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Introduction

Multi-agent systems

Recently, multi-agent systems have been intensively studied in
various disciplines.

The goal of multi-agent systems is to generate a desired
collective behavior by local interaction among the agents, such
as group consensus, group coordination, oscillator
synchronization and so on.

In the real word the communication topologies of the
multi-agent systems are dynamically changing over time. Very
recently some consensus, synchronization and coordination
problems of multi-agent systems have received much attention.
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Introduction

Impulsive control protocol

Impulsive control is widely used in various applications, such
as ecosystems, financial systems, mechanical systems with
impacts, orbital transfer of satellite.

Recently, the problem for impulsive synchronization of chaotic
systems and complex networks has sparked the interest of
many researchers.

However, impulsive control protocol for multi-agent systems
has received relatively little attention.
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Introduction

Impulsive control protocol

In [1] Several criteria related to the eigenvalues and
eigenvectors of coupling matrix for synchronizing a kind of
impulsively coupled complex dynamical systems were
established.
[1] X.P. Han, J.A. Lu, X.Q. Wu, Synchronization of
impulsively coupled systems, Int. J. Bifur. Chaos 18 (2008)
1539-1549.

In [2], the authors investigated the problem of average
consensus in delayed networks of dynamic agents with
impulsive effects.
[2] Q.J. Wu, L. Xiang, J. Zhou, Average consensus in delayed
networks of dynamic agents with impulsive effects, in: J. Zhou
(Eds.), Complex Sciences, Springer, Berlin, 2009, pp.
1124-1138.
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Introduction

Impulsive control protocol

In [3], the authors introduced impulsive control protocols for
multi-agent linear continuous dynamic systems. The
convergence analysis of the impulsive control protocol for
networks with fixed and switching topologies is presented,
respectively.
[3] H.B. Jiang, J.J. Yu, C.G. Zhou, Consensus of multi-agent
linear dynamic systems via impulsive control protocols, Int. J.
Systems Sci., 2010, doi:10.1080/00207720903267866.
In [4], the authors studied synchronization problems of
complex dynamical networks (CDNs) via distributed impulsive
control.
[4] Z.H. Guan, Z.W. Liu, G. Feng, Y.W. Wang,
Synchronization of complex dynamical networks with
time-varying delays via impulsive distributed control, IEEE
Trans. Circuits Syst.-I, doi:10.1109/TCSI.2009.2037848.
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Preliminaries

Undirected graph

Preliminaries–Undirected graph

A weighted adjacency matrix A = [aij ] ∈ RN×N , where aii = 0
and aij = aji ≥ 0, i 6= j. aij > 0 if and only if there is an edge
between vertex i and vertex j. For an unweighted graph G , A is a
0-1 matrix. The out-degree of vertex i is defined as follows
degout(i) =

∑n
j=1 aij . Let D be the diagonal matrix with the

out-degree of each vertex along the diagonal and call it the degree
matrix of G . The Laplacian matrix of the weighted graph is
defined as LG = D −A . For an unweighted graph G ,

LG = [lij ]N×N , (2.1)

where

lij =


|Ni|, i = j,
−1, j ∈ Ni,
0, otherwise.

(2.2)
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Preliminaries

Undirected graph

Lemma–Undirected graph

Lemma (1)

Let L be the Laplacian of an undirected graph G with N vertices,
λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of L. Let
1N = (1, 1, · · · , 1)T ∈ RN and ei ∈ Rn, ei(i) = 1, ei(j) = 0,
j 6= i. Then
(1) 0 is an eigenvalue of L and 1N is the associated eigenvector,
that is, L1N = 0;
(2) If G is connected, then λ1 = 0 is the algebraically simple
eigenvalue of L.
(3) If 0 is the simple eigenvalue of L, then it is an n multiplicity
eigenvalue of L⊗ In and the corresponding eigenvectors are
1N ⊗ ei, i = 1, 2, · · · , n.
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Preliminaries

Undirected graph

Lemma–Undirected graph

Lemma (2)

Let L be the Laplacian of an undirected connected graph G with N
vertices, 0 = λ1 < λ2 ≤ · · · ≤ λN be the eigenvalues of L. Then
(1) The eigenvalues of LL are 0 = (λ1)

2 < (λ2)
2 ≤ · · · ≤ (λN )2.

