Series of $\mathbf{A g}(I)$ Coordination Complexes Derived from Aminopyrimidyl Ligands and Dicarboxylates: Syntheses, Crystal Structures, and Properties

Di Sun, Na Zhang, Rong-Bin Huang,* and Lan-Sun Zheng
State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received April 26, 2010; Revised Manuscript Received May 31, 2010

Abstract

A series of new metal-organic frameworks, namely, $\left[\mathrm{Ag}(\text { mapym })(\text { suc })_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(\mathbf{1}),\left[\mathrm{Ag}_{2}(\operatorname{mapym})_{2}(\mathrm{glu})\right.$. $\left.1.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(\mathbf{2}),\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathrm{ipa}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{n}(\mathbf{3}),\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathrm{tpa})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(\mathbf{4}),\left[\mathrm{Ag}(\mathrm{dmapym})_{2}(\mathrm{ox})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right](\mathbf{5})$, and $[\mathrm{Ag}(\mathrm{dmapym})-$ $\left.(\text { bbdc })_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(6)$ (mapym $=2$-amino-4-methylpyrimidine, dmapym $=2$-amino-4,6-dimethylpyrimidine, H_{2} suc = succinic acid, $\mathrm{H}_{2} \mathrm{glu}=$ glutaric acid, $\mathrm{H}_{2} \mathrm{ipa}=$ isophthalic acid, $\mathrm{H}_{2} \mathrm{tpa}=$ terephthalic acid, $\mathrm{H}_{2} \mathrm{Ox}=$ oxalic acid, $\mathrm{H}_{2} \mathrm{bbdc}=4$,4-bibenzenedicarboxylic acid), have been synthesized and structurally characterized. Complexes $\mathbf{1}$ and $\mathbf{2}$ exhibit two-dimensional (2D) interpenetrated and double-sheet structures, respectively. Complex $\mathbf{3}$ is a three-dimensional (3D) framework constructed through unusual 2D $\rightarrow 3 \mathrm{D}$ parallel interpenetration of a corrugated 2D 4^{4}-sql net. Complex 5 is a 0 -dimensional (0D) H-shaped molecule, and the selfcomplementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds incorporating $R_{4}{ }^{4}(14)$ hydrogen bond motifs extend these molecules into a 3D supramolecular framework. Complexes $\mathbf{4}$ and $\mathbf{6}$ are also 2D sheets constructed with a similar fashion to that of $\mathbf{1}$ and $\mathbf{2}$ but with aryldicarboxylate as bridge. The results show that the coordination geometry of the $\mathrm{Ag}(\mathrm{I})$ ions and the configuration and coordination mode of dicarboxylates as well as the competition between steric and electronic effects of methyl groups on aminopyrimidyl ligands play crucial roles in determining the structure of the complexes. Additionally, results about IR spectra, thermogravimetric curves, and photoluminescence spectra were addressed.

Introduction

Over the past two decades, the crystal engineering of coordination complexes (CCs) has provoked unparalleled attention and imagination within coordination chemistry based on assembly of judiciously chosen metal ions (joints) and multifunctional organic ligands (struts). Much effort has been devoted to controlling the structures of CCs because their intriguing properties and potential applications are strongly dependent on their structures. ${ }^{1}$ Despite some recent advancement, the ability to predict and control the supramolecular assembly remains a longstanding challenge, and much more elaborate and systematic work is required to comprehend the inter- and intramolecular forces that determine the fashions of molecular structure and crystal packing in the solid state. A better understanding of the influence factors of structure, including inbeing of the metal ions and the predesigned organic ligands ${ }^{2}$ as well as other factors such as the medium, ${ }^{3}$ the pH value of the solution, ${ }^{4}$ the temperature, ${ }^{5}$ the counterion with different bulk or coordination ability, the template, and the metal/ligand ratio, ${ }^{6}$ is a prerequisite to rationally design, predict, and synthesize CCs functional materials. Including the above-mentioned factors, the noncovalent forces, such as hydrogen-bonding, $\pi \cdots \pi$ stacking, metal \cdots metal interactions based on d^{10} metal cations, and metal $\cdots \pi, \mathrm{C}-\mathrm{H} \cdots \pi$, and anion $\cdots \pi$ interactions, also intensively impact the supramolecular topology and dimensionality. ${ }^{7}$ In contrast to other transition metal ions, $\mathrm{Ag}(\mathrm{I})$ ion, with a d ${ }^{10}$ closed-shell electronic configuration, is very enthralling, as it shows (i) a dynamic range of coordinative geometries, including linear, trigonal-planar, tetrahedral, and trigonal-pyramidal, with occasional instances of square-planar, pyramidal, and octahedral geometry, ${ }^{8}$ and (ii) a tendency to form an argentophilic interaction, ${ }^{9}$ both of which

[^0]may lead to discovery of novel structural motifs. These contain high-nuclearity silver chalcogenide clusters, ${ }^{10}$ one-dimensional chains, which can be single-, double-, and triple-stranded helix, ${ }^{11}$ two-dimensional sheets with a variety of connectivities such as 4^{4}-sql and 6^{3}-hcb nets, ${ }^{12}$ and three-dimensional structures, such as diamondoid and chiral adamantoid network. ${ }^{13}$ Such compounds can also exhibit other appealing structural phenomena from simple guest inclusion ${ }^{14}$ to interpenetration ($0 \mathrm{D} \rightarrow 3 \mathrm{D}$, $1 \mathrm{D} \rightarrow 2 \mathrm{D}, 2 \mathrm{D} \rightarrow 2 \mathrm{D}$, and $2 \mathrm{D} \rightarrow 3 \mathrm{D})^{15}$ and even polycatenanes. ${ }^{16}$ Organic ligands with carboxylic groups are of especial interest and have been widely used to construct various CCs, owing to their fascinating characteristics, including strong coordination ability, diverse coordination modes, different organic skeletons of carboxylate linkers, and abundant hydrogen-bonding and aromatic stacking interactions. ${ }^{17}$ In particular, the different orientations of carboxylic groups situated in the organic skeletons may link metal ions in different directions and distances into extended networks. ${ }^{18-20}$ On the other hand, amino-containing heterocyclic N -donor ligands, such as 2 -aminopyridine, are versatile ligands because of documented metal binding patterns including the ring nitrogen atom 21 or the exocyclic amino group, ${ }^{22}$ occasionally in equilibrium, ${ }^{23}$ and simultaneously both positions, in either a chelating or bridging fashion. ${ }^{24}$ Moreover, the stereochemically associative amino group also demonstrated the ability to form very stable hydrogen-bonded arrays. ${ }^{25}$

Taking into account the points aforementioned and considering our previous work, ${ }^{26}$ we continue to focus on the reactions of closed-shell $\mathrm{d}^{10} \mathrm{Ag}(\mathrm{I})$ with dipodal aminopyrimidyl and auxiliary dicarboxylate ligands and investigate the influence of dicarboxylate and substituent on the structure of the resultant complexes as well as their properties. In this paper, we report the syntheses, crystal structures, and properties of six new mixed-ligand coordination complexes, namely, $\left[\mathrm{Ag}(\text { mapym })(\text { suc })_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(\mathbf{1})$,

Scheme 1. Preparation Route of $\mathbf{A g}(\mathbf{I})$ Mixed-Ligand Coordination Complexes from the N -Donor and O -Donor Ligands

$\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathrm{glu}) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(\mathbf{2}),\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathrm{ipa}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{n}$ (3), $\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathrm{tpa})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (4), $\left[\mathrm{Ag}(\text { dmapym })_{2}(\mathrm{ox})_{0.5}{ }^{\circ}\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right](5)$, and $\left[\mathrm{Ag}(\mathrm{dmapym})(\mathrm{bbdc})_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{n}(6)$ (mapym $=2$-amino-4-methylpyrimidine, dmapym $=2$-amino-4, 6-dimethylpyrimidine, H_{2} suc $=$ succinic acid, $\mathrm{H}_{2} \mathrm{glu}=$ glutaric acid, $\mathrm{H}_{2} \mathrm{ipa}=$ isophthalic acid, $\mathrm{H}_{2} \mathrm{tpa}=$ terephthalic acid, $\mathrm{H}_{2} \mathrm{Ox}=$ oxalic acid, H_{2} bbdc $=4$,4-bibenzenedicarboxylic acid) (Scheme 1).

