0.6 cM. The pairwise genetic
dissimilarity among the 26 maize inbreds ranged from
0.25 to 0.42, where for A. thaliana values between 0.16
and 0.31 were observed. For maize, the average fre-
quency of the allele of the reference parent B73 was 0.81
in the RILs of the REF design and ranged from 0.63 to
0.66 in the RILs of all other designs. In contrast, the
frequency of the allele of the A. thaliana reference
parent Col-0 was 0.89 in the RILs of the REF design and
ranged from 0.76 to 0.79 in the RILs of all other designs.

For the 1250 RILs derived from the REF design of
maize, a power to detect QTL 1 � b* of 0.603 was ob-
served for the scenario with l ¼ 25 QTL and h2 ¼ 0.5
(Table 2). The duplication or quadruplication of the
number of QTL from 25 to 50 or 100 resulted in a
decrease of 1� b* to about three-fourths or one-third of
the initial value, respectively. For l ¼ 25 QTL, an
increase of h2 from 0.5 to 0.8 resulted in an increase of
1 � b* of about one half, where this increase was even
more pronounced for l¼ 50 and 100 than for l¼ 25. The
duplication or quadruplication of the number of RILs N
from 1250 to 2500 or 5000 resulted in a small increase of
1 � b* for l ¼ 25, a medium increase for l ¼ 50, and a
large increase for l ¼ 100. Furthermore, the increase of
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1 � b* was more pronounced for h2 ¼ 0.5 than for h2 ¼
0.8. Across all scenarios of the REF design of maize, the
nominal a-level ranged from 0.0002 (N¼ 1250; l¼ 100;
h2¼ 0.5) to 0.0133 (N¼ 5000; l¼ 25; h2¼ 0.8) (Table S1).

The 1 � b* trends observed for RIL populations
derived from the non-REF designs upon changes of l, h2,
and N were similar to that found for the REF design
(Table 2). For N ¼ 1250, the ranking of the various
designs with respect to the 1 � b* values across all
examined levels of l and h2 was FCT . DIA . DRR .

DB60 . SRR . DB30 . RRR . IRR . DB15 . REF. The
duplication or quadruplication of N from 1250 to 2500
or 5000 resulted in a shift of FCT to rank four and of
DB30 to rank seven. The trends of the nominal a-level
observed for RIL populations derived from the non-REF
designs upon changes of l, h2, and N were similar to that
found for the REF design.

Across all examined scenarios, the 1 � b* values
observed for A. thaliana were between one-tenth and
one-fifth lower than those observed for maize (Table 3).
The 1 � b* trends observed for A. thaliana RIL popu-
lations derived from all designs upon changes of l, h2,
and N were similar to those found for maize. For A.
thaliana, the ranking of the examined designs with
respect to the 1� b* values across all examined levels of
l, h2, and N was FCT . DIA . DB60 . DRR . SRR .

DB30 . RRR . DB15 . IRR . REF. The trends of the
nominal a-level observed for A. thaliana RIL popula-
tions were similar to those found for maize.

Decreasing the number of parental inbreds involved
in the development of RIL populations of maize re-
sulted in a decrease of 1 � b* (Figure 1). This decrease
of 1 � b* was more pronounced for A. thaliana than for
maize. For both species, the decrease of 1� b* upon the

TABLE 2

Power to detect QTL (a* ¼ 0.01) and the corresponding standard error for different numbers N of maize recombinant inbred
lines derived from different mating designs: reference (REF), diallel (DIA), factorial (FCT), single round-robin (SRR), double

round-robin (DRR), reduced round-robin (RRR), independent round-robin (IRR), and distance-based (DB) designs

25 QTL 50 QTL 100 QTL
Mating
design h2 ¼ 0.5 h2 ¼ 0.8 h2 ¼ 0.5 h2 ¼ 0.8 h2 ¼ 0.5 h2 ¼ 0.8

N ¼ 1250
REF 0.603 (0.0090) 0.961 (0.0037) 0.459 (0.0078) 0.934 (0.0042) 0.189 (0.0060) 0.888 (0.0047)
DIA 0.694 (0.0079) 0.981 (0.0028) 0.590 (0.0058) 0.979 (0.0024) 0.381 (0.0085) 0.978 (0.0014)
FCT 0.706 (0.0083) 0.986 (0.0023) 0.591 (0.0072) 0.978 (0.0021) 0.376 (0.0078) 0.978 (0.0016)
SRR 0.678 (0.0082) 0.986 (0.0023) 0.574 (0.0071) 0.977 (0.0021) 0.348 (0.0079) 0.976 (0.0019)
DRR 0.692 (0.0073) 0.982 (0.0028) 0.585 (0.0068) 0.976 (0.0022) 0.373 (0.0082) 0.979 (0.0016)
RRR 0.677 (0.0080) 0.982 (0.0030) 0.553 (0.0072) 0.972 (0.0028) 0.328 (0.0076) 0.967 (0.0042)
IRR 0.661 (0.0086) 0.978 (0.0033) 0.535 (0.0071) 0.965 (0.0030) 0.302 (0.0078) 0.970 (0.0018)
DB15 0.658 (0.0076) 0.973 (0.003) 0.529 (0.0075) 0.968 (0.0026) 0.284 (0.0073) 0.954 (0.0025)
DB30 0.692 (0.0077) 0.983 (0.0024) 0.559 (0.0067) 0.973 (0.0023) 0.330 (0.0067) 0.972 (0.0017)
DB60 0.686 (0.0084) 0.985 (0.0025) 0.589 (0.0061) 0.977 (0.0023) 0.352 (0.0084) 0.979 (0.0015)

N ¼ 2500
REF 0.734 (0.0072) 0.986 (0.0024) 0.600 (0.0073) 0.977 (0.0021) 0.317 (0.0072) 0.968 (0.0021)
DIA 0.816 (0.0073) 0.992 (0.0018) 0.753 (0.0059) 0.993 (0.0013) 0.639 (0.0079) 0.992 (0.0010)
FCT 0.799 (0.0067) 0.993 (0.0015) 0.737 (0.0062) 0.992 (0.0013) 0.631 (0.0084) 0.992 (0.0008)
SRR 0.790 (0.0080) 0.994 (0.0015) 0.734 (0.0071) 0.993 (0.0014) 0.596 (0.0084) 0.993 (0.0007)
DRR 0.808 (0.0068) 0.994 (0.0014) 0.756 (0.0063) 0.991 (0.0015) 0.636 (0.0079) 0.993 (0.0008)
RRR 0.796 (0.0076) 0.992 (0.0017) 0.718 (0.0059) 0.987 (0.0018) 0.600 (0.0082) 0.992 (0.0010)
IRR 0.768 (0.0078) 0.991 (0.0019) 0.698 (0.0064) 0.991 (0.0014) 0.546 (0.0100) 0.991 (0.0010)
DB15 0.773 (0.0078) 0.992 (0.0017) 0.686 (0.0066) 0.986 (0.0017) 0.482 (0.0091) 0.986 (0.0011)
DB30 0.805 (0.0064) 0.992 (0.0017) 0.720 (0.0064) 0.989 (0.0012) 0.563 (0.0093) 0.987 (0.0011)
DB60 0.810 (0.0067) 0.996 (0.0014) 0.749 (0.0060) 0.994 (0.0011) 0.626 (0.0079) 0.993 (0.0008)