(2) The eigenvalues of LLL are 0 = (λ1)
3 < (λ2)

3 ≤ · · · ≤ (λN )3.
(3) Let c1 = (λ2)

2/λN , c2 = (λN )3/λ2, then LL ≥ c1L and
LLL ≤ c2L.
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Example–Directed graph
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Preliminaries

Directed graph

Preliminaries–Directed graph

The graph is said to be balanced if and only if every vertex’s
in-degree and out-degree are equal, i.e.

∑n
j=1 aji =

∑n
j=1 aij ,

i = 1, 2, · · · , N . If the graph is balanced, then 1TL = 0.
Given C = [cij ] ∈ RN×r, it is said that C ≥ 0 (C is nonnegative)
if all its elements cij are nonnegative, and it is said that C > 0 (C
is positive) if all its elements cij are positive. Further, C ≥ D if
C −D ≥ 0, and C > D if C −D > 0. If a nonnegative matrix
C ∈ Rn×n satisfies C1 = 1, then it is said to be stochastic. A
square matrix C ∈ RN×N is said to be doubly stochastic if both C
and CT are stochastic.
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Preliminaries

Directed graph

Lemma–Directed graph

Let L be the graph Laplacian of the network. We refer to
P = I − εL as Perron matrix of a graph G with parameter ε.

Lemma (3)

Let G be a directed graph with n nodes and maximum degree
d = maxi(

∑
j 6=i aij). Then, the perron matrix P with parameter

ε ∈ (0, 1/d] satisfies the following properties.
(1) P is a row stochastic nonnegative matrix with a trivial
eigenvalue of 1;
(2) All eigenvalues of P are in a unit circle;
(3) If G is a balanced graph, then P is a doubly stochastic matrix.
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Problem Formulation

Dynamics of MAS

Here we consider a system consisting of N agents indexed by
i = 1, 2, . . . , N . The dynamics of each agent is

ẋi(t) = f(xi(t), t) + ui(t), xi(t) ∈ Rn, t ≥ t0 ≥ 0, i = 1, 2, . . . , N,
(3.1)

where xi(t) = (xi1(t), x
i
2(t), . . . , x

i
n(t))T ∈ Rn and ui(t) ∈ Rn are

the state and the control input of agent i at time t, respectively;
f(xi(t), t) ∈ Rn is the nonlinear vector field function of agent i at
time t.
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Problem Formulation

Impulsive control protocol

The control input of agent i is designed as

ui(t) =

+∞∑
k=1

δ(t−tk)Bk
∑

j∈Ni(t)

(xj(t)− xi(t)), k ∈ N+, i = 1, 2, . . . , N,

(3.2)
where the discrete instants tk satisfy
0 ≤ t0 < t1 < t2 < · · · < tk−1 < tk < · · · , and
limk→+∞ tk = +∞, δ(t) is the Dirac delta function, i.e., δ(t) = 0
for t 6= 0, and

∫∞
−∞ δ(t)dt = 1. Bk ∈ Rn×n, k ∈ N+ are impulsive

matrices to be designed later, Ni(t) is the set of neighbors of
agent i at time t. Without loss of generality, we assume that
limt→t+k

xi(t) = xi(tk), which means that the solution xi(t) is right

continuous at time tk.
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Problem Formulation

Impulsive control protocol

From (3.1) and (3.2) we have

xi(tk + ε)− xi(tk − ε) =

∫ tk+ε

tk−ε
(f(xi(s), s) + ui(s))ds,

where ε > 0 is sufficiently small. As ε→ 0+, this becomes to
∆xi(tk) = Bk

∑
j∈Ni

(xj(t−k )− xi(t−k )), where

∆xi(tk) = xi(t+k )− xi(t−k ), xi(t+k ) = limt→t+k
xi(t) and

xi(t−k ) = limt→t−k
xi(t). This implies that the agent i will suddenly

update its state variable according to the state variables of itself
and its neighbors at the instants tk. Thus the control input ui(t) is
called an impulsive control protocol.
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Problem Formulation

Main problem

For simplicity, in the following we choose Bk = bkIn, k ∈ N+.
Then under the impulsive control protocol (3.2), the dynamics of
agent i satisfies the following equations ẋi(t) = f(xi(t), t), t 6= tk,

∆xi(tk) = xi(t+k )− xi(t−k ) = bk
∑

j∈Ni(t
−
k )

(xj(t−k )− xi(t−k )), i = 1, 2, . . . , N, k ∈ N+,

(3.3)

Definition (1)