Experimental Section

Materials and General Methods. All chemicals and solvents used in the syntheses were of analytical grade and used without further purification. IR spectra were measured on a Nicolet 740 FTIR spectrometer in the range $4000-400 \mathrm{~cm}^{-1}$. Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. Photoluminescence spectra were measured on a Hitachi F-4500 fluorescence spectrophotometer (slit width, 2.5 nm ; sensitivity, high). TG curves were measured from 25 to $800^{\circ} \mathrm{C}$ on a SDT Q600 instrument at the heating rate $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under a N_{2} atmosphere ($100 \mathrm{~mL} / \mathrm{min}$). X-ray powder diffractions were measured on a Panalytical X-Pert pro diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Preparation of Complex 1-6. $\left[\mathrm{Ag}(\text { mapym })(\text { suc })_{0.5} \cdot 0.5 \mathrm{H}_{\mathbf{2}} \mathrm{O}\right]_{n}(1)$. $\mathrm{Ag}_{2} \mathrm{O}(116 \mathrm{mg}, 0.5 \mathrm{mmol})$, mapym ($109 \mathrm{mg}, 1 \mathrm{mmol}$), and H_{2} suc $(118 \mathrm{mg}, 1 \mathrm{mmol})$ were reacted in methanol$/ \mathrm{H}_{2} \mathrm{O}$ media (15 mL , $\mathrm{v} / \mathrm{v}=2: 1$) in the presence of ammonia (0.5 mL) under ultrasonic treatment ($160 \mathrm{~W}, 40 \mathrm{kHz}, 50^{\circ} \mathrm{C}$). The resultant colorless solution was allowed to slowly evaporate under a $38^{\circ} \mathrm{C}$ constant environment for one week to give colorless crystals of $\mathbf{1}$. The crystals were isolated by filtration and washed with deionized water and dried in air. Yield: ca. 82% based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc for $\mathrm{Ag}_{2} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{5}$: C, 29.60; H, 3.55; $\mathrm{N}, 14.79$. Found: C, 29.55; H, 3.62 ; N, 14.88. Selected IR peaks $\left(\mathrm{cm}^{-1}\right.$): 3412 (s), 3331 (s), 3175 (s), 2926 (w), 1663 (s), 1576 (s), 1482 (s), 1396 (m), 1222 (w), 801 (w), 653 (w), 557 (w).
$\left[\mathbf{A g}_{\mathbf{2}}(\mathbf{m a p y m})_{\mathbf{2}} \mathbf{(g l u}\right) \cdot \mathbf{1 . 5 \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }] _ { n }}{ }_{\mathbf{n}}$ (2). Synthesis of $\mathbf{2}$ was similar to that of $\mathbf{1}$, but with H_{2} glu ($132 \mathrm{mg}, 1 \mathrm{mmol}$) instead of H_{2} suc. Colorless crystals of $\mathbf{2}$ were obtained in 68% yield based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc For $\mathrm{Ag}_{4} \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{12} \mathrm{O}_{11}$: C, 30.48 ; H, 3.92; N, 14.22. Found: C, 30.51; H, 4.00; N, 14.18. Selected IR peaks (cm^{-1}): 3418 (s), 3325 (s), 3163 (s), 2957 (w), 1658 (s), 1579 (s), 1482 (m), 1400 (m), 1345 (w), 1218 (w), 848 (w), 794 (w), 554 (w).
$\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathbf{i p a}) \cdot \mathbf{2 \mathbf { H } _ { 2 }} \mathbf{O}\right]_{n}(\mathbf{3})$. Synthesis of $\mathbf{3}$ was similar to that of 1 , but with H_{2} ipa ($166 \mathrm{mg}, 1 \mathrm{mmol}$) instead of H_{2} suc. Colorless crystals of $\mathbf{3}$ were obtained in 57% yield based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc for $\mathrm{Ag}_{2} \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{6}$: C, 34.09; H, 3.50; N , 13.25. Found: C, $34.13 ; \mathrm{H}, 3.46 ; \mathrm{N}, 13.22$. Selected IR peaks $\left(\mathrm{cm}^{-1}\right)$: 3406 (s), 3318 (s), 3157 (s), 1657 (s), 1608 (s), 1591 (s), 1596 (s), 1479 (s), 1377 (m), 1223 (w), 732 (w), 554 (w), 506 (w).
$\left[\mathrm{Ag}_{2}(\text { mapym })_{2}(\mathbf{t p a})\left(\mathbf{H}_{2} \mathrm{O}\right)\right]_{n}(\mathbf{4})$. Synthesis of $\mathbf{4}$ was similar to that of $\mathbf{1}$, but with H_{2} tpa ($166 \mathrm{mg}, 1 \mathrm{mmol}$) instead of H_{2} suc. Colorless crystals of $\mathbf{4}$ were obtained in 77% yield based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc for $\mathrm{Ag}_{2} \mathrm{Cl}_{8} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{5}$: C, 35.09 ; $\mathrm{H}, 3.27$; N , 13.64. Found: C, $35.14 ; \mathrm{H}, 3.36 ; \mathrm{N}, 13.58$. Selected IR peaks $\left(\mathrm{cm}^{-1}\right)$: 3412 (s), 3325 (s), 3163 (s), 1659 (s), 1574 (s), 1481 (s), 1384 (s), 1217 (m), 1015 (w), 820 (w), 749 (w), 508 (w).
$\left[\mathbf{A g}(\mathbf{d m a p y m})_{\mathbf{2}}(\mathbf{0 x})_{\mathbf{0 . 5}} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}\right](\mathbf{5}) . \mathrm{Ag}_{2} \mathrm{O}(116 \mathrm{mg}, 0.5 \mathrm{mmol})$, dmapym ($123 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{Ox} \cdot 2 \mathrm{H}_{2} \mathrm{O}(126 \mathrm{mg}, 1 \mathrm{mmol})$ in methanol $/ \mathrm{H}_{2} \mathrm{O}$ media ($15 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2: 1$) were reacted in the presence of ammonia (0.5 mL) under ultrasonic treatment (160 W, $40 \mathrm{kHz}, 50^{\circ} \mathrm{C}$). Colorless crystals of $\mathbf{5}$ were obtained in 65% yield based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc for $\mathrm{Ag}_{2} \mathrm{C}_{26} \mathrm{H}_{40}$ $\mathrm{N}_{12} \mathrm{O}_{6}$: C, 37.52; H, 4.84; N, 20.19. Found: C, 37.49; H, 4.90; N, 20.24. Selected IR peaks (cm^{-1}): 3425 (s), 3398 (s), 3309 (s), 3129 (s), 2918 (w), 1665 (m), 1600 (s), 1470 (m), 1391 (m), 1310 (m), 1235 (w), 795 (w), 773 (w), 629 (w).
$\left[\mathbf{A g}(\mathbf{d m a p y m})(\mathbf{b b d c})_{0.5} \cdot \mathbf{0 . 5 H}_{\mathbf{2}} \mathrm{O}\right]_{n}(\mathbf{6})$. Synthesis of $\mathbf{6}$ was similar to that of 5, but with H_{2} bbdc ($242 \mathrm{mg}, 1 \mathrm{mmol}$) instead of $\mathrm{H}_{2} \mathrm{OX} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Colorless crystals of 6 were obtained in 65% yield based on $\mathrm{Ag}_{2} \mathrm{O}$. Elemental analysis: Anal. Calc for $\mathrm{Ag}_{2} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{5}$: C, 43.36; H, 3.92; N, 11.67. Found: C, 43.34; H, 3.99; N, 11.72. Selected IR peaks $\left(\mathrm{cm}^{-1}\right): 3400$ (s), 3312 (m), 3144 (m), 1590 (s), 1541 (s), 1466 (w), 1393 (s), 1229 (w), 834 (w), 765 (w).

X-ray Crystallography. Single crystals of complexes 1-6 with appropriate dimensions were chosen under an optical microscope and quickly coated with high vacuum grease (Dow Corning Corporation) before being mounted on a glass fiber for data collection. Data were collected on a Rigaku R-AXIS RAPID Image Plate single-crystal diffractometer with a graphite-monochromated Mo $\mathrm{K} \alpha$ radiation source ($\lambda=0.71073 \AA$) operating at 50 kV and 90 mA in ω scan mode for $\mathbf{1 - 6}$. A total of $44 \times 5.00^{\circ}$ oscillation images was collected, each being exposed for 5.0 min . Absorption correction was applied by correction of symmetry-equivalent reflections using the ABSCOR program. ${ }^{27}$ In all cases, the highest possible space group was chosen. All structures were solved by direct methods using SHELXS-97 ${ }^{28}$ and refined on F^{2} by full-matrix least-squares procedures with SHELXL97. ${ }^{29}$ Atoms were located from iterative examination of difference F maps following least-squares refinements of the earlier models. Hydrogen atoms were placed in calculated positions and included as riding atoms with isotropic displacement parameters $1.2-1.5$ times $U_{\text {eq }}$ of the attached C or N atoms. The hydrogen atoms attached to oxygen were refined with $\mathrm{O}-H=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$. All structures were examined using the Addsym subroutine of PLATON 30 to ensure that no additional symmetry could be applied to the models. Pertinent crystallographic data collection and refinement parameters are collated in Table 1. Selected bond lengths and angles for $\mathbf{1 - 6}$ are collated in Table 2. The hydrogen bond geometries for $\mathbf{1 - 6}$ are shown in Table S1 (Supporting Information).

Result and Discussion

Synthesis. The syntheses of complexes $\mathbf{1 - 6}$ were carried out in the darkness to avoid photodecomposition, and they are summarized in Scheme 1. The formation of the products is not significantly affected by changes of the reaction mole ratio of organic ligands to metal ions. As is well-known, the reactions of $\operatorname{Ag}(\mathrm{I})$ with dicarboxylates in aqueous solution often result in the formation of insoluble silver salts, presumably due to the fast coordination of the carboxylates to $\mathrm{Ag}(\mathrm{I})$ ions to form polymers. ${ }^{31}$ Hence, properly lowering the reaction speed, such as using ammoniacal conditions or the layer-separation diffusion method, may favor the formation of crystalline products. ${ }^{32}$ $\mathrm{Ag}_{2} \mathrm{O}$ was used instead of AgNO_{3} or other common $\mathrm{Ag}(\mathrm{I})$ salts in order to promote the carboxylates instead of small anions to coordinate to the $\mathrm{Ag}(\mathrm{I})$ centers. The ultrasonic method has found an important niche in the preparation of inorganic materials. ${ }^{33}$ The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. In this system, the ultrasound technique also realizes the rapid (10 min) and efficient (maximum thirty different experiments in one batch) preparation of CCs.

Structure Descriptions. $\left[\mathbf{A g}(\text { mapym })(\mathbf{s u c})_{0.5} \cdot \mathbf{0 . 5} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right]_{n}(\mathbf{1})$. Single-crystal X-ray diffraction analysis reveals that complex 1 represents a 2D polymeric structure with irregular quadrilateral grids which crystallizes in the space group $P 2 / c$.

Table 1. Crystal Data for $1-6^{a}$

compd	1	2	3	4	5	6
empirical formula	$\mathrm{Ag}_{2} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{5}$	$\mathrm{Ag}_{4} \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{12} \mathrm{O}_{11}$	$\mathrm{Ag}_{2} \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{6}$	$\mathrm{Ag}_{2} \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{5}$	$\mathrm{Ag}_{2} \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{12} \mathrm{O}_{6}$	$\mathrm{Ag}_{2} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{5}$
formula wt	568.10	1182.27	634.16	616.14	832.44	720.28
crystal system	monoclinic	triclinic	monoclinic	triclinic	triclinic	monoclinic
space group	P2/c	$P \overline{1}$	$P 2_{1 / c}$	$P \overline{1}$	$P \overline{1}$	C2/c
$a(\AA)$	$9.4815(19)$	9.0313(11)	11.742(4)	8.9879(13)	7.122(2)	15.676(3)
b (\AA)	8.6468(18)	10.0434(13)	10.703(4)	11.2940(18)	10.418(4)	15.049(3)
c (A)	12.217(3)	12.4591(16)	18.894(6)	12.2234(17)	11.812(4)	12.097(2)
α (deg)	90	97.387(7)	90	111.792(14)	66.138(6)	90
β (deg)	110.667(3)	109.497(3)	110.545(18)	98.424(12)	86.572(8))	107.31(3)
γ (deg)	90	101.338(6)	90	109.836(14)	88.632(7)	90
$V\left(\mathrm{~A}^{3}\right)$	937.2(3)	1021.2(2)	2223.5(13)	1029.7(3)	800.1(5)	2040.04(9)
T (K)	298(2)	298(2)	298(2)	298(2)	298(2)	298(2)
$Z, D_{\text {calcd }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	2, 2.013	1,1.922	4,1.894	2, 1.987	1,1.728	4,1.756
$F(000)$	560	586	1256	608	422	1440
$\mu\left(\mathrm{mm}^{-1}\right)$	2.128	1.959	1.809	1.946	1.284	1.485
refl. collected/unique	4509/1640	8053/3574	10704/3841	9059/3993	3390/2657	8899/2383
$R_{\text {int }}$	0.0226	0.0367	0.0410	0.0602	0.0189	0.0388
parameters	125	264	291	281	212	184
final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0291 \\ & w R_{2}=0.0655 \end{aligned}$	$\begin{aligned} & R_{1}=0.0399 \\ & w R_{2}=0.1048 \end{aligned}$	$\begin{aligned} & R_{1}=0.0732 \\ & w R_{2}=0.1561 \end{aligned}$	$\begin{aligned} & R_{1}=0.0389 \\ & w R_{2}=0.0641 \end{aligned}$	$\begin{aligned} & R_{1}=0.0457 \\ & w R_{2}=0.1341 \end{aligned}$	$\begin{aligned} & R_{1}=0.0288 \\ & w R_{2}=0.0621 \end{aligned}$
R indices (all data)	$R_{1}=0.0311$	$R_{1}=0.0461$	$R_{1}=0.0854$	$R_{1}=0.0766$	$R_{1}=0.0496$	$R_{1}=0.0397$
	$w R_{2}=0.0665$ $0.829 /-0.320$	$w R_{2}=0.1108$	$w R_{2}=0.1622$ $1.410 /-1.338$	$w R_{2}=0.0702$	$w R_{2}=0.1358$	$w R_{2}=0.0680$
max./ min., $\Delta \rho\left(\mathrm{e} \cdot \mathrm{A}^{-3}\right)$	0.829/-0.320	1.289/-0.834	1.410/-1.338	0.566/-0.541	1.532/-0.666	0.456/-0.441