N ¼ 5000
REF 0.829 (0.0079) 0.992 (0.0017) 0.754 (0.0074) 0.993 (0.0013) 0.515 (0.0090) 0.991 (0.0010)
DIA 0.910 (0.0064) 0.997 (0.0010) 0.883 (0.0052) 0.998 (0.0005) 0.866 (0.0051) 0.997 (0.0006)
FCT 0.900 (0.0060) 0.997 (0.0010) 0.871 (0.0049) 0.997 (0.0008) 0.858 (0.0053) 0.998 (0.0005)
SRR 0.901 (0.0061) 0.997 (0.0010) 0.866 (0.0048) 0.997 (0.0007) 0.842 (0.0065) 0.998 (0.0006)
DRR 0.918 (0.0044) 0.998 (0.0009) 0.872 (0.0045) 0.998 (0.0008) 0.844 (0.0057) 0.997 (0.0005)
RRR 0.890 (0.0066) 0.996 (0.0013) 0.857 (0.0057) 0.996 (0.0008) 0.816 (0.0073) 0.996 (0.0006)
IRR 0.889 (0.0066) 0.996 (0.0013) 0.836 (0.0059) 0.996 (0.0010) 0.772 (0.0076) 0.996 (0.0006)
DB15 0.886 (0.0065) 0.995 (0.0013) 0.827 (0.0059) 0.994 (0.0011) 0.753 (0.0073) 0.994 (0.0007)
DB30 0.897 (0.0050) 0.997 (0.0012) 0.851 (0.0056) 0.994 (0.0012) 0.792 (0.0071) 0.997 (0.0005)
DB60 0.909 (0.0052) 0.997 (0.0011) 0.878 (0.0054) 0.997 (0.0008) 0.848 (0.0058) 0.997 (0.0005)
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reduction of I was stronger for scenarios with a low
number of QTL and high values for h2 than vice versa
(Figure 1, A and B). Across all examined levels of l and
h2, the decrease of 1 � b* upon the reduction of I was
slightly more pronounced for the DIA design than for
the REF design, whereas N did not influence this trend.

Across all examined scenarios, the 1 � b* values
observed for maize as well as A. thaliana on the basis of
the QTL detection procedure that takes into account
the structure of the RIL populations were between one-
third and one-fourth lower than those observed for the
QTL detection that ignores this structure (data not
shown). For the former QTL detection procedure, the
1 � b* trends observed with respect to the examined
mating designs as well l, h2, and N were similar to those
found for the latter QTL detection procedure.

DISCUSSION

In contrast to previous joint linkage and LD studies,
which focused on mining existing mapping population
in pedigrees or heterogeneous stocks (e.g., Meuwissen

et al. 2002), the NAM strategy proposed by Yu et al.
(2008) aims to create an integrated mapping popula-
tion specifically designed for a full genome scan for
QTL. One idea of this strategy is that with common-
parent-specific (CPS) markers genotyped for the paren-
tal inbreds and the RILs, the inheritance of chromosome
segments nested within two adjacent CPS markers
can be inferred through linkage. Genotyping the
founders with additional high-density markers enables
the projection of genetic information, capturing LD
information, from the parental inbreds to the RILs.

TABLE 3

Power to detect QTL (a* ¼ 0.01) and the corresponding standard error for different numbers N of Arabidopsis thaliana
recombinant inbred lines derived from different mating designs: reference (REF), diallel (DIA), factorial (FCT),

single round-robin (SRR), double round-robin (DRR), reduced round-robin (RRR), independent round-robin (IRR),
and distance-based (DB) designs

25 QTL 50 QTL 100 QTL
Mating
design h2 ¼ 0.5 h2 ¼ 0.8 h2 ¼ 0.5 h2 ¼ 0.8 h2 ¼ 0.5 h2 ¼ 0.8

N ¼ 1250
REF 0.514 (0.0108) 0.905 (0.0067) 0.337 (0.0074) 0.854 (0.0065) 0.137 (0.0044) 0.626 (0.0088)
DIA 0.615 (0.0095) 0.966 (0.0039) 0.492 (0.0072) 0.958 (0.0034) 0.264 (0.0063) 0.941 (0.0040)
FCT 0.643 (0.0103) 0.969 (0.0038) 0.488 (0.0078) 0.954 (0.0035) 0.250 (0.0057) 0.938 (0.0036)
SRR 0.609 (0.0095) 0.966 (0.0036) 0.460 (0.0075) 0.956 (0.0030) 0.231 (0.0054) 0.929 (0.0039)
DRR 0.624 (0.0082) 0.968 (0.0039) 0.467 (0.0081) 0.955 (0.0031) 0.241 (0.0063) 0.940 (0.0038)
RRR 0.597 (0.0085) 0.961 (0.0038) 0.446 (0.0063) 0.937 (0.0039) 0.211 (0.0057) 0.915 (0.0042)
IRR 0.576 (0.0107) 0.948 (0.0052) 0.406 (0.0079) 0.921 (0.0052) 0.170 (0.0055) 0.856 (0.0071)
DB15 0.576 (0.0101) 0.930 (0.0053) 0.421 (0.0067) 0.911 (0.0041) 0.201 (0.0062) 0.891 (0.0042)
DB30 0.603 (0.0089) 0.957 (0.0047) 0.450 (0.0066) 0.938 (0.0035) 0.221 (0.0063) 0.923 (0.0033)
DB60 0.627 (0.0083) 0.972 (0.0033) 0.481 (0.0077) 0.953 (0.0033) 0.257 (0.0066) 0.948 (0.0030)

N ¼ 2500
REF 0.640 (0.0101) 0.958 (0.0043) 0.473 (0.0082) 0.937 (0.0040) 0.218 (0.0050) 0.831 (0.0065)
DIA 0.766 (0.0084) 0.991 (0.0020) 0.636 (0.0076) 0.984 (0.0019) 0.430 (0.0077) 0.987 (0.0012)
FCT 0.754 (0.0077) 0.990 (0.0020) 0.655 (0.0079) 0.989 (0.0014) 0.436 (0.0078) 0.986 (0.0013)
SRR 0.741 (0.0090) 0.988 (0.0023) 0.622 (0.0078) 0.984 (0.0018) 0.397 (0.0067) 0.985 (0.0013)
DRR 0.744 (0.0085) 0.990 (0.0023) 0.632 (0.0065) 0.983 (0.0019) 0.401 (0.0068) 0.984 (0.0014)
RRR 0.736 (0.0088) 0.986 (0.0022) 0.608 (0.0079) 0.980 (0.0024) 0.366 (0.0073) 0.978 (0.0016)
IRR 0.709 (0.0096) 0.983 (0.0028) 0.547 (0.0088) 0.975 (0.0023) 0.302 (0.0060) 0.967 (0.0023)
DB15 0.692 (0.0091) 0.958 (0.0039) 0.571 (0.0074) 0.949 (0.0032) 0.358 (0.0088) 0.948 (0.0023)
DB30 0.728 (0.0093) 0.981 (0.0028) 0.608 (0.0064) 0.980 (0.0018) 0.383 (0.0079) 0.976 (0.0015)
DB60 0.750 (0.0081) 0.991 (0.0020) 0.650 (0.0071) 0.987 (0.0016) 0.414 (0.0083) 0.987 (0.0012)