For system (3.1), the agents are said to be synchronized under the
impulsive control protocol (3.2) if

lim
t→+∞

||ei,j(t)|| = 0, i, j = 1, 2, . . . , N, (3.4)

where ei,j(t) = xi(t)− xj(t).
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Case I: Undirected networks

Assumption

Assumption (1)

For any x(t), y(t) ∈ Ω ⊆ Rn, there exists a constant θ = θ(Ω),
such that

(x(t)−y(t))T (f(x(t), t)−f(y(t), t)) ≤ θ(x(t)−y(t))T (x(t)−y(t)),

where Ω is a bounded set.
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Case I: Undirected networks

Network With Fixed Topology

Network With Fixed Topology

In this section, we provide the analysis of the impulsive
synchronization problem for network with fixed topology, i.e.
G (t) = G for time t.
Let x(t) = (x1(t), x2(t), . . . , xN (t))T , then system (3.3) can be
described as{

ẋ(t) = F (x(t), t), t 6= tk,
∆x(tk) = (−bkL⊗ In)x(t−k ), k ∈ N+.

(4.1)

where F (x(t), t) = (f(x1(t), t), f(x2(t), t), · · · , f(xN (t), t))T .
Then, we get{

ẋ(t) = F (x(t), t), t 6= tk,
x(t+k ) = ((IN − bkL)⊗ In)x(t−k ), k ∈ N+.

(4.2)
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Case I: Undirected networks

Network With Fixed Topology

Main results–Theorem 1

Theorem (1)

Consider system (3.1) with Assumption 1. Assume that the graph
G of the network is connected. If there exist discrete instants tk
and impulsive constants bk such that the conditions (i) and (ii)
hold, then the agents are synchronized under the impulsive control
protocol (3.2).
(i) There exist two constants β1 and β2 such that
0 < β1 ≤ tk − tk−1 ≤ β2 < +∞, k ∈ N+;
(ii) There exist some constants 0 < αk < 1 and 0 < γ < 1 such
that (1− αk)L− 2bkLL+ (bk)

2LLL ≤ 0, and
αke

2θ(tk−tk−1) ≤ γ < 1, k ∈ N+.
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Case I: Undirected networks

Network With Fixed Topology

Proof of Theorem 1

Proof.

Consider the Lyapunov function candidate

V (x(t)) =

N∑
i=1

Vi(x(t)) =

N∑
i=1

∑
j∈Ni

(xj(t)− xi(t))T (xj(t)− xi(t))/2

= xT (t)(L⊗ In)x(t)/2.

Taking the Dini derivative of V (x(t)) for t ∈ [tk−1, tk), k ∈ N+, by
Assumption 1, we obtain D+V (x(t)) ≤ 2θV (x(t)). Then

V (x(t)) ≤ e2θ(t−tk−1)V (x(t+k−1)), t ∈ [tk−1, tk), k ∈ N+. (4.3)
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Case I: Undirected networks

Network With Fixed Topology

Network With Fixed Topology

Proof.

On the other hand, when k ∈ N+, by condition (ii) we have

V (x(t+k )) ≤ αkV (x(t−k )).

By mathematical induction, one can easily show that

V (x(t)) ≤ e2θ(t−tk−1)Πk−1
j=1αje

2θ(tj−tj−1)V (x(t+0 )), t ∈ [tk−1, tk), k ∈ N+, k ≥ 2.
(4.4)

From conditions (i) and (ii), we get

V (x(t)) ≤ e2|θ|β2γkV (x(t+0 )), t ∈ [tk−1, tk), k ∈ N+, k ≥ 2.

Thus V (x(t))→ 0 as t→∞. Since the graph G of the network is
connected, it follows that ||xi(t)− xj(t)|| → 0 as t→∞,
i, j = 1, 2, . . . , N .
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Case I: Undirected networks

Network With Fixed Topology

Main results–Corollary 1

Corollary (1)

Consider system (3.1) with Assumption 1. Assume that the graph
G of the network is connected. Choose bk = p, k ∈ N+, and
0 < p < c1/c2, where c1 = (λ2)

2/λN , c2 = (λN )3/λ2. Choose
αk = q > 0, k ∈ N+, and 1− c1p ≤ q < 1. If we choose the
equidistant impulsive interval ∆tk = tk − tk−1 = ∆, k ∈ N+, such
that

0 < ∆ <
ln 1

q

2θ
,

then the agents are synchronized under the impulsive control
protocol (3.2).
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Case I: Undirected networks