$$
\left.{ }^{a} R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2} .
$$

Table 2. Selected Bond Lengths ((\AA) and Angles (deg) for $1-6^{a}$

Complex 1							
$\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {i }}$	2.240(2)	Ag1 \cdot. Ag2	$3.0645(9)$	Ag2-N3 ${ }^{\text {i }}$	2.167(3)	Ag1-N2i ${ }^{\text {ii }}$	2.453(3)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 2$	166.50(15)	$\mathrm{N} 2{ }^{\text {ii }}-\operatorname{Ag} 1-\mathrm{N} 2{ }^{\text {iii }}$	111.23(15)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{N} 2{ }^{\text {iii }}$	91.45(10)	N3 ${ }^{\text {i }}$-Ag2-N3	170.49(16)
Complex 2							
Ag1-N2	2.236(3)	$\mathrm{Ag} 1 \cdots \mathrm{Ag} 2$	3.1284(7)	$\mathrm{Ag} 2-\mathrm{N} 3{ }^{\text {ii }}$	2.206(4)	Ag2-O1	2.566(4)
$\mathrm{Ag} 1-\mathrm{O} 3{ }^{\text {i }}$	2.298 (3)	Ag1-N6	2.477(4)	Ag2-N5 $5^{\text {iii }}$	$2.208(4)$	Agl-O2	$2.378(4)$
N2-Ag1-O3 ${ }^{\text {i }}$	144.05(12)	$\mathrm{O} 2-\mathrm{Ag} 1-\mathrm{N} 6$	96.70(14)	N3 ${ }^{\text {iii }}-\mathrm{Ag} 2-\mathrm{O} 1$	103.22(13)	N3 ${ }^{\text {ii }}-\mathrm{Ag} 2-\mathrm{N} 5{ }^{\text {iii }}$	152.32(13)
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 2$	99.90(14)	O3 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{N} 6$	80.73(12)	N2-Ag1-N6	120.08(13)	$\mathrm{N} 5{ }^{\text {iii }}-\mathrm{Ag} 2-\mathrm{O} 1$	97.06(15)
Complex 3							
Ag1-N1	2.176(7)	Ag2-O1	2.273(7)	Ag2-N4	2.502(8)	Ag2-O4 ${ }^{\text {iv }}$	2.385(6)
Ag1-N6 ${ }^{\text {i }}$	$2.193(7)$	Ag2-N3	2.273(8)				
N1-Agl-N6 ${ }^{\text {i }}$	172.0(3)	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{N} 3$	139.7(3)	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{N} 4$	105.5(3)	$\mathrm{O} 4^{\text {iv }}-\mathrm{Ag} 2-\mathrm{N} 4$	92.5(2)
N3-Ag2-N4	90.7(3)	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{O} 4{ }^{\text {iv }}$	104.1(3)	N3-Ag2-O4 $4^{\text {iv }}$	111.9(3)		
Complex 4							
Ag1-N2	2.299(4)	Ag1-O1W	2.671(3)	Ag2-O3	2.536(3)	Ag2-N6 ${ }^{1}$	2.306(4)
Ag1-N5	2.304(4)	$\mathrm{Ag} 2-\mathrm{N} 3{ }^{\text {ii }}$	2.369(4)	Ag2-O4	2.636(4)	Ag2-O1	2.471(3)
N2-Ag1-N5	137.91(14)	N3 ${ }^{\text {ii }}-\mathrm{Ag} 2-\mathrm{O} 1$	99.61(12)	N6 ${ }^{\text {i }}$-Ag2-O4	100.74(12)	O3-Ag2-O4	50.30(10)
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 1$	99.28(13)	N6 ${ }^{\text {i }}$-Ag2-O3	149.40(13)	$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{Ag} 2-\mathrm{O} 4$	105.82(13)	N6 ${ }^{\text {i }}$ - Ag2-O1	113.20(12)
N5-Ag1-O1	120.75(12)	$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Ag} 2-\mathrm{O} 3$	87.33(13)	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{O} 4$	124.14(10)	N6 ${ }^{\text {i }}$-Ag2- $3^{\text {3ii }}$	113.60(13)
$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 1 \mathrm{~W}$	88.99(12)	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{O} 3$	82.99(11)	$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{O} 1 \mathrm{~W}$	125.47(12)	N5-Ag1-O1W	78.61(12)
Complex 5							
Ag1-N5	2.238(5)	Ag1-O2	2.654(5)	Ag1-O1	2.617(5)	Ag1-N2	2.241(5)
N5-Ag1-N2	147.12(19)	N5-Ag1-O2	100.25(16)	$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{O} 2$	49.78(14)	$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 1$	100.71(18)
N5-Ag1-O1	112.16(19)	$\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{O} 2$	101.87(16)				
Complex 6							
Ag1-O1	2.313(2)	Ag1-N2 ${ }^{\text {i }}$	2.454(3)	$\mathrm{Ag} 1 \cdots \mathrm{Ag} 2{ }^{\text {ii }}$	$3.1375(8)$		
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{Ol}^{\text {i }}$	139.45(13)	$\mathrm{N} 2{ }^{\text {i }}$-Ag1-N2	97.32(13)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 2^{\mathrm{i}}$	109.70(9)	$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{N} 2^{\text {i }}$	96.93(9)

${ }^{a}$ Symmetry codes: (i) $-x+2, y,-z+{ }^{1} / 2$; (ii) $-x+2,-y+1,-z$; (iii) $x,-y+1, z+{ }^{1} / 2$; (v) $-x+1,-y+1,-z$. Symmetry codes: (i) $x, y-1, z$; (ii) $-x+$ $1,-y,-z+2$; (iii) $-x+1,-y,-z+1$; (vii) $-x,-y,-z+2$. Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+1, y+{ }^{1} / 2,-z+{ }^{3} / 2$; (iv) x, $-y+{ }^{1} / 2, z+\frac{1}{1} 2$. Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+2,-y+2,-z+1$. Symmetry code: (i) $-x,-y+1,-z+1$. Symmetry codes: (i) $-x+2$, $y,-z+{ }^{1} / 2$; (ii) $-x+2,-y+2,-z ;$ (v) $-x+1, y,-z+{ }^{1} / 2 ;(\mathrm{vi})-x+2, y,-z-1 / 2$.

There are two $\mathrm{Ag}(\mathrm{I})$ ions, one mapym, half suc, and half $\mathrm{H}_{2} \mathrm{O}$ in the asymmetric unit of $\mathbf{1}$. Analysis of the local symmetry of the metal atoms and ligands shows that $\mathrm{Ag} 1, \mathrm{Ag} 2$, and the lattice water molecule reside on the crystallographic 2-fold axis (site occupancy factor $(\mathrm{SOF})=1 / 2$), whereas the suc locates on the inversion center. As depicted in Figure 1a, the Ag1 is located in a distorted tetrahedron geometry and coordinated by two sym-metry-related mapym and suc ligands $\left(\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}=2.240(2)\right.$,
$\operatorname{Ag} 1-\mathrm{N} 2^{\mathrm{ii}}=2.453(3) \AA$). The distortion of the tetrahedron can be indicated by the calculated value of the τ_{4} parameter introduced by Houser ${ }^{34}$ to describe the geometry of a four-coordinate metal system. Table 3 lists the τ_{4} parameter for all the fourcoordinate $\mathrm{Ag}(\mathrm{I})$ ions in complex $\mathbf{1 - 6}$. The τ_{4} values average 0.70 , ranging from 0.58 to 0.79 , showing the tetrahedral geometry is not perfect but distorted, where the distortion is in part due to the inherent lack of crystal field stabilization energy

Figure 1. (a) Coordination environments of $\mathrm{Ag}(\mathrm{I})$ ions in $\mathbf{1}$ with the thermal ellipsoids at the 30% probability level. The lattice water molecule was omitted for clarity. Symmetry codes: (i) $-x+2, y,-z+1 / 2$; (ii) $-x+2,-y+1,-z$; (iii) $x,-y+1, z+\frac{1}{2}$; (v) $-x+1,-y+1,-z$. (b) Presentation of a pair of the interpenetrated 4^{4}-sql net. (c) Scheme of a 2D sheet incorporating $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {suc }}$ (green dashed lines) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {suc }}$ (violet dashed lines) hydrogen bonds.

Table 3. Four-Coordinate τ_{4} Parameters ${ }^{a}$

silver	τ_{4}	α	β
Ag1 in 1	0.58	$166.50(15)$	$111.23(15)$
Ag1 in 2	0.68	$144.05(12)$	$120.08(13)$
Ag 2 in $\mathbf{3}$	0.77	$139.7(3)$	$111.9(3)$
Ag in $\mathbf{4}$	0.69	$137.91(14)$	$125.47(12)$
Ag1 in $\mathbf{5}$	0.71	$147.12(19)$	$112.16(19)$
Ag1 in $\mathbf{6}$	0.79	$139.45(13)$	$109.70(9)$

${ }^{a} \tau_{4}=\left[360^{\circ}-(\alpha+\beta)\right] / 141^{\circ}$, where α and β are the largest angles around the metal centers. For a perfect square-planar geometry, τ_{4} equals 0 , and a perfect tetrahedral geometry is described when τ_{4} equals 1 .
that arises from a spherical d ${ }^{10}$ electronic configuration. ${ }^{35}$ The Ag2, coordinated by two symmetry-related N atoms from two different mapym ligands $\left(\mathrm{Ag} 2-\mathrm{N} 3^{\mathrm{i}}=2.167(3) \AA\right)$, is located in an approximately linear environment with an angle of $170.49(16)^{\circ}$, which deviates from the ideal 180° due to the $\mathrm{Ag} \cdots \mathrm{O}$ weak interaction $(\mathrm{Ag} 2 \cdots \mathrm{O} 1=2.814(3) \AA)$. Both $\mathrm{Ag}-\mathrm{O}$ and $\mathrm{Ag}-\mathrm{N}$ bond lengths are well-matched to those observed in similar complexes. ${ }^{36}$ It is worthy to note that the bond length of $\mathrm{Ag} 1-\mathrm{N} 2$ is obviously longer than that of $\mathrm{Ag} 2-\mathrm{N} 3$, which may be due to the crowded coordination environment around Ag 1 . The $\mathrm{Ag} \cdots \mathrm{Ag}$ interaction also exists with a $\mathrm{Ag} 1 \cdots \mathrm{Ag} 2$ separation of 3.0645(9) \AA.