N ¼ 5000
REF 0.744 (0.0094) 0.983 (0.0026) 0.632 (0.0076) 0.976 (0.0021) 0.338 (0.0067) 0.947 (0.0029)
DIA 0.863 (0.0070) 0.997 (0.0012) 0.796 (0.0070) 0.995 (0.0011) 0.667 (0.0085) 0.996 (0.0006)
FCT 0.864 (0.0068) 0.999 (0.0007) 0.804 (0.0060) 0.996 (0.0010) 0.660 (0.0083) 0.996 (0.0005)
SRR 0.851 (0.0069) 0.997 (0.0013) 0.783 (0.0074) 0.993 (0.0012) 0.626 (0.0084) 0.996 (0.0006)
DRR 0.854 (0.0067) 0.998 (0.0009) 0.785 (0.0072) 0.993 (0.0011) 0.629 (0.0079) 0.996 (0.0006)
RRR 0.842 (0.0072) 0.996 (0.0014) 0.751 (0.0075) 0.993 (0.0013) 0.592 (0.0092) 0.995 (0.0008)
IRR 0.830 (0.0084) 0.992 (0.0020) 0.707 (0.0083) 0.993 (0.0015) 0.486 (0.0098) 0.990 (0.0012)
DB15 0.807 (0.0083) 0.965 (0.0037) 0.728 (0.0069) 0.965 (0.0026) 0.577 (0.0095) 0.963 (0.0017)
DB30 0.844 (0.0070) 0.994 (0.0015) 0.765 (0.0070) 0.994 (0.0011) 0.610 (0.0098) 0.993 (0.0007)
DB60 0.866 (0.0062) 0.996 (0.0012) 0.794 (0.0059) 0.996 (0.0010) 0.652 (0.0094) 0.996 (0.0006)
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This approach is expected to allow high-resolution
QTL mapping with a relatively low number of markers
in the RILs.

However, using other designs than the REF design,
the CPS marker strategy is not straightforward to im-
plement. Therefore, in the current study, I assumed that
all RILs are genotyped with such a high number of
markers that each QTL has a marker that is in complete
LD with the QTL. Due to the fast progress of genome
sequencing techniques (Shendure et al. 2004), this is a
realistic assumption in the foreseeable future. There-
with, it will be possible to exploit both recent and

ancient recombination in RIL populations derived from
other mating designs than the REF design.

QTL detection procedures for NAM populations: A
NAM population consists of a large number of segre-
gating populations (Table 1). The existence of alleles
that are specific for some of the segregating populations
can lead to experimentwide LD between the causal gene
and some unlinked markers. This, however, has the
potential to increase the rate of false positive associa-
tions when applying QTL detection procedures that
neglect the structure of the NAM population (Yu et al.
2008). Therefore, I used in addition to such a QTL

Figure 1.—Power to detect QTL (a* ¼ 0.01) of maize (A and C) and A. thaliana (B and D) recombinant inbred line (RIL)
populations. (A and B) N ¼ 2500 RILs were derived from the reference (REF) design using various numbers of parental inbreds.
(C and D) Different numbers of RILs N were derived from the REF and diallel (DIA) designs using various numbers of parental
inbreds and assuming 50 QTL and h2 ¼ 0.5.
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detection procedure a procedure that accounts for the
structure of the simulated RIL populations by including
the mean value of the RILs derived from each cross as a
covariate. However, I observed for none of the exam-
ined mating designs a considerable difference with
respect to the nominal a-level, which is required to
obtain an empirical a-level of 0.01, between the two
examined QTL detection procedures. This finding
suggested that the above-mentioned issue of experi-
mentwide LD between the causal gene and some un-
linked markers might be neglected in the current study.
Furthermore, because I observed for the QTL detection
procedure neglecting the structure of the NAM pop-
ulation considerably higher 1 � b* estimates than for
the QTL detection procedure accounting for it, only the
results of the former method are discussed below.
Nevertheless, further research on the most appropriate
QTL detection procedure for NAM populations is
required.

Power to detect QTL under different mating designs
in maize: Across all the examined scenarios of maize,
the lowest power 1 � b* was observed for the RILs
derived from the REF design (Table 2). This observation
is in accordance with results of Stich et al. (2007), who
compared RIL populations derived from different
designs with respect to their power to detect three-way
epistatic interactions. These findings might be attri-
butable to the fact that the average frequency of the
common parent allele was closer to 1 for RILs derived
from the REF design than for all other designs. Crossing
schemes that result in RILs with an average allele
frequency strongly deviating from 0.5 have a low power
to detect QTL because the probability that some QTL
alleles are present in only a very low number of RILs is
maximized (Verhoeven et al. 2006).

Despite this disadvantage of the REF design, the
project ‘‘molecular and functional diversity of the maize
genome’’ applied this crossing scheme to establish a
NAM population in maize (Yu et al. 2008). The main
advantage of this crossing scheme is that crossing the 25
diverse inbreds to the inbred B73, which is well adapted
to U.S. environmental conditions, facilitates the de-
velopment as well as the phenotyping of RILs within the
United States (Yu et al. 2008). This issue, however, might
be of lower importance for the choice of the most ap-
propriate crossing scheme to establish NAM popula-
tions (i) based on another set of parental maize inbreds
as well as (ii) for other plant species with a lower genetic
diversity than that of the parental inbreds used in the
project ‘‘molecular and functional diversity of the maize
genome.’’ Therefore, the 1 � b* estimates observed for
the other crossing schemes are discussed below.

My results revealed a lower power 1 � b* for the DB
designs than for the DIA, FCT, and DRR crossing
schemes (Table 2). This observation is in contrast to
results of Stich et al. (2007), who observed for optimally
allocated DB designs a higher power to detect three-way

epistatic interactions than for the DIA crossing scheme.
The development of RIL populations from pairs of
parental inbreds, which were selected to maximize the
pairwise genetic dissimilarity, increases indeed the
average probability that QTL are segregating. Neverthe-
less, such a selection can also lead to the fixation of some
QTL, because in contrast to the other designs not all
parental inbreds are used for the establishment of the
segregating populations. In scenarios with a low power
for QTL detection such as that of Stich et al. (2007), the
fixation of some QTL has only marginal effects and,
thus, the increased average probability that QTL are
segregating of DB designs can be used. However, in
scenarios with a power 1 � b* close to 1, like in the
present study, it is indispensable that all QTL are
polymorphic. Thus, balanced crossing schemes such as
DIA, FCT, or DRR might be superior to DB designs in
scenarios with a high power to detect QTL and vice
versa.