Networks With Switching Topologies

Networks With Switching Topologies

In this section, we provide the analysis of the impulsive
synchronization problem for networks with switching topologies.
Here we consider m graphs indexed by G1,G2, · · · ,Gm. We define
a switching signal σ : [t0,+∞)→ {1, 2, · · · ,m}. The switching
signal is a piecewise constant right continuous function. Suppose
that σ(t−k ) = τ−k and its graph is Gτ−k

with the Laplacian Lτ−k
,

where τ−k ∈ {1, 2, · · · ,m}, k ∈ N+.
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Case I: Undirected networks

Networks With Switching Topologies

Networks With Switching Topologies

Under the impulsive control protocol (3.2), the dynamics of agent i
satisfies the following equations ẋi(t) = f(xi(t), t), t 6= tk,

∆xi(tk) = xi(t+k )− xi(t−k ) = bk
∑

j∈Ni(t
−
k )

(xj(t−k )− xi(t−k )), i = 1, 2, . . . , N, k ∈ N+.

(4.5)
Let x(t) = (x1(t), x2(t), . . . , xN (t))T , then system (4.5) can be
described as{

ẋ(t) = F (x(t), t), t 6= tk,
∆x(tk) = (−bkLτ−k ⊗ In)x(t−k ), k ∈ N+.

(4.6)

Then we get{
ẋ(t) = F (x(t), t), t 6= tk,
x(t+k ) = ((IN − bkLτ−k )⊗ In)x(t−k ), k ∈ N+.

(4.7)
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Case I: Undirected networks

Networks With Switching Topologies

Main results–Theorem 2

Theorem (2)

Consider system (3.1) with Assumption 1. Assume that the
networks are switching and the graphs Gi, i = 1, 2, · · · ,m, are
connected. If there exist discrete instants tk and impulsive
constants bk such that the conditions (i) and (ii) hold, then the
agents are synchronized under the impulsive control protocol (3.2).
(i) There exist two constants β1 and β2 such that
0 < β1 ≤ tk − tk−1 ≤ β2 < +∞, k ∈ N+;
(ii) There exist some constants 0 < αk < 1 and 0 < γ < 1 such
that

Lτ−k+1
− 2bkLτ−k+1

Lτ−k+1
+ (bk)

2Lτ−k+1
Lτ−k+1

Lτ−k+1
− αkLτ−k ≤ 0,

and αke
2θ(tk−tk−1) ≤ γ < 1, k ∈ N+.
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Case II: Directed networks

Networks With Switching Topologies

Case II: Directed networks

Assumption (2)

For any x(t), y(t) ∈ Ω ⊆ Rn, there exists a constant θ = θ(Ω),
such that ||f(x(t), t)− f(y(t), t))|| ≤ θ||x(t)− y(t)||, where Ω is a
bounded set.

Assumption (3)

The graphs Gi, i = 1, 2, · · · ,m of the networks are strongly
connected and balanced.

Let x(t) = (x1(t), x2(t), . . . , xN (t))T , then the system (3.3) can
be described as{

ẋ(t) = F (x(t), t), t 6= tk,
x(t+k ) = (Pt−k

⊗ In)x(t−k ), k ∈ N+.
(5.1)

where Pt−k
= IN − bkLτ−k .
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Case II: Directed networks

Networks With Switching Topologies

Case II: Directed networks

Define

x̄(t) =
1

N

N∑
i=1

xi(t) =
1

N
(1T ⊗ In)x(t),

then by Assumption 2 and Lemma 2 we have

x̄(t+k ) =
1

N
(1T ⊗ In)(Pt−k

⊗ In)x(t−k )

=
1

N
(1TPt−k

⊗ In)x(t−k )

= x̄(t−k ).

Therefore the dynamics of x̄ satisfies the following equations{
˙̄x(t) = 1

N

∑N
i=1 f(xi(t), t), t 6= tk,

x̄(t+k ) = x(t−k ), k ∈ N+.
(5.2)
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Case II: Directed networks

Networks With Switching Topologies

Main results–Theorem 3

Theorem (3)

Consider system (3.1) with Assumptions 2 and 3. If there exist
discrete instants tk and impulsive constants bk such that the
conditions (i)-(iii) hold, then the consensus is said to be achieved
under the impulsive control protocol (3.2).
(i) There exist two constants β1 and β2 such that
0 < β1 ≤ tk − tk−1 ≤ β2 < +∞, k ∈ N+;
(ii) There exists some constants bk > 0, δk > 0 such that
Pt