In $\mathbf{1}$, the $\mathrm{Ag}(\mathrm{I})$ ions are linked by bidentate mapym to form 1D zigzag chains in which mapym is oppositely arranged, and the $\mu_{2}-\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}$ suc ligands extended the 1D chains into a single 2D slightly wavy net incorporating a window of $9.33 \AA \times 12.22 \AA$ based on the $\mathrm{Ag} 1 \cdots \mathrm{Ag} 1$ distances. The torsion angle $\left(\mathrm{C} 6-\mathrm{C} 7-\mathrm{C}^{\mathrm{ii}}-\mathrm{C} 6^{\mathrm{ii}}=180.0^{\circ}\right)$ about suc indicates the skeleton of suc does not twist.

To better understand the structure of $\mathbf{1}$, the topological analysis approach is employed. In $\mathbf{1}$, tetrahedral Ag 1 ions as 4 -connected joints are bridged by two kinds of 2 -connected struts: mapym and suc ligand, so the 2D net can be simplified to be a wavy 4^{4}-sql net which is interpenetrated by the neighboring one through a $2 \mathrm{D} \rightarrow 2 \mathrm{D}$ parallel mode (Figure 1b), wherein one 4^{4}-sql net shifts with respect to another one with a slippage of ca. $6.11 \AA$. The lattice water molecules are filled in the windows and hydrogen-bonded to carboxylic groups with the $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {suc }}$ distance of $2.761(3) \AA$; moreover, the amino groups of mapym also interact with the carboxylic groups through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {suc }}$ hydrogen bonds with an average distance of 2.853(4) A. Both of them reinforce the resultant 2D net (Figure 1c), which is further extended by nonclassical $\mathrm{C}_{\text {mapym }}-\mathrm{H} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds into a 3D supramolecular framework (symmetry codes: (i) $-x+2, y,-z+{ }^{1} / 2$; (ii) $-x+2$, $-y+1,-z$).
$\left[\mathbf{A g}_{\mathbf{2}}(\mathbf{m a p y m})_{\mathbf{2}}(\mathbf{g l u}) \cdot \mathbf{1 . 5 \mathbf { H } _ { \mathbf { 2 } } \mathrm { O }}\right]_{n}$ (2). The asymmetric unit of 2 consists of two crystallographically different $\mathrm{Ag}(\mathrm{I})$ ions, two mapym ligands, one glu, and one and a half lattice water molecules. As shown in Figure 2a, the Ag 1 and Ag 2 ions adopt tetrahedral and Y -shaped geometries, respectively. The τ_{4} parameter is 0.68 for Ag 1 , indicating a less distorted tetrahedron compared to that in complex $\mathbf{1}$. The maximum angle and sum of angles around Ag 2 are $152.32(13)$ and $352.60(13)^{\circ}$, respectively. The $\mathrm{Ag}-\mathrm{N}$ and $\mathrm{Ag}-\mathrm{O}$ bond lengths fall in the ranges 2.206(4)2.236 (3) and 2.298(3)-2.566(4) \AA, respectively.

Similar to $\mathbf{1}$, the $\mathrm{Ag}(\mathrm{I})$ ions in $\mathbf{2}$ are also linked by bidentate mapym to form 1D single zigzag chains in which the mapym are oppositely arranged. A pair of adjacent chains interconnect with each other through $\mathrm{Ag} \cdots \mathrm{Ag}$ interaction $(\mathrm{Ag} 1 \cdots \mathrm{Ag} 2=$ $3.1284(7) \AA$) to form a double-chain presented in Figure 2b. Alternatively, this double chain can also be considered as fused 10 -membered macrocycles along the c-axis. Different from nontwisted suc in 1, the glu ligands adopt a $\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{0}$ mode with a curled conformation (torsion of $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-$ $\mathrm{C} 14=170.3(4)^{\circ}$ and $\left.\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12=73.0(6)^{\circ}\right)$ to extend the 1 D chains into a 2 D double-sheet incorporating a window of $12.46 \AA \times 10.04 \AA$ on the basis of $\mathrm{Ag} 1 \cdots \mathrm{Ag} 1$ distances (Figure 2c).

Amino groups are hydrogen bonded to carboxylic groups with an average $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {glu }}$ distance of $2.935(5) \AA$. The lattice water molecules partially participate in stabilizing the 2D sheet through a $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {glu }}$ hydrogen bond showing a distance of $2.822(10) \mathrm{A}$. The $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {mapym }}$ interaction $[\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots$ $\mathrm{Cg} 1^{\text {vii }}: d_{\mathrm{H} \cdots \mathrm{Cg} 1}=2.86 \AA, d_{\mathrm{C} \cdots \mathrm{Cg} 1}=3.591(6) \AA$, and $\theta=134^{\circ}$; Cg 1 is the centroid of aromatic ring $\mathrm{N} 2 / \mathrm{C} 1 / \mathrm{N} 3 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 ; \theta$ is the angle of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 1$, see Figure S 1 , Supporting Information] combines with the intersheet $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {glu }}$ hydrogen bonds to stabilize the resultant 3D supramolecular framework (symmetry code: (vii) $-x,-y,-z+2$).
$\left[\mathbf{A g}_{2}(\text { mapym })_{2}(\mathbf{i p a}) \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right]_{n}$ (3). When using rigid $\mathrm{H}_{2} \mathrm{ipa}$, we obtained complex 3 as a 3D coordination polymer constructed through unusual 2D $\rightarrow 3 \mathrm{D}$ parallel interpenetration of deeply corrugated 2D 4^{4}-sql nets. In the structure of $\mathbf{3}$, as shown in Figure 3a, there are two crystallographically independent $\mathrm{Ag}(\mathrm{I})$ ions, two mapym, one ipa, as well as two

Figure 2. (a) Coordination environments of $A g(I)$ ions in $\mathbf{2}$ with the thermal ellipsoids at the 30% probability level. Lattice water molecules were omitted for clarity. Symmetry codes: (i) $x, y-1, z$; (ii) $-x$ $+1,-y,-z+2$; (iii) $-x+1,-y,-z+1$. (b) Scheme of the 1D double chain and the 10-membered macrocycle highlighted in cyan. (c) View of double 4^{4}-sql nets.
solvent water molecules. Both Ag 1 and Ag 2 locate in the general positions. The Ag 1 lies in a nearly linear geometry completed by two N atoms from two distinct mapym ligands ($\angle \mathrm{N} 2-\mathrm{Ag} 1-$ $\left.\mathrm{N} 6^{\mathrm{i}}=172.0(3)^{\circ}\right)$. The $\mathrm{Ag} \cdots \mathrm{O}$ weak interactions also exist around $\mathrm{Ag} 1\left(\mathrm{Ag} 1 \cdots \mathrm{O} 3^{\mathrm{iii}}=2.748(7), \mathrm{Ag} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}=2.735(7)\right.$ $\mathrm{A})$. The Ag 2 is located in a distorted tetrahedron geometry and coordinated by two mapym and two ipa ligands with average $\mathrm{Ag}-\mathrm{O}$ and $\mathrm{Ag}-\mathrm{N}$ distances of 2.329(6) and 2.286(7) \AA, respectively. The τ_{4} parameter is 0.77 for Ag 2 . Two mapym moieties bound to Ag 1 in $\mathbf{3}$ form a dihedral angle of $\mathrm{ca} .63^{\circ}$.

In 3, the $\operatorname{Ag}(\mathrm{I})$ ions are fabricated by the bidentate mapym and $\mu_{2}-\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}$ ipa to form a 2D 4^{4}-sql net (Figure 3b) incorporating 32 -membered macrocycles. The size of the grid in the 2 D net is $11.74 \AA \times 11.43 \AA$ based on the $\mathrm{Ag} 2 \cdots \mathrm{Ag} 2$ distances. This net exhibits a deeply corrugated character (Figure S2, Supporting Information) with a thickness of about $6.44 \AA$ and a dihedral angle of 111.47°. As expected, the large dimensions and corrugated nature of the net allow them to interpenetrate in an extensive and unusual fashion. In 3, as depicted in Figure 4a, each 2D 4^{4}-sql net was simultaneously penetrated by the two neighboring ones ("upper" and "lower") to avoid large voids, and their mean planes are parallel and offset. In other words, as shown in Figure 4 b, each window (blue) of the net is simultaneously catenated by the other two ones (yellow and red) and vice versa. Therefore, the 2D $\rightarrow 3 \mathrm{D}$ dimensional increase can also be regarded as being caused by the nets' polycatenation.

One lattice water molecule, one amino group, and two carboxylic groups are hydrogen-bonded to form a heteromeric $R_{4}{ }^{2}(8)$ motif ${ }^{37}$ (Figure S3, Supporting Information) with the average $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances of $2.949(10)$ and $2.872(17) \AA$, which combine with the $\pi \cdots \pi$

Figure 3. (a) ORTEP plot showing the coordination environments of $\mathrm{Ag}(\mathrm{I})$ ions in $\mathbf{3}$ with the thermal ellipsoids at the 30% probability level. Lattice water molecules were omitted for clarity. Symmetry codes: (i) $x+1, y, z$; (iv) $x,-y+{ }^{1} / 2, z+1 / 2$. (b) View of the undulated 4^{4}-sql net in the structure of 3 .
interaction (centroid \cdots centroid $=3.636(6) \AA$; dihedral angle $=4.4(5)^{\circ}$, Figure S4, Supporting Information) and the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (avg $d_{\mathrm{C}} \cdots_{\mathrm{Cg}}=3.621(12) \mathrm{A} ; \theta=$ 134°, Figure S5, Supporting Information) to enhance the stability of the resultant 3D framework.
$\left.\left[\mathbf{A g}_{\mathbf{2}} \text { (mapym }\right)_{\mathbf{2}}(\mathbf{t p a})\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)\right]_{n}(\mathbf{4})$. As shown in Figure 5a, in the asymmetric unit of 4 , there exist two $\mathrm{Ag}(\mathrm{I})$ ions, two mapym, two tpa and one coordinated water molecule. Both tpa ligands locates on the crystallographic inversion center with half occupancy. The coordination environments of Ag 1 and Ag 2 can be described as a distorted tetrahedron and a distorted squarepyramidal respectively. The tetrahedron is defined by two N atoms from two different mapym ligands and two O atoms from one tpa and one water molecule respectively $(\mathrm{Ag} 1-\mathrm{O} 1 W=$ $2.671(3)$ and $\mathrm{Ag} 1-\mathrm{N} 5=2.304(4) \AA$), and the τ_{4} parameter is 0.69 for Ag 1 . The square-pyramid is constructed by two N atoms from two different mapym ligands and three O atoms from two different tpa. Addison ${ }^{38}$ also defined a geometric parameter $\tau_{5}\left(\tau_{5}=[(\theta-\varphi) / 60]\right.$, where θ and φ are the angles between the donor atoms forming the basal plane in squarepyramidal geometry) to five-coordinate metal system as an index of the degree of distortion. The τ_{5} parameter for Ag 2 is 0.42 (for ideal square-pyramidal geometry, $\tau_{5}=0$).