Across all scenarios of maize, my results revealed a
higher power 1� b* for RILs derived from the crossing
schemes DIA, FCT, and DRR than for the SRR, RRR, and
IRR mating designs (Table 2). This observation cannot
be explained by differences in allele frequencies, as
the RILs derived from all designs except REF showed
similar allele frequencies. Partly, my finding might be
explained by the large number of small populations
derived from the former designs (Table 1). This expla-
nation is in contrast to results of Verhoeven et al.
(2006). The different findings can be explained by the
different assumptions underlying the simulations.
First, Verhoeven et al. (2006) detected QTL within
individual RIL populations whereas in my study QTL
were detected across all RIL populations. Second,
Verhoeven et al. (2006) assumed a distinct allele for
each parental inbred. In these cases, large numbers of
small populations show, due to the increased probability
that some QTL alleles have only a very small class size, a
lower power to detect QTL than do a small number of
large populations. However, the assumptions made by
Verhoeven et al. (2006) ignore the fact that for real data
not all QTL segregate in every population (Xu 1996). In
my study, this fact was considered by using SNP data of
parental inbreds as a basis of the simulations. Conse-
quently, the mating designs resulting in a large number
of small populations have indeed the above-mentioned
disadvantage but this is compensated by the large
number of individuals within populations segregating
for the QTL.

For maize, the results of my study indicated that the
DIA and FCT crossing schemes result in the highest
power for QTL detection. However, to establish the
number of crosses required for these mating designs
might be realistic only for an outcrossing species such as
maize. In contrast, the number of crosses necessary for
the DRR mating design are considerably lower than that
required for the DIA and FCT crossing schemes (Table
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1). Nevertheless, for all three mating designs similar 1�
b* estimates were observed. These findings suggested
that the DRR crossing scheme might be the most ap-
propriate design to establish NAM populations in autog-
amous or partial autogamous species such as barley,
wheat, or rapeseed.

Factors influencing the power for QTL detection
and the relative performance of crossing schemes to
establish NAM populations: Theoretical considerations
suggest that the power for QTL detection 1 � b* but
also the relative performance of different crossing
schemes to establish NAM populations might be influ-
enced by (i) the plant species examined, (ii) the genetic
architecture of the trait under consideration, (iii) the
total population size, (iv) the inbreeding procedure,
and (v) the number of parental genotypes used.

Plant species: Across all crossing schemes, lower 1� b*
estimates were observed for A. thaliana NAM popula-
tions than for maize NAM populations of similar size
(Tables 2 and 3). This finding might be due to the
higher frequency of the reference allele in A. thaliana
compared with the same design of maize. Another
explanation might be the four times lower average
map distance between the SNP markers in A. thaliana
compared with that in maize. Thereby, in A. thaliana, the
recombination between the markers is reduced, which
is expected to increase the type I error rate. This
decreases the power for QTL detection, however, when
fixing the empirical type I error rate as described in
materials and methods.

My results revealed only slight differences between
the rankings of the various crossing schemes with re-
spect to 1 � b* for maize and A. thaliana. This ob-
servation suggested that my conclusions regarding the
most appropriate crossing scheme might also be valid
for other plant species.

Genetic architecture of the trait: A higher-power 1 � b*
was observed for traits influenced by a low number of
QTL than for traits influenced by a high number of QTL
(Tables 2 and 3). Similarly, increasing h2 from 0.5 to 0.8
resulted for all examined designs and all numbers of
QTL in a considerably higher power to detect QTL.
These observations are in accordance with quantitative
genetic theory and previous studies (e.g., Van Ooijen

1992; Beavis 1994; Falconer and Mackay 1996) and
can be explained by the fact that in the former case each
QTL explains a higher proportion of the phenotypic
variance than in the latter.

The ranking of the various crossing schemes differed
slightly among the three QTL scenarios as well as
between the two heritability scenarios. However, the
observed differences followed no clear trend.

Total population size: Across all examined designs, a
higher power for QTL detection was observed for
populations with a higher number of entries (Tables 2
and 3). This observation is in accordance with results
of Schön et al. (2004) and can be explained by the fact

that in this case the allele effects are estimated more
precisely.

The ranking of the various crossing schemes differed
only slightly among the three levels examined for the total
number of RILs. Therefore, I expect that my findings are
valid for a broad range of total population sizes.

Inbreeding procedure: The use of inbred genotypes in
QTL mapping experiments has several advantages
(Burr et al. 1988; Lander and Botstein 1989). Due
to the short generation time, such individuals are
created for A. thaliana by repeated self-pollination. Most
crop species, however, have considerably longer gener-
ation times. Therefore, the creation of fully homozy-
gous genotypes in one step via doubled-haploid (DH)
induction ( Jensen 1975; Bajaj 1977; Bordes et al. 1997;
Wenzel et al. 1977) is an interesting alternative to
repeated self-pollination and, thus, was examined in
my study (data not shown).

My results revealed a power for QTL detection of DH
populations derived from F1 genotypes that is similar to
that observed for RIL populations of identical size.
However, I observed across all the examined scenarios a
considerably higher power for DH populations that
were derived from F2 genotypes. This observation might
be explained by the additional recombinations that
occurred before the induction of DHs (cf. Bernardo

2009). Nevertheless, the use of RILs in a NAM context is
justified if the ultimate objective of the experiment is to
clone the QTL. In this case, the use of heterogenous
inbred families (Tuinstra et al. 1997) derived from
RILs proved to be a powerful tool (cf. Fridman et al.
2000).

Number of parental genotypes: Across all examined
scenarios of maize and Arabidopsis, I observed a higher
power 1 � b* for NAM populations that were estab-
lished using a high number of parental inbreds than a
low number (Figure 1). This finding can be explained
by the fact that a higher number of parental inbreds
increases the number of polymorphic QTL. Therefore,
my findings indicate to use a high number of parental
inbreds for the creation of NAM populations.

For A. thaliana, a linear increase of 1 � b* was
observed with an increase of the parental inbreds from
5 to 20. In contrast, for maize, the increase of the power
for QTL detection was high for an increase of the
parental inbreds from 5 to 14 but was considerably lower
for an increase from 14 to 26. These observations might
be due to the higher number of rare alleles in A. thaliana
compared with maize.

For the REF as well as the DIA crossing scheme, I
observed a similar increase of 1 � b* with an increasing
number of parental inbreds. This finding suggested that
the ranking of the crossing schemes with respect to 1 �
b* is not or only marginally influenced by the number of
parental inbreds used.