Different from the 1D double chain in 2, there is no $\mathrm{Ag} \cdots \mathrm{Ag}$ interaction between adjacent 1D single chains in

Figure 4. (a) View of the 2D $\rightarrow 3 \mathrm{D}$ interpenetrating undulated 4^{4} sql net in the structure of $\mathbf{3}$. (b) View of catenation of windows.

4, which is bridged by $\mu_{2}-\eta^{2}: \eta^{0}$ carboxylic groups of tpa into the resultant 1D double chain. Interestingly, the tpa ligands show two different coordination modes: $\mu_{2}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}$ chelating and $\mu_{4}-\eta^{2}: \eta^{0}: \eta^{2}: \eta^{0}$ bridging modes, which arrange alternately along the 1 D double chains and extend them into the 2D net (Figure 5b), in which two kinds of coordinated carboxylic groups (C14 and C18) are almost coplanar with the central benzene ring, producing small dihedral angles between the individual groups and the benzene ring of 4.9(6) and $7.7(6)^{\circ}$, respectively.

The intrasheet $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\text {tpa }}$ hydrogen bonds consolidate the 2 D sheet, whereas intersheet $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {tpa }}$ hydrogen bonds incorporate intrasheet $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}_{\mathrm{tpa}}$ hydrogen bonds to form a saddle-like heteromeric $R_{4}{ }^{2}(8)$ motif. The adjacent 2D nets pack to form the supramolecular network through intersheet $\mathrm{O}_{\text {water }}-\mathrm{H} \cdots \mathrm{O}_{\text {tpa }}$ and $\mathrm{C}-\mathrm{H} \cdots \pi\left(d_{\mathrm{C}} \cdots \mathrm{Cg}=3.781(7) \AA ; \theta=\right.$ 144°, Figure S6, Supporting Information) interactions.
$\left[\mathbf{A g}(\mathbf{d m a p y m})_{\mathbf{2}}(\mathbf{0 x})_{\mathbf{0 . 5}} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}\right](5)$. As depicted in Figure 6a, complex 5 is a H-shaped discrete molecule and the asymmetric unit contains one $\operatorname{Ag}(\mathrm{I})$ ion, two dmapym, half ox, and one lattice water molecule. The $\mathrm{Ag}(\mathrm{I})$ ion is in a distorted tetrahedron geometry and coordinated by two N atoms from two different dmapym ligands and two O atoms from the same ox (avg $\mathrm{Ag}-\mathrm{N}$ and $\mathrm{Ag}-\mathrm{O}: 2.239(5)$ and 2.636(5) \AA). The ox lying on the inversion center adopts the $\mu_{2}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}$ mode to bind two $\mathrm{Ag}(\mathrm{I})$ ions, forming a H -shaped molecule. The water molecules are hydrogen bonded to the Ag_{2} (dmapym) $)_{\text {(ox }}$) molecules to form the supramolecular 1D chain (Figure 6b) along the a axis containing $R_{4}{ }^{4}(14)$ hydrogen bond motifs on the inversion center (O1W-H1WA $\cdots \mathrm{O} 2^{\mathrm{i}}=2.741(6)$ and O1WH1WB $\cdots \mathrm{O}^{1 \mathrm{iv}}=2.775(6) \AA$).

Figure 5. (a) ORTEP plot showing the coordination environments of $\mathrm{Ag}(\mathrm{I})$ ions in 4 with the thermal ellipsoids at the 30% probability level. The lattice water molecule was omitted for clarity. Symmetry codes: (ii) $-x+2,-y+2,-z+1$; (v) $-x+1,-y+1,-z+1$; (vi) $-x$ $+2,-y+2,-z$. (b) View of the 2D net in the structure of $\mathbf{4}$ (yellow polyhedron, tetrahedron; cyan polyhedron, square-pyramid).

Additionally, the dmapym adopts the monodentate coordination mode to bind the $\operatorname{Ag}(\mathrm{I})$ ions, which may be due to the steric effect of one more methyl group compared to mapym, so it does not extend the structure to the higher dimensionality. The self-complementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving stereochemically associative amino and hetero ring nitrogens form a $R_{2}{ }^{2}(8)$ homomeric motif and combine with the $\pi \cdots \pi$ (centroid \cdots centroid $=3.856$ (4) \AA; dihedral angle $=0^{\circ}$, Figure S7, Supporting Information) and $\mathrm{C}-\mathrm{H} \cdots \pi\left(\operatorname{avg} d_{\mathrm{C} \cdots \mathrm{Cg}}=3.565(7) \AA ; \theta=135^{\circ}\right.$, Figure S8) interactions to assemble the 1D chains into the resultant 3D supramolecular framework.
$\left[\mathbf{A g}(\mathbf{d m a p y m})(\text { bbdc })_{0.5} \cdot \mathbf{0 . 5 H}_{\mathbf{2}} \mathrm{O}\right]_{n}$ (6). X-ray analysis reveals that complex $\mathbf{6}$ crystallizes in a monoclinic system with space group $C 2 / \mathbf{c}$. The asymmetric unit consists of two crystallographically independent $\mathrm{Ag}(\mathrm{I})$ ions, one dmapym, half bbdc, as well as half a solvent water molecule. A C2 axis passes through $\mathrm{Ag} 1, \mathrm{Ag} 2$, as well as the midpoint of $\mathrm{C} 7-\mathrm{C} 7^{\mathrm{v}}$ bond of bbdc. The lattice water molecule is disordered related to the inversion center. As illustrated in Figure 7, the Ag 1 and Ag 2 locate in the distorted tetrahedral and linear geometries, respectively, without consideration of the $\mathrm{Ag} \cdots \mathrm{Ag}$ interaction. This tetrahedron is completed by two symmetry-related dmapym and bbdc ligands with $\mathrm{Ag} 1-\mathrm{N} 2^{\mathrm{i}}$ and $\mathrm{Ag} 1-\mathrm{O} 1$ distances of 2.454(3) and 2.313(2) \AA, respectively, and the τ_{4} parameter is 0.79 for Ag 1 , which indicate this tetrahedron is the least distorted one in complexes $\mathbf{1 - 6}$ (Table 3). The angle around Ag 2 opens up to $160.07(11)^{\circ}$, which deviates from the ideal 180° due to the $\mathrm{Ag} \cdots \mathrm{O}$ weak interactions with $\mathrm{Ag} 2 \cdots \mathrm{O}^{\text {ii }}$ and

Figure 6. (a) Molecule structure of 5 with the thermal ellipsoids at 30% probability level. Lattice water molecule was omitted for clarity. Symmetry codes: (ii) $-x+2,-y+2,-z+1$; (v) $-x+1$, $-y+1,-z+1$; (vi) $-x+2,-y+2,-z$. (b) A view of the 1 D supramolecular chain incorporating $R_{4}{ }^{4}(14)$ hydrogen bond motifs. (c) The self-complementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds of two pyrimidine moieties with $R_{2}^{2}(8)$ motifs.
$\mathrm{Ag} 2 \cdots \mathrm{O} 2^{\text {ii }}$ distances of $3.188(3)$ and $2.776(3) \AA$, respectively (symmetry codes: (i) $-x+2, y,-z+{ }^{1} / 2$; (ii) $-x+2,-y+2$, $-z ;(\mathrm{v})-x+1, y,-z+{ }^{1} / 2$).

The dmapym ligands act as μ_{2}-bridges to link $\operatorname{Ag}(\mathrm{I})$ ions to form 1D single zigzag chains, and a pair of adjacent chains interconnect with each other to form a double-chain via $\mathrm{Ag} .$. Ag interaction of $3.1284(7) \AA$, which is shorter than the van der Waals radii of $\mathrm{Ag}(\mathrm{I})(3.44 \AA){ }^{39}$ The $\mu_{2}-\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}$ bbdc ligands with a dihedral angle between two phenyl rings of $40.2(3)^{\circ}$ extend the 1D chains into a double 4^{4}-sql net incorporating a window of $12.10 \AA \times 15.68 \AA$ on the basis of $\mathrm{Ag} 1 \cdots \mathrm{Ag} 1$ distances (Figure S9).

Influence of Dicarboxylates and Substituents on Structures. It has been demonstrated that the structural diversities of

Figure 7. ORTEP plot showing the coordination environments of $\operatorname{Ag}(\mathrm{I})$ ions in 6 with the thermal ellipsoids at the 30% probability level. The lattice water molecule was omitted for clarity. Symmetry codes: (i) $-x+2, y,-z+{ }^{1} / 2 ;(\mathrm{v})-x+1, y,-z+{ }^{1} / 2 ;$ (vi) $-x+2, y$, $-z-1 / 2$.
complexes $\mathbf{1 - 6}$ are undoubtedly related to the auxiliary ligands (configurations and coordination modes) and substituent effect (steric and electronic effects). The combined two factors are key points to influence the final complexes, which depends on the competition and adaptability of the components. That is to say, both kinds of organic ligands have to fine-tune themselves to satisfy the coordination preference of metal centers and the lower energetic arrangement in the assembly process. ${ }^{40}$

In six complexes, dicarboxylates varied in the assembly process are capable of diversifying the structures as well as coordination spheres of $\operatorname{Ag}(\mathrm{I})$. Four different coordination fashions [suc $\left(\mu_{2}-\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}\right)$, glu $\left(\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{0}\right)$, ipa $\left(\mu_{2}-\right.$ $\left.\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}\right)$, tpa $\left(\mu_{4}-\eta^{2}: \eta^{0}: \eta^{2}: \eta^{0}\right.$ and $\left.\mu_{2}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}\right)$, ox ($\mu_{2}-$ $\left.\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}\right)$, and bbdc $\left(\mu_{2}-\eta^{1}: \eta^{0}: \eta^{1}: \eta^{0}\right)$] have been observed in six dicarboxylate ligands (Scheme S1, Supporting Information). The suc, glu, ox, tpa, and bbdc act as linear $\left(180^{\circ}\right)$ rodlike spacers to give 1, 2, 4, and $\mathbf{6} 2 \mathrm{D} 4^{4}$-sql nets incorporating different sizes and shapes of rectangle windows, whereas angular ipa (120°) favors formation of larger rings incorporating metal centers; as a result, the 2D $\rightarrow 3 \mathrm{D}$ parallel interpenetration framework is formed to avoid the large voids. Comparing complexes $\mathbf{5}$ and 6, it seems reasonable to conclude that the increase of dimensionalities is caused by the competition between the steric and electronic effects of the methyl substituent. In detail, for 5, the steric hindrance of the methyl groups overcomes the electronic effect and prevents $\operatorname{Ag}(\mathrm{I})$ ion from binding to the second N -coordination site on the pyrimidyl ring. In contrast to $\mathbf{5}$, the electronic effect of methyl substituent in $\mathbf{6}$ dominates the assembly course and enhances the coordinative ability of the potential coordination site; consequently, a weak $\mathrm{Ag}-\mathrm{N}$ bond ($>2.4 \AA$) forms and the dimensionality increase from 0D to 2D is realized. The coordination spheres of $\mathrm{Ag}(\mathrm{I})$ in this work vary from linearity, trigon, tetrahedron, to squarepyramid, and they are also undoubtedly associated with the dicarboxylate-participated inclusion. In a word, different dicarboxylates and substituent effects are responsible for the structural diversity of the resultant coordination networks, in combination with the adaptable configuration of $\mathrm{Ag}(\mathrm{I})$ ion.