Conclusions: My finding of considerable differences
in 1 � b* estimates between NAM populations of the
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same size but created on the basis of different crossing
schemes illustrated the potential to improve the power
for QTL detection without increasing the total resources
necessary for a QTL mapping experiment. For maize
as well as A. thaliana, I observed the highest power for
QTL detection for the DIA and FCT crossing schemes.
However, for species with a high genetic diversity, such
as maize, it will be difficult to generate high-quality
phenotypic values in field trials with RIL populations
derived from crosses between diverse material. Further-
more, these designs require creation of a high number
of crosses, which might be difficult in autogamous or
partial autogamous species such as barley, wheat, or
rapeseed. For these species, the DRR crossing scheme
might be a promising alternative, because it requires the
creation of only a relatively low number of crosses, while
almost the same 1 � b* estimates were observed as the
DIA and FCT designs. Finally, my results clearly in-
dicated that it is advantageous to create NAM popula-
tions from a large number of parental inbreds.
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LITERATURE CITED

Alonso, J. M., A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen et al.,
2003 Genome-wide insertional mutagenesis of Arabidopsis
thaliana. Science 301: 653–657.

Bajaj, Y. P. S., 1977 In vitro induction of haploids in wheat (Triticum
aestivum L.). Crop Improv. 4: 54–64.

Beavis, W. D., 1994 The power and deceit of QTL experiments: les-
sons from comparative QTL studies, pp. 250–266 in 49th Annual
Corn and Sorghum Industry Research Conference. American Seed
Trade Association, Washington, DC.

Bernardo, R., 2009 Should maize doubled haploids be induced
among F1 or F2 plants? Theor. Appl. Genet. 119: 255–262.

Bordes, J., R. D. de Vaulx, A. Lapierre and M. Pollacsek,
1997 Haplodiploidization of maize (Zea mays L.) through in-
duced gynogenesis assisted by glossy markers and its use in breed-
ing. Agronomie 17: 291–297.

Buckler, E. S., J. M. Holland, P. J. Bradbury, C. B. Acharya, P. J.
Brown et al., 2009 The genetic architecture of maize flowering
time. Science 325: 714–718.

Burr, B., F. A. Burr, K. H. Thompson, M. C. Albertsen and C. W.
Stuber, 1988 Gene mapping with recombinant inbreds in
maize. Genetics 118: 519–526.

Clark, R. M., G. Schweikert, C. Toomajian, S. Ossowski, G. Zeller

et al., 2007 Common sequence polymorphisms shaping genetic
diversity in Arabidopsis thaliana. Science 317: 338–342.

Comstock, R. E., and H. F. Robinson, 1948 The components of ge-
netic variance in populations of biparental progenies and their
use in estimating the average degree of dominance. Biometrics
4: 254–266.

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantita-
tive Genetics, Ed. 4. Longman Group, London.

Flint-Garcia, S. A., A. Thuillet, J. Yu, G. Pressoir, S. M. Romero

et al., 2005 Maize association population: a high resolution plat-
form for QTL dissection. Plant J. 44: 1054–1064.

Fridman, E., T. Pleban and D. Zamir, 2000 A recombination hotspot
delimits a wild-species quantitative trait locus for tomato sugar

content to 484 bp within an invertase gene. Proc. Natl. Acad.
Sci. USA 97: 4718–4723.

Griffing, B., 1956 Concept of general and specific combining abil-
ity in relation to diallel crossing systems. Aust. J. Biol. Sci. 9: 463–
493.

Holland, J. B., 2007 Genetic architecture of complex traits in
plants. Curr. Opin. Plant Biol. 10: 156–161.

Jensen, C. J., 1975 Barley monoploids and double monoploids:
techniques and experience, pp. 316–345 in Barley Genetics IV,
edited by H. Gaul. Thiemig, München, Germany.

Kim, S., V. Plagnol, T. T. Hu, C. Toomajian, R. M. Clark et al.,
2007 Recombination and linkage disequilibrium in Arabidopsis
thaliana. Nat. Genet. 39: 1151–1155.

Kraakman, A. T. W., R. E. Niks, P. M. M. M. Van den Berg, P. Stam

and F. A. Eeuwijk, 2004 Linkage disequilibrium mapping of
yield and yield stability in modern spring barley cultivar. Genetics
168: 435–446.

Lande, R., and R. Thompson, 1990 Efficiency of marker-assisted
selection in the improvement of quantitative traits. Genetics
124: 743–756.

Lander, E. S., and D. Botstein, 1989 Mapping Mendelian factors
underlying quantitative traits using RFLP linkage maps. Genetics
121: 185–199.

Liu, K., M. Goodman, S. Muse, J. S. Smith, E. Buckler et al.,
2003 Genetic structure and diversity among maize inbred lines
as inferred from DNA microsatellites. Genetics 165: 2117–2128.

Maurer, H. P., A. E. Melchinger and M. Frisch, 2008 Population
genetical simulation and data analysis with Plabsoft. Euphytica
161: 133–139.

McMullen, M. M., S. Kresovich, H. Sanchez Villeda, P. Bradbury,
H. Li et al., 2009 Genetic properties of the maize nested asso-
ciation mapping population. Science 325: 737–740.

Meuwissen, T. H., A. Karlsen, S. Lien, I. Olsaker and M. E.
Goddard, 2002 Fine mapping of a quantitative trait locus for
twinning rate using combined linkage and linkage disequilib-
rium mapping. Genetics 161: 373–379.

Nei, M., and W. H. Li, 1979 Mathematical model for studying ge-
netic variation in terms of restriction endonucleases. Proc. Natl.
Acad. Sci. USA 76: 5269–5273.

Nordborg, M., T. T. Hu, Y. Ishino, J. Jhaveri, C. Toomajian et al.,
2005 The pattern of polymorphism in Arabidopsis thaliana.
PLoS Biol. 3: e196.

R Development Core Team, 2004 R: A Language and Environment
for Statistical Computing. Vienna.

Schön, C. C., H. F. Utz, S. Groh, B. Truberg, S. Openshaw et al.,
2004 Quantitative trait locus mapping based on resampling
in a vast maize testcross experiment and its relevance to quanti-
tative genetics for complex traits. Genetics 167: 485–498.

Schwarz, G., 1978 Estimating the dimension of a model. Ann. Stat.
6: 461–464.

Shendure, J., R. D. Mitra, C. Varma and G. M. Church,
2004 Advanced sequencing technologies: methods and goals.
Nat. Rev. Genet. 5: 335–344.

Singer, T., Y. Fan, H. S. Chang, T. Zhu, S. P. Hazen et al., 2006 A
high-resolution map of Arabidopsis recombinant inbred lines by
whole-genome exon array hybridization. PLoS Genet. 2: e144.

Stich, B., J. Yu, A. E. Melchinger, H.-P Piepho, H. F. Utz et al.,
2007 Power to detect higher-order epistatic interactions in a
metabolic pathway using a new mapping strategy. Genetics 176:
563–570.

Stich, B., H. F. Utz, H.-P. Piepho, H. P. Maurer and A. E. Melchinger,
2009 Optimum allocation of resources for QTL detection using
a nested association mapping strategy in maize. Theor. Appl.
Genet. (in press).

Tuinstra, M. R., G. Ejeta and P. B. Goldsbrough,
1997 Heterogeneous inbred family (HIF) analysis: a method
for developing near-isogenic lines that differ at quantitative trait
loci. Theor. Appl. Genet. 95: 1005–1011.

Utz, H. F., and A. E. Melchinger, 1996 PLABQTL: a program for
composite interval mapping of QTL. J. Quant. Trait Loci 2: 1–5.

van Ooijen, J. W., 1992 Accuracy of mapping quantitative trait loci
in autogamous species. Theor. Appl. Genet. 84: 803–811.

Verhoeven, K. J. F., J.-L. Jannink and L. M. McIntyre, 2006 Using
mating designs to uncover QTL and the genetic architecture of
complex traits. Heredity 96: 139–149.

Comparison of Mating Designs for Nested Association Mapping 1533



Wenzel, G., F. Hoffman and E. Thomas, 1977 Anther culture as a
breeding tool in rape. I. Ploidy level and phenotype of androge-
netic plants. Z. Pflanzenzücht. 78: 149–155.

Willer, C. J., S. Sanna, A. U. Jackson, A. Scuteri, L. L. Bonnycastle

et al., 2008 Newly identified loci that influence lipid concentra-
tions and risk of coronary artery disease. Nat. Genet. 40: 161–169.

Wilson, L. M., S. R. Whitt, A. M Ibáñez, T. R. Rocheford, M. M.
Goodman et al., 2004 Dissection of maize kernel composition
and starch production by candidate gene association. Plant Cell
16: 2719–2733.

Xu, S., 1996 Mapping quantitative trait loci using four-way crosses.
Genet. Res. 68: 175–181.

Yano, M., 2001 Genetic and molecular dissection of naturally occur-
ring variation. Curr. Opin. Plant Biol. 4: 130–135.

Yu, J., and E. Buckler, 2006 Genetic association mapping and ge-
nome organization of maize. Curr. Opin. Biotech. 17: 155–160.

Yu, J., J. B. Holland, M. D. McMullen and E. S. Buckler,
2008 Power analysis of an integrated mapping strategy: nested
association mapping. Genetics 138: 539–551.

Communicating editor: H. Zhao

1534 B. Stich



 
 
 

Supporting Information 
http://www.genetics.org/cgi/content/full/genetics.109.108449/DC1 

 

Comparison of Mating Designs for Establishing Nested Association 
Mapping Populations in Maize and Arabidopsis thaliana 

 

Benjamin Stich 
 
 

Copyright © 2009 by the Genetics Society of America 
DOI: 10.1534/genetics.109.108449 

 
 
 



B. Stich 2 SI 

 
 
 

 
 

 

Parent 1

Inbred 1

Inbred 1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

Pa
re

nt
 2

FCT
DB15

Parent 1

Pa
re

nt
 2

Inbred 1

Inbred 1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24
24

25

25

26

26

REF
DIA

Parent 1

Inbred 1

Inbred 1

2

2

3

3

4

4

5

5

6

6
7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

Pa
re

nt
 2

DB30

DB60

Parent 1

Inbred 1

Inbred 1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

Pa
re

nt
 2

SRR
DRR



B. Stich 3 SI 

 

 
 
 
 
FIGURE S1.—Mating designs examined in my study: Reference (REF), diallel (DIA), factorial (FCT), distance-based (DB), 

single round-robin (SRR), double round-robin (DRR), reduced round-robin (RRR), and independent round-robin (IRR) (DB) 
design. Black squares indicate the crosses from which a segregating population was derived. 
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File S1 