IR Spectra. The IR spectra (Figure S10, Supporting Information) of complexes $\mathbf{1 - 6}$ show features attributable to the carboxylic and amino group stretching vibrations. No band in the region $1690-1730 \mathrm{~cm}^{-1}$ indicates complete deprotonation of the carboxylic groups. The characteristic bands of the carboxylic groups are shown in the range

Figure 8. TGA curves for complexes $\mathbf{1 - 6}$.
$1541-1665 \mathrm{~cm}^{-1}$ for asymmetric stretching and 1382-1482 cm^{-1} for symmetric stretching. Furthermore, the $\left(v_{\text {as }}-v_{\mathrm{s}}\right)$ values are $181 / 180 \mathrm{~cm}^{-1}$ for $\mathbf{1}, 176 / 179 \mathrm{~cm}^{-1}$ for 2, 178/112 cm^{-1} for 3, 178/190 cm^{-1} for 4, 195/209 cm^{-1} for 5, and 124/ $148 \mathrm{~cm}^{-1}$ for 6 , respectively. The splitting of $v_{\mathrm{as}}(\mathrm{COO})$ indicates the different coordination modes of carboxylate, ${ }^{41}$ being in agreement with their crystal structures. The $\mathrm{N}-\mathrm{H}$ asymmetric and symmetric stretching bands fall in the ranges 3425-3325 and 3175-3129 cm^{-1}, respectively. This absorption is much sharper than $\mathrm{O}_{\text {water }}-\mathrm{H}$ stretching and can, therefore, be differentiated.

X-ray Power Diffraction Analyses and Thermal Analyses.

 Powder X-ray diffraction (XRD) has been used to check the phase purity of the bulky samples in the solid state. For complexes 1-6, the measured XRD patterns closely match the simulated patterns generated from the results of single-crystal diffraction data (Figure S11, Supporting Information), indicative of pure products. The thermogravimetric (TG) analysis was performed in N_{2} atmosphere on polycrystalline samples of complexes $\mathbf{1 - 6}$, and the TG curves are shown in Figure 8. The TG curve of $\mathbf{1}$ shows the first weight loss of 2.9% in the temperature range $25-118^{\circ} \mathrm{C}$, which indicates the exclusion of lattice water molecules (calcd, 3.2%); with that, pyrolysis of the residual component occurs in two stages corresponding to the loss of mapym (obsd, 39.0%; calcd, 38.4%) and suc (obsd, 19.1%; calcd, 20.4\%) ligands, respectively. For 2, the loss of lattice water molecules (obsd, 4.2%; calcd, 4.6\%), mapym (obsd, 37.8%; calcd, 36.9%), and glu (obsd, 22.0%; calcd, 21.1%) ligands happens in the ranges $25-113,114-203$, and $204-267^{\circ} \mathrm{C}$, respectively. For 3, an initial weight loss of 5.3% corresponds to the loss of solvent water (calcd, 5.7%). The second weight loss of 34.1% (calcd, 34.4%) corresponds to the loss of the mapym. The final weight loss of 25.4% corresponds to the loss of ipa (calcd, 25.9%). For 4, the weight loss attributed to the gradual release of water molecules is observed in the range $25-153{ }^{\circ} \mathrm{C}$ (obsd, 2.7%; calcd, 2.9%). The decomposition of residual composition occurs at 154 and $222{ }^{\circ} \mathrm{C}$, corresponding to the loss of mapym (obsd, 34.9%; calcd, 35.4%) and tpa (obsd, 27.0%; calcd, 26.6\%) ligands, respectively. For 5, the curve shows one step decomposition in the temperature range $25-160^{\circ} \mathrm{C}$ and produces a 73.4% weight change, which corresponds to the loss of both solvent water molecules and organic ligands from the structure (calculated weight loss 74.0%). For 6 , the weight loss between 25 and $165^{\circ} \mathrm{C}$ corresponds to the release

Figure 9. Photoluminescences of free ligands and complexes 1-6.
of a water molecule (obsd, 2.2%; calcd, 2.5%). The removal of organic components occurs at two obvious stages: 165-232 and $232-414^{\circ} \mathrm{C}$, corresponding to the loss of mapym (obsd, 33.6%; calcd, 34.2%) and bbdc (obsd, 33.6%; calcd, 33.8%) ligands, respectively. Based on the analyzing TG curves of $\mathbf{1 - 4}$ and $\mathbf{6}$, we find that the sequence of the ligands-release is the following: aminopyrimidyl ligands < dicarboxylate ligands, which indicates that the $\mathrm{Ag}-\mathrm{O}$ bonds are more difficult to break than $\mathrm{Ag}-\mathrm{N}$ bonds. ${ }^{42}$ The exception happens in 5 with one step composition of organic ligands which may be due to the comparable strength of $\mathrm{Ag}-\mathrm{O}$ and $\mathrm{Ag}-\mathrm{N}$ bonds in 5; consequently, the simultaneous bond breakage occurs during the heating process.

Photoluminescence Properties. The $\mathrm{Ag}(\mathrm{I})$ coordination complexes with aromatic ligands have received much attention for the development of hybrid photoluminescent materials. ${ }^{43}$ Thus, solid-state photoluminescent properties of complexes 1-6 as well as free ligands were examined at room temperature. The photoluminescence spectra of the free ligands and complexes $\mathbf{1 - 6}$ are shown in Figure 9. The free ligands mapym, dmapym, H_{2} suc, H_{2} glu, $\mathrm{H}_{2} \mathrm{ipa}, \mathrm{H}_{2}$ tpa, $\mathrm{H}_{2} \mathrm{OX}$, and $\mathrm{H}_{2} \mathrm{bbdc}$ display photoluminescence with emission maxima at $351,342,423,365,358,384,342$, and 408 nm ($\lambda_{\text {ex }}=300 \mathrm{~nm}$), respectively. It can be presumed that these peaks originate from the $\pi^{*} \rightarrow \mathrm{n}$ or $\pi^{*} \rightarrow \pi$ transitions. To the best of our knowledge, the emission of dicarboxylate belongs to $\pi^{*} \rightarrow \mathrm{n}$ transitions, which is very weak compared to that of the $\pi^{*} \rightarrow \pi$ transition of the mapym or dmapym, so the dicarboxylates almost have no contribution to the fluorescent emission of as-synthesized CCs. ${ }^{44}$ Intense emissions are
observed at 513 nm for $\mathbf{1}, 518 \mathrm{~nm}$ for $\mathbf{2 , 5 1 5} \mathrm{nm}$ for $\mathbf{3}, 533 \mathrm{~nm}$ for $\mathbf{4}, 396 \mathrm{~nm}$ for $\mathbf{5}$, and 393 nm for $\mathbf{6}$, respectively. When compared to the photoluminescence spectrum of the free mapym ligand, the emission bands of $\mathbf{1 - 4}$ are red-shifted by more than 150 nm , which may come from the electronic transition between p orbitals (filled orbitals) of coordinated N atoms and the 5 s orbital (empty orbital) of $\mathrm{Ag}(\mathrm{I})$ ion, i.e., ligand-to-metal charge transfer (LMCT), mixed with metalcentered (d-s/d-p) transitions. ${ }^{45}$ Different from 1-4, obviously, the emissions of $\mathbf{5}$ and $\mathbf{6}$ are similar to that of dmapym and should be assigned to the intraligand transition of the coordinated N -donor ligand. The enhancement of luminescence of all complexes was attributed to ligand coordination to the metal center, which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay. ${ }^{46}$

Conclusions

Six new CCs have been prepared by mixed aminopyrimidyl and dicarboxylate ligands under the ultrasonic treatment. They show diverse structures and dimensionalities from zero-dimensional discrete molecule (5), to two-dimensional sheets ($\mathbf{1}, \mathbf{2}, \mathbf{4}$, and 6), to 2D $\rightarrow 3 \mathrm{D}$ parallel interpenetrated three-dimensional strcuture (3). The changes of structure result from the various dicarboxylates and the adaptable coordination spheres of $\mathrm{Ag}(\mathrm{I})$. The substituent effects including steric and electronic effects also regulate the structures of resultant CCs. In addition, such CCs display modest thermal stability and strong solid-state fluorescent emission.

Acknowledgment. This work was financially supported by the National Natural Science Foundation of China (No. 20721001) and 973 Project (Grant 2007CB815301) from MSTC.

Supporting Information Available: Crystallographic data in CIF format, additional figures of the structures, hydrogen-bonding geometries, powder X-ray diffraction (PXRD) patterns, thermogravimetric analysis (TGA) curves, and IR spectra for $\mathbf{1 - 6}$. This material is available free of charge via the Internet at http://pubs. acs.org.

References

(1) (a) Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460-1494. (b) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319-330. (c) Férey, G. Chem. Soc. Rev. 2008, 37, 191-214. (d) James, S. L. Chem. Soc. Rev. 2003, 32, 276-288. (e) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629-1658. (f) Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev. 2003, 246, 247-289. (g) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781-1795. (h) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334-2375. (i) Zhang, J. P.; Huang, X. C.; Chen, X. M. Chem. Soc. Rev. 2009, 38, 2385-2396. (j) Zhang, J. P.; Chen, X. M. J. Am. Chem. Soc. 2008, 130, 6010-6017. (k) Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 15394-15395. (1) Wu, D. Y.; Sato, O.; Einaga, Y.; Duan, C. Y. Angew. Chem., Int. Ed. 2009, 48, 1475-1478. (m) Wang, X. Y.; Wang, L.; Wang, Z. M.; Gao, S. J. Am. Chem. Soc. 2006, 128, 674-675. (n) Subramanian, S.; Zaworotko, M. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2127-2129. (o) Wang, M. S.; Guo, G. C.; Zou, W. Q.; Zhou, W. W.; Zhang, Z. J.; Xu, G.; Huang, J. S. Angew. Chem., Int. Ed. 2008, 47, 3565-3567. (p) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334-2338. (q) Zou, R.-Q.; Sakurai, H.; Han, S.; Zhong, R.-Q.; Xu, Q. J. Am. Chem. Soc. 2007, 129, 8402-8403. (r) Perry, J. J.; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400-1417. (s) Ward, M. D. Science 2003, 300, 1104-1105. (t) Kawamichi, T.; Haneda, T.; Kawano, M.; Fujita, M.