List of single nucleotide polymorphisms of Arabidopsis thaliana used in my study 

PERL0000013 PERL0000340 PERL0001224 PERL0002506 PERL0003960 PERL0005218 PERL0006265 PERL0007033 

PERL0008141 PERL0009147 PERL0010317 PERL0011472 PERL0012452 PERL0013496 PERL0014567 PERL0015748 

PERL0016790 PERL0018078 PERL0019120 PERL0020202 PERL0022118 PERL0023775 PERL0024721 PERL0025663 

PERL0027067 PERL0028498 PERL0029809 PERL0031513 PERL0032709 PERL0033700 PERL0034890 PERL0036066 

PERL0037438 PERL0039548 PERL0041187 PERL0042507 PERL0044551 PERL0045914 PERL0046935 PERL0048342 

PERL0049634 PERL0050357 PERL0052629 PERL0053843 PERL0055010 PERL0056230 PERL0057451 PERL0059209 

PERL0060871 PERL0063029 PERL0065573 PERL0067547 PERL0069358 PERL0070555 PERL0071709 PERL0073587  

PERL0074875 PERL0076092 PERL0077395 PERL0078788 PERL0079737 PERL0081310 PERL0082698 PERL0083757 

PERL0085910 PERL0088184 PERL0090833 PERL0094252 PERL0096331 PERL0097970 PERL0100124 PERL0102247 

PERL0105803 PERL0107833 PERL0109316 PERL0111572 PERL0114103 PERL0116421 PERL0119522 PERL0122067 

PERL0123763 PERL0125466 PERL0130015 PERL0133125 PERL0135933 PERL0137585 PERL0139671 PERL0141831 

PERL0143503 PERL0146421 PERL0148888 PERL0151975 PERL0154049 PERL0155355 PERL0156961 PERL0158464 

PERL0159792 PERL0161172 PERL0162350 PERL0163633 PERL0164740 PERL0166042 PERL0167475 PERL0168733 

PERL0170123 PERL0171888 PERL0172584 PERL0173734 PERL0174632 PERL0176100 PERL0177766 PERL0179573  

PERL0181760 PERL0184513 PERL0187441 PERL0189698 PERL0191305 PERL0193482 PERL0195826 PERL0197857 

PERL0200167 PERL0202526 PERL0204631 PERL0206238 PERL0208341 PERL0211113 PERL0213906 PERL0216220 

PERL0218976 PERL0221150 PERL0223348 PERL0225282 PERL0227866 PERL0229748 PERL0231261 PERL0232543 

PERL0233966 PERL0235333 PERL0236918 PERL0239115 PERL0240945 PERL0242213 PERL0243785 PERL0245397 

PERL0246884 PERL0248055 PERL0250470 PERL0251769 PERL0252788 PERL0253988 PERL0254863 PERL0255756 

PERL0256911 PERL0257779 PERL0258670 PERL0259468 PERL0260691 PERL0261767 PERL0262930 PERL0264117 

PERL0265609 PERL0266517 PERL0269216 PERL0269538 PERL0270429 PERL0271944 PERL0273072 PERL0275837  

PERL0277047 PERL0278893 PERL0280757 PERL0282401 PERL0284382 PERL0286458 PERL0289601 PERL0291899 

PERL0294182 PERL0296370 PERL0298369 PERL0300941 PERL0304513 PERL0306043 PERL0310008 PERL0312295 

PERL0315729 PERL0318803 PERL0321692 PERL0324326 PERL0326798 PERL0328390 PERL0329781 PERL0331429 

PERL0333297 PERL0335113 PERL0336631 PERL0338149 PERL0340031 PERL0341599 PERL0343092 PERL0344515 

PERL0345841 PERL0347159 PERL0348750 PERL0349363 PERL0350544 PERL0351768 PERL0353003 PERL0353925 

PERL0354826 PERL0355660 PERL0356740 PERL0357867 PERL0359109 PERL0360581 PERL0361772 PERL0363568 

PERL0364638 PERL0366048 PERL0367540 PERL0368999 PERL0370297 PERL0371122 PERL0371785 PERL0372642  

PERL0373961 PERL0375179 PERL0376043 PERL0376924 PERL0377783 PERL0378501 PERL0379324 PERL0380339 

PERL0381278 PERL0382622 PERL0383491 PERL0384341 PERL0385079 PERL0386236 PERL0386965 PERL0387834 

PERL0388733 PERL0389793 PERL0390568 PERL0391557 PERL0392632 PERL0393545 PERL0394521 PERL0395362 

PERL0396655 PERL0397784 PERL0398659 PERL0399140 PERL0400986 PERL0402119 PERL0403749 PERL0404908 

PERL0406622 PERL0408132 PERL0409235 PERL0410016 PERL0410863 PERL0411690 PERL0412881 PERL0413540 

PERL0414615 PERL0416059 PERL0417132 PERL0418329 PERL0419694 PERL0421044 PERL0422442 PERL0424186 

PERL0425503 PERL0426599 PERL0427848 PERL0429204 PERL0430650 PERL0431516 PERL0432753 PERL0433948  

PERL0434714 PERL0436220 PERL0437379 PERL0438725 PERL0439963 PERL0441818 PERL0443585 PERL0444826 

PERL0446053 PERL0447436 PERL0448880 PERL0450235 PERL0451521 PERL0453106 PERL0454188 PERL0455768 

PERL0457232 PERL0458941 PERL0460645 PERL0462072 PERL0463684 PERL0465842 PERL0467200 PERL0468765 

PERL0469971 PERL0471678 PERL0473070 PERL0474605 PERL0475865 PERL0477544 PERL0479058 PERL0481440 

PERL0483217 PERL0484713 PERL0486265 PERL0488616 PERL0492371 PERL0495569 PERL0497374 PERL0500354 
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PERL0501948 PERL0503458 PERL0506509 PERL0508983 PERL0512311 PERL0514597 PERL0517612 PERL0520681 