Nature 2009, 461, 633-635. (u) Zaworotko, M. J. Nature 2008, 451, 410-411. (v) Bu, X. H.; Tong, M. L.; Chang, H. C.; Kitagawa, S.; Batten, S. R. Angew. Chem., Int. Ed. 2004, 43, 192-195. (w) Hennigar, T. L.; Losier, P.; MacQuarrie, D. C.; Zaworotko, M. J.; Rogers, R. D. Angew. Chem., Int. Ed. Engl. 1997, 36, 972-973. (x) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629-1658.
(2) (a) Roland, B. K.; Carter, C.; Zheng, Z. P. J. Am. Chem. Soc. 2002, 124, 6234-6235. (b) Lang, J. P.; Xu, Q. F.; Yuan, R. X.; Abrahams, B. F. Angew. Chem., Int. Ed. 2004, 43, 4741-4745. (c) Yang, J.; Ma, J. F.; Liu, Y. Y.; Ma, J. C.; Batten, S. R. Inorg. Chem. 2007, 46, 6542-6555. (d) Chiang, L. M.; Yeh, C. W.; Chan, Z. K.; Wang, K. M.; Chou, Y. C.; Chen, J. D.; Wang, J. C.; Lai, J. Y. Cryst. Growth Des. 2008, 8, 470 477. (e) Chen, H. C.; Hu, H. L.; Chan, Z. K.; Yeh, C. W.; Jia, H. W.; Wu, C. P.; Chen, J. D.; Wang, J. C. Cryst. Growth. Des. 2007, 7, 698-704.
(3) (a) Rispens, M. T.; Meetsma, A.; Rittberger, R.; Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Chem. Commun. 2003, 2116 2118. (b) Zhang, W. H.; Song, Y. L.; Zhang, Y.; Lang, J. P. Cryst. Growth Des. 2008, 8, 253-258. (c) Chen, Y.; Li, H. X.; Liu, D.; Liu, L. L.; Li, N. Y.; Ye, H. Y.; Zhang, Y.; Lang, J. P. Cryst. Growth Des. 2008, 8, 3810-3816. (d) Tong, M. L.; Zheng, S. L.; Chen, X. M. Chem.-Eur. J. 2000, 6, 3729-3738.
(4) (a) Zheng, P. Q.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2005, 44, 1190-1192. (b) Wang, X. L.; Qin, C.; Wang, E. B.; Li, Y. G.; Su, Z. M.; Xu, L.; Carlucci, L. Angew. Chem., Int. Ed. 2005, 44, 5824-5827. (c) Yin, P. X.; Zhang, J.; Li, Z. J.; Qin, Y. Y.; Cheng, J. K.; Zhang, L.; Lin, Q. P.; Yao, Y. G. Cryst. Growth Des. 2009, 9, 4884-4896.
(5) (a) Forster, P. M.; Burbank, A. R.; Livage, C.; Férey, G.; Cheetham, A. K. Chem. Commun. 2004, 368-369. (b) Huang, X. C.; Zhang, J. P.; Lin, Y. Y.; Yu, X. L.; Chen, X. M. Chem. Commun. 2004, 1100-1101.
(6) (a) Kang, Y.; Lee, S. S.; Park, K. M.; Lee, S. H.; Kang, S. O.; Ko, J. Inorg. Chem. 2001, 40, 7027-7031. (b) Seo, J.; Song, M. R.; Sultana, K. F.; Kim, H. J.; Kim, J.; Lee, S. S. J. Mol. Struct. 2007, 827, 201205. (c) Jung, O. S.; Kim, Y. J.; Lee, Y. A.; Park, K. M.; Lee, S. S. Inorg. Chem. 2003, 42, 844-850. (d) Yeh, C.-W.; Chen, T.-R.; Chen, J.-D.; Wang, J.-C. Cryst. Growth. Des. 2009, 9, 2595-2603. (e) Wang, Y.-H.; Chu, K.-L.; Chen, H.-C.; Yeh, C.-W.; Chan, Z.-K.; Suen, M.-C.; Chen, J.-D. CrystEngComm 2006, 8, 84-93. (f) Smith, G.; Cloutt, B. A.; Lynch, D. E.; Byriel, K. A.; Kennard, C. H. L. Inorg. Chem. 1998, 37, 3236-3242. (g) Ren, Y. P.; Kong, X. J.; Long, L. S.; Huang, R. B.; Zheng, L. S. Cryst. Growth Des. 2006, 6, 572-576.
(7) (a) Gural'skiy, I. A.; Escudero, D.; Frontera, A.; Solntsev, P. V.; Rusanov, E. B.; Chernega, A. N.; Krautscheid, H.; Domasevitch, K. V. Dalton Trans. 2009, 2856-2864. (b) Domasevitch, K. V.; Solntsev, P. V.; Gural'skiy, I. A.; Krautscheid, H.; Rusanov, E. B.; Chernega, A. N.; Howard, J. A. K. Dalton Trans. 2007, 3893-3905. (c) Schottel, B. L.; Chifotides, H. T.; Shatruk, M.; Chouai, A.; Pérez, L. M.; Bacsa, J.; Dunbar, K. R. J. Am. Chem. Soc. 2006, 128, 5895-5912.
(8) (a) Venkataraman, D.; Du, Y.; Wilson, S. R.; Hirsch, K. A.; Zhang, P.; Moore, J. S. J. Chem. Educ. 1997, 74, 915-919. (b) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley: Chichester, 1988. (c) Cortez, S. M.; Raptis, R. G. Coord. Chem. Rev. 1998, 169, 363-426. (d) Sailaja, S.; Rajasekharan, M. V. Inorg. Chem. 2003, 42, 5675-5684. (e) Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Poleschak, I.; Zehnder, M. Polyhedron 2003, 22, 93-108. (f) Liao, S.; Su, C.-Y.; Yeung, C.-H.; Xu, A.-W.; Zhang, H.-X.; Liu, H. Q. Inorg. Chem. Commun. 2000, 3, 405-408. (g) Burchell, T. J.; Eisler, D. J.; Puddephatt, R. J. Cryst. Growth Des. 2006, 6, 974-982. (h) Su, W.; Hong, M. Angew. Chem., Int. Ed. 2000, 39, 2911-2914. (i) Shimizu, G. K. H.; Enright, G. D. Chem. Commun. 1999, 1485-1486. (j) John, F. C.; Fenske, D.; Power, W. P. Angew. Chem., Int. Ed. Engl. 1997, 36, 1176-1179. (k) Eduardo, J. F.; Concepción, G. M.; Laguna, A. J. Am. Chem. Soc. 2000, 122, 7287-7293. (1) Youngme, S.; Phuengphai, P.; Chaichit, N. Inorg. Chim. Acta 2005, 358, 849-853. (m) Navarro, J. A. R.; Salas, J. M.; Romero, M. A.; Faure, R. J. Chem. Soc., Dalton Trans. 1998, 901-904. (n) Chen, C.-L.; Kang, B.-S.; Su, C.-Y. Aust. J. Chem. 2006, 59, 3-18. (o) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1895-1898.
(9) (a) Che, C.-M.; Lai, S.-W. Coord. Chem. Rev. 2005, 249, 1296-1309. (b) Phillips, D. L.; Che, C.-M.; Leung, K.-H.; Mao, Z.; Tse, M.-C. Coord. Chem. Rev. 2005, 249, 1476-1490.
(10) (a) Fenske, D.; Persau, C.; Dehnen, S.; Anson, C. E. Angew. Chem., Int. Ed. 2004, 43, 305-309. (b) Chitsaz, S.; Fenske, D.; Fuhr, O. Angew. Chem., Int. Ed. 2006, 45, 8055-8059. (c) Anson, C. E.; Eichhöfer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. T. Angew. Chem., Int. Ed. 2008, 47, 1326-1331.
(11) Luo, T. T.; Liu, Y. H.; Chan, C. C.; Huang, S. M.; Chang, B. C.; Lu, Y. L.; Lee, G. H.; Peng, S. M.; Wang, J. C.; Lu, K. L. Inorg. Chem. 2007, 46, 10044-10046. (b) Zheng, X. D.; Jiang, L.; Feng, X. L.; Lu, T. B. Inorg. Chem. 2008, 47, 10858-10865. (c) Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V.; Schröder, M. Coord. Chem. Rev. 2001, 222, 155-192. (d) Deng, Z. P.; Zhu, L. N.; Gao, S.; Huo, L. H.; Ng, S. W. Cryst. Growth Des. 2008, 8, 3277-3284. (e) Han, L.; Hong, M. C. Inorg. Chem. Commun. 2005, 8, 406-419. (f) Bowyer, P. K.; Porter, K. A.; Rae, A. D.; Willis, A. C.; Wild, S. B. Chem. Commun. 1998, 1153-1154.
(12) (a) Huang, X. C.; Zhang, J. P.; Chen, X. M. Cryst. Growth Des. 2006, 6, 1194-1198. (b) Huang, G.; Tsang, C. K.; Xu, Z.; Li, K.; Zeller, M.; Hunter, A. D.; Chui, S. S. Y.; Che, C. M. Cryst. Growth Des. 2009, 9, 1444-1451. (c) Sun, D.; Luo, G. G.; Xu, Q. J.; Zhang, N.; Jin, Y. C.; Zhao, H. X.; Lin, L. R.; Huang, R. B.; Zheng, L. S. Inorg. Chem. Commun. 2009, 12, 782-784.
(13) (a) Cordes, D. B.; Hanton, L. R. Inorg. Chem. 2007, 46, 1634-1644. (b) Black, C. A.; Hanton, L. R. Cryst. Growth. Des. 2007, 7, 18681871. (c) Zhang, J.; Chen, Y.-B.; Chen, S.-M.; Li, Z.-J.; Cheng, J.-K.; Yao, Y.-G. Inorg. Chem. 2006, 45, 3161-3163. (d) Blake, A. J.; Champness, N. R.; Cooke, P. A.; Nicolson, J. E. B. Chem. Commun. 2000, 665-666. (e) MacGillivray, L. R.; Subramanain, S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1994, 1325-1326.
(14) (a) Lu, X. Q.; Qiao, Y .Q.; He, J. R.; Pan, M.; Kang, B. S.; Su, C. Y. Cryst. Growth Des. 2006, 6, 1910-1914. (b) Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Clegg, W.; Harringtond, R. W.; Ward, M. D. Dalton Trans. 2006, 4996-5013.
(15) (a) Zhang, J. P.; Kitagawa, S. J. Am. Chem. Soc. 2008, 130, 907917. (b) Ni, Z.; Vittal, J. J. Cryst. Growth Des. 2001, 1, 195-197. (c) Dong, Y.-B.; Wang, P.; Huang, R.-Q.; Smith, M. D. Inorg. Chem. 2004, 43, 4727-4739. (d) Liu, F.-Q.; Tilley, T. D. Inorg. Chem. 1997, 36, 5090-5096. (e) Banfi, S.; Carlucci, L.; Caruso, E.; Ciani, G.; Proserpio, D. M. Cryst. Growth Des. 2004, 4, 29-32. (f) Hoskins, B. F.; Robson, R.; Slizys, D. A. J. Am. Chem. Soc. 1997, 119, 2952-2953. (g) Kuang, X.; Wu, X; Yu, R.; Donahue, J. P.; Huang, J.; Lu, C. Z. Nature Chem. 2010, 2, 461-465.
(16) Jin, C. M.; Wu, L. Y.; Lu, H.; Xu, Y. Cryst. Growth. Des. 2008, 6, 215-218.
(17) (a) Chu, Q.; Liu, G. X.; Huang, Y. Q.; Wang, X. F.; Sun, W. Y. Dalton Trans. 2007, 4302-4311. (b) Zang, S. Q.; Su, Y.; Duan, C. Y.; Li, Y. Z.; Zhu, H. Z.; Meng, Q. J. Chem. Commun. 2006, 4997-4999. (c) Fang, Q. R.; Zhu, G. S.; Xue, M.; Sun, J. Y.; Sun, F. X.; Qiu, S. L. Inorg. Chem. 2006, 45, 3582-3587. (d) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276-279. (e) Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Science 2010, 327, 846-850.
(18) (a) Michaelides, A.; Kiritsis, V.; Skoulika, S.; Aubry, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1495-1497. (b) Li, F.; Li, T.; Yuan, D.; Lv, J.; Cao, R. Inorg. Chem. Commun. 2006, 9, 691-694. (c) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213-1214.
(19) (a) Zhou, Y. F.; Zhao, Y. J.; Sun, D. F.; Weng, J. B.; Cao, R.; Hong, M. C. Polyhedron 2003, 22, 1231-1235. (b) Zhang, L. Y.; Liu, G. F.; Zheng, S. L.; Ye, B. H.; Zhang, X. M.; Chen, X. M. Eur. J. Inorg. Chem. 2003, 2965-2971. (c) Chen, X. M.; Liu, G. F. Chem.-Eur. J. 2002, 8, 4811-4817.
(20) (a) Zhang, X. M.; Tong, M. L.; Chen, X. M. Angew. Chem., Int. Ed. 2002, 41, 1029-1031. (b) Sun, D. F.; Cao, R.; Liang, Y. C.; Shi, Q.; Su, W. P.; Hong, M. C. J. Chem. Soc., Dalton Trans. 2001, 2335-2340. (c) Sun, D.; Xu, Q. J.; Ma, C. Y.; Zhang, N.; Huang, R. B.; Zheng, L. S. CrystEngComm, 2010, http://dx.doi.org/10.1039/C0CE00017E. (d) Hogben, T.; Douthwaite, R. E.; Gillie, L. J.; Whitwood, A. C. CrystEngComm 2006, 8, 866-868.
(21) (a) Krizanovic, O.; Sabat, M.; Beyerle-Pfnür, R.; Lippert, B. J. Am. Chem. Soc. 1993, 115, 5538-5548. (b) Lin, C.-Y.; Chan, Z.-K.; Yeh, C.-W.; Wu, C.-J.; Chen, J.-D.; Wang, J.-C. CrystEngComm 2006, 8, 841-846. (c) Wang, Y.-H.; Chu, K.-L.; Chen, H.-C.; Yeh, C.-W.; Chan, Z.-K.; Suen, M.-C.; Chen, J.-D. CrystEngComm 2006, 8, 84-93.
(22) (a) Shen, W. Z.; Costisella, B.; Lippert, B. J. Chem. Soc., Dalton Trans. 2007, 851-858. (b) Navarro, J. A. R.; Barea, E.; Galindo, M. A.; Salas, J. M.; Romero, M. A.; Quirós, M.; Masciocchi, N.; Galli, S.; Sironi, A.; Lippert, B. J. Solid State Chem. 2005, 178, 2436-2451.
(23) Marzilli, L. G.; Summers, M. F.; Zangrando, E.; Bresciani-Pahor, N.; Randaccio, L. J. Am. Chem. Soc. 1986, 108, 4830-4838.
(24) (a) Spannenberg, A.; Arndt, P.; Kempe, R. Angew. Chem., Int. Ed. 1998, 37, 832-835. (b) Kempe, R.; Arndt, P. Inorg. Chem. 1996, 35, 2644-2646. (c) Cotton, F. A.; Yokochi, A. Inorg. Chem. 1998, 37, 2723-2728. (d) Li, Y.; Han, B.; Kadish, K. M.; Bear, J. L. Inorg. Chem.