PERL0523932 PERL0527086 PERL0531451 PERL0535113 PERL0537338 PERL0540675 PERL0543912 PERL0554217   

PERL0557823 PERL0563369 PERL0568569 PERL0572371 PERL0575903 PERL0579784 PERL0584131 PERL0587701 

PERL0591196 PERL0593667 PERL0597323 PERL0599401 PERL0601882 PERL0604277 PERL0607497 PERL0610536 

PERL0613142 PERL0614639 PERL0616648 PERL0618491 PERL0620090 PERL0621445 PERL0623512 PERL0624959 

PERL0626387 PERL0627507 PERL0628499 PERL0629796 PERL0631358 PERL0633047 PERL0634378 PERL0635631 

PERL0637123 PERL0638496 PERL0640154 PERL0641673 PERL0642918 PERL0644739 PERL0646056 PERL0647073 

PERL0648238 PERL0649641 PERL0650565 PERL0652328 PERL0653447 PERL0654431 PERL0655780 PERL0657618 

PERL0657883 PERL0658501 PERL0659964 PERL0661209 PERL0662505 PERL0664456 PERL0666234 PERL0667720   

PERL0669450 PERL0671106 PERL0672283 PERL0674032 PERL0677372 PERL0679611 PERL0681173 PERL0683560 

PERL0685627 PERL0688352 PERL0689909 PERL0691560 PERL0693654 PERL0696138 PERL0698263 PERL0699352 

PERL0702542 PERL0707647 PERL0710102 PERL0712766 PERL0714609 PERL0716056 PERL0717953 PERL0719295 

PERL0721467 PERL0723918 PERL0725628 PERL0727455 PERL0730155 PERL0732558 PERL0734616 PERL0737066 

PERL0739772 PERL0742322 PERL0744124 PERL0746219 PERL0748499 PERL0750962 PERL0753682 PERL0755286 

PERL0757562 PERL0759638 PERL0761748 PERL0763309 PERL0765918 PERL0768391 PERL0770007 PERL0771584 

PERL0775604 PERL0777437 PERL0779829 PERL0781559 PERL0783149 PERL0784606 PERL0786358 PERL0789281   

PERL0792435 PERL0794740 PERL0796953 PERL0798668 PERL0800387 PERL0801382 PERL0802869 PERL0804611 

PERL0806002 PERL0807763 PERL0809207 PERL0810676 PERL0811712 PERL0813020 PERL0814266 PERL0815456 

PERL0816363 PERL0817514 PERL0818605 PERL0819694 PERL0821167 PERL0822200 PERL0823374 PERL0824061 

PERL0825425 PERL0826219 PERL0827169 PERL0827842 PERL0828503 PERL0829280 PERL0830132 PERL0830908 

PERL0831942 PERL0832688 PERL0833517 PERL0834373 PERL0835446 PERL0836576 PERL0837863 PERL0838930 

PERL0839985 PERL0840818 PERL0841626 PERL0842436 PERL0843763 PERL0844845 PERL0845784 PERL0847394 

PERL0848410 PERL0849149 PERL0850106 PERL0851122 PERL0852079 PERL0853156 PERL0854788 PERL0856095   

PERL0858243 PERL0860031 PERL0862324 PERL0863846 PERL0865191 PERL0866389 PERL0867520 PERL0868541 

PERL0869722 PERL0870562 PERL0872017 PERL0873353 PERL0874630 PERL0875579 PERL0876648 PERL0877881 

PERL0879265 PERL0880626 PERL0882028 PERL0883699 PERL0885135 PERL0886198 PERL0887053 PERL0888022 

PERL0889035 PERL0890064 PERL0891081 PERL0892379 PERL0893302 PERL0894873 PERL0896048 PERL0897523 

PERL0899280 PERL0901330 PERL0902684 PERL0904032 PERL0906157 PERL0907385 PERL0909016 PERL0911784 

PERL0913224 PERL0914729 PERL0916480 PERL0917611 PERL0919240 PERL0920843 PERL0922929 PERL0924788 

PERL0927219 PERL0929091 PERL0931154 PERL0932984 PERL0935524 PERL0937408 PERL0939627 PERL0942226   

PERL0944163 PERL0946952 PERL0949754 PERL0951938 PERL0953776 PERL0956001 PERL0958223 PERL0959841 

PERL0962428 PERL0964811 PERL0966759 PERL0969302 PERL0972285 PERL0975247 PERL0976259 PERL0977961 

PERL0980027 PERL0982469 PERL0984750 PERL0987030 PERL0990723 PERL0993040 PERL0995768 PERL0998942 

PERL1002262 PERL1005229 PERL1007526 PERL1009660 PERL1011755 PERL1013450 PERL1015217 PERL1017011 

PERL1018671 PERL1021975 PERL1024258 PERL1026723 PERL1030098 PERL1033642 PERL1036502 PERL1038822 

PERL1041455 PERL1044264 PERL1047902 PERL1052002 PERL1055017 PERL1057554 PERL1059469 PERL1060579 

PERL1062296 PERL1064297 PERL1066329 PERL1068612 PERL1069943 PERL1071295 PERL1072878 PERL1074739   

PERL1076091 PERL1077408 PERL1079427 PERL1081038 PERL1082734 PERL1084419 PERL1085792 PERL1086844 

PERL1088414 PERL1090200 PERL1091726 PERL1092728 PERL1094438 PERL1095830 PERL1096737 PERL1097715 

PERL1098819 PERL1100053 PERL1101054 PERL1102096 PERL1103906 PERL1105953 PERL1107420 PERL1108372 

PERL1109218 PERL1110418 PERL1111171 PERL1112247 PERL1113488 PERL1114791 PERL1115964 PERL1117197 

PERL1118352 PERL1119628 PERL1120917 PERL1122556 PERL1124181 
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Supplementary Material S3. Nominal α level required to obtain an empirical type I error rate (α∗) of 0.01 with N recombinant inbred lines derived from

different mating designs: Reference (REF), diallel (DIA), factorial (FCT), single round-robin (SRR), double round-robin (DRR), reduced round-robin (RRR),

independent round-robin (IRR), and distance-based (DB) designs.

Mating Maize Arabidopsis thaliana
design 25 QTL 50 QTL 100 QTL 25 QTL 50 QTL 100 QTL

h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8

N = 1250
REF 0.0091 0.0133 0.0045 0.0111 0.0002 0.0037 0.0061 0.0076 0.0022 0.0043 0.0006 0.0004
DIA 0.0101 0.0128 0.0037 0.0115 0.0004 0.0056 0.0080 0.0110 0.0025 0.0096 0.0003 0.0045
FCT 0.0098 0.0134 0.0041 0.0097 0.0004 0.0056 0.0081 0.0117 0.0026 0.0083 0.0002 0.0038
SRR 0.0086 0.0114 0.0043 0.0101 0.0003 0.0059 0.0069 0.0108 0.0018 0.0089 0.0001 0.0028
DRR 0.0097 0.0118 0.0043 0.0109 0.0003 0.0061 0.0068 0.0130 0.0022 0.0084 0.0001 0.0037
RRR 0.0085 0.0138 0.0026 0.0095 0.0002 0.0057 0.0072 0.0108 0.0015 0.0069 0.0001 0.0025
IRR 0.0098 0.0133 0.0034 0.0088 0.0003 0.0063 0.0064 0.0100 0.0008 0.0065 0.0001 0.0013
DB15 0.0102 0.0146 0.0031 0.0112 0.0004 0.0060 0.0087 0.0148 0.0028 0.0097 0.0003 0.0042
DB30 0.0119 0.0153 0.0039 0.0116 0.0003 0.0066 0.0077 0.0131 0.0027 0.0091 0.0001 0.0047
DB60 0.0095 0.0136 0.0041 0.0097 0.0003 0.0074 0.0084 0.0129 0.0027 0.0095 0.0004 0.0052

N = 2500
REF 0.0098 0.0141 0.0046 0.0117 0.0002 0.0100 0.0067 0.0093 0.0023 0.0072 0.0002 0.0015
DIA 0.0113 0.0145 0.0069 0.0118 0.0010 0.0090 0.0098 0.0137 0.0035 0.0114 0.0002 0.0084
FCT 0.0108 0.0137 0.0060 0.0120 0.0010 0.0089 0.0089 0.0132 0.0038 0.0120 0.0003 0.0090
SRR 0.0111 0.0140 0.0065 0.0108 0.0008 0.0084 0.0092 0.0123 0.0026 0.0110 0.0001 0.0077
DRR 0.0111 0.0141 0.0067 0.0112 0.0011 0.0080 0.0087 0.0137 0.0033 0.0121 0.0002 0.0079
RRR 0.0122 0.0127 0.0046 0.0114 0.0007 0.0075 0.0090 0.0124 0.0034 0.0098 0.0001 0.0072
IRR 0.0096 0.0129 0.0057 0.0114 0.0006 0.0086 0.0067 0.0118 0.0017 0.0102 0.0001 0.0056
DB15 0.0109 0.0148 0.0051 0.0132 0.0003 0.0105 0.0101 0.0155 0.0050 0.0135 0.0004 0.0083
DB30 0.0114 0.0162 0.0053 0.0128 0.0012 0.0106 0.0100 0.0132 0.0045 0.0122 0.0004 0.0090
DB60 0.0121 0.0145 0.0066 0.0117 0.0009 0.0084 0.0098 0.0142 0.0043 0.0133 0.0003 0.0092

N = 5000
REF 0.0107 0.0145 0.0070 0.0126 0.0008 0.0117 0.0070 0.0106 0.0036 0.0085 0.0003 0.0048
DIA 0.0125 0.0147 0.0086 0.0129 0.0037 0.0096 0.0092 0.0131 0.0053 0.0116 0.0008 0.0097
FCT 0.0111 0.0132 0.0072 0.0116 0.0038 0.0093 0.0099 0.0134 0.0055 0.0121 0.0009 0.0102
SRR 0.0129 0.0132 0.0076 0.0109 0.0032 0.0089 0.0092 0.0122 0.0031 0.0108 0.0007 0.0090
DRR 0.0133 0.0143 0.0080 0.0119 0.0033 0.0096 0.0091 0.0129 0.0048 0.0104 0.0006 0.0103
RRR 0.0102 0.0131 0.0070 0.0117 0.0020 0.0092 0.0094 0.0124 0.0039 0.0110 0.0004 0.0098
IRR 0.0126 0.0130 0.0069 0.0104 0.0014 0.0101 0.0092 0.0114 0.0034 0.0096 0.0001 0.0070
DB15 0.0118 0.0138 0.0069 0.0128 0.0023 0.0109 0.0109 0.0140 0.0070 0.0126 0.0010 0.0107
DB30 0.0108 0.0153 0.0076 0.0129 0.0024 0.0110 0.0110 0.0141 0.0068 0.0133 0.0011 0.0113
DB60 0.0122 0.0128 0.0091 0.0119 0.0039 0.0099 0.0111 0.0139 0.0067 0.0121 0.0012 0.0112

TABLE S1 

Nominal α  level required to obtain an empirical type I error rate (α*) of 0.01 with N recombinant inbred lines derived from different mating designs: 

Reference (REF), diallel (DIA), factorial (FCT), single round-robin (SRR), double round-robin (DRR), reduced round-robin (RRR), independent round-robin 

(IRR), and distance-based (DB) designs. 
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