1993, 32, 4175-4175. (e) Bear, J. L.; Yao, C.-L.; Capdevielle, F. J.; Kadish, K. M. Inorg. Chem. 1988, 27, 3782-3785.
(25) (a) Lin, C.-Y.; Chan, Z.-K.; Yeh, C.-W.; Wu, C.-J.; Chen, J.-D.; Wang, J.-C. CrystEngComm 2006, 8, 841-846. (b) Wang, Y.-H.; Chu, K.-L.; Chen, H.-C.; Yeh, C.-W.; Chan, Z.-K.; Suen, M.-C.; Chen, J.-D. CrystEngComm 2006, 8, 84-93. (c) Domasevitch, K. V.; Boldog, I.; Rusanov, E. B.; Hunger, J.; Blaurock, S.; Schröder, M.; Sieler, J. Z. Anorg. Allg. Chem. 2005, 631, 1095-1100.
(26) (a) Sun, D.; Luo, G. G.; Zhang, N.; Chen, J. H.; Huang, R. B.; Lin, L. R.; Zheng, L. S. Polyhedron 2009, 28, 2983-2988. (b) Sun, D.; Luo, G. G.; Zhang, N.; Xu, Q. J.; Yang, C. F.; Wei, Z. H.; Jin, Y. C.; Lin, L. R.; Huang, R. B.; Zheng, L. S. Inorg. Chem. Commun. 2010, 13, 290-293. (c) Sun, D.; Zhang, N.; Xu, Q. J.; Luo, G. G.; Huang, R. B.; Zheng, L. S. J. Mol. Struct. 2010, 969, 176-181. (d) Sun, D.; Zhang, N.; Xu, Q. J.; Luo, G. G.; Huang, R. B.; Zheng, L. S. J. Mol. Struct. 2010, 970, 134-138. (e) Sun, D.; Luo, G. G.; Zhang, N.; Xu, Q. J.; Jin, Y. C.; Wei, Z. H.; Yang, C. F.; Lin, L. R.; Huang, R. B.; Zheng, L. S. Inorg. Chem. Commun. 2010, 13, 306-309. (f) Sun, D.; Luo, G. G.; Zhang, N.; Xu, Q. J.; Huang, R. B.; Zheng, L. S. Polyhedron 2010, 29, 1243-1250. (g) Sun, D.; Luo, G. G.; Zhang, N.; Xu, Q. J.; Wei, Z. H.; Yang, C. F.; Lin, L. R.; Huang, R. B.; Zheng, L. S. Bull. Chem. Soc. Jpn. 2010, 83, 173-175. (h) Sun, D.; Luo, G. G.; Zhang, N.; Wei, Z. H.; Yang, C. F.; Huang, R. B.; Zheng, L. S. Chem. Lett. 2010, 39, 190-191.
(27) Higashi, T. ABSCOR, Empirical Absorption Correction based on Fourier Series Approximation; Rigaku Corporation: Tokyo, 1995.
(28) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination; University of Gottingen: Germany, 1997.
(29) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement; University of Gottingen: Germany, 1997.
(30) Spek,A. L. Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool; Utrecht University,: Utrecht, The Netherlands, 1998.
(31) Sun, D. F.; Cao, R.; Bi, W. H.; Hong, M. C.; Chang, Y. L. Inorg. Chim. Acta 2004, 357, 991.
(32) Sun, D.; Luo, G. G.; Zhang, N.; Wei, Z. H.; Yang, C. F.; Xu, Q. J.; Huang, R. B.; Zheng, L. S. Chem. Lett. 2010, 39, 190.
(33) (a) Suslick, K. S.; Price, G. Annu. Rev. Mater. Sci. 1999, 29, 295326. (b) McNamara, W. B., III; Didenko, Y.; Suslick, K. S. Nature 1999, 401, 772-775. (c) Flannigan, D. J.; Suslick, K. S. Nature 2005, 434, 52-55. (d) Bang, J. H.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 2242-2243. (e) Dhas, N. A.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 2368-2369. (f) Skrabalak, S. E.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 9990-9991. (g) Suh, W. H.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 12007-12010. (h) Didenko, Y. T.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 12196-12197.
(34) Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 955964.
(35) (a) Côté, A. P.; Shimizu, G. K. H. Coord. Chem. Rev. 2003, 245, 4964. (b) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T. Adv. Inorg. Chem. 1999, 46, 173-303.
(36) (a) Sun, D.; Zhang, N.; Xu, Q. J.; Huang, R. B.; Zheng, L. S. J. Organomet. Chem. 2010, 695, 1598-1602. (b) Sun, D.; Zhang, N.; Luo, G. G.; Xu, Q. J.; Huang, R. B.; Zheng, L. S. Polyhedron 2010, 29, 1842-1848. (c) Degtyarenko, A. S.; Solntsev, P. V.; Krautscheid, H.; Rusanov, E. B.; Chernega, A. N.; Domasevitch, K. V. New J. Chem. 2008, 32, 1910-1918. (d) Gural'skiy, I. A.; Solntsev, P. V.; Krautscheid, H.; Domasevitch, K. V. Chem. Commun. 2006, 4808-4810. (e) Katagiri, K.; Ikeda, T.; Tominaga, M.; Masu, H.; Azumaya, I. Cryst. Growth. Des. 2010, http://dx.doi.org/10.1021/cg100013g. (f) Kong, X. J.; Ren, Y. P.; Zheng, P. Q.; Long, Y. X.; Long, L. S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2006, 45, 10702-10711.
(37) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1555-1573.
(38) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
(39) (a) Pyykkö, P. Chem. Rev. 1997, 97, 597-636. (b) Jansen, M. Angew. Chem., Int. Ed. 1987, 26, 1098-1110. (c) Liu, D.; Li, H. X.; Ren, Z. G.; Chen, Y.; Zhang, Y.; Lang, J. P. Cryst. Growth Des. 2009, 9, 4562-4566.
(40) Wang, S.-N.; Bai, J.; Li, Y.-Z.; Pan, Y.; Scheerb, M.; You, X.-Z. CrystEngComm 2007, 9, 1084-1095.
(41) (a) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley \& Sons: New York, 1986. (b) Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 33, 227-250.
(42) Zhao, X. F.; Zhu, L. G. Cryst. Growth Des. 2009, 9, 4407-4414.
(43) (a) Yam, V. W. W.; Lo, K. K. W. Chem. Soc. Rev. 1999, 28, $323-$ 334. (b) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330-1352. (c) Wu, C.-D.; Ngo, H. L.; Lin,
W. Chem. Commun. 2004, 1588-1589. (d) Chan, S. C.; Chan, M. C. W.; Wang, Y.; Che, C. M.; Cheung, K. K.; Zhu, N. Chem.Eur.J. 2001, 7, 4180-4190. (e) Che, C. M.; Tse, M. C.; Chan, M. C. W.; Cheung, K. K.; Phillips, D. L.; Leung, K. H. J. Am. Chem. Soc. 2000, 122, 2464-2468.
(44) Chen, W. J.; Wang, Y.; Chen, C.; Yue, Q.; Yuan, H. M.; Chen, J. S.; Wang, S. N. Inorg. Chem. 2003, 42, 944-946.
(45) Yam. V. W. W. Acc. Chem. Res. 2002, 35, 555-563.
(46) Yi, L.; Zhu, L.-N.; Ding, B.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. Inorg. Chem. Commun. 2003, 6, 1209-1212.

[^0]: *To whom correspondence should be addressed. E-mail: rbhuang@xmu. edu.cn. Fax: 86-592-2183074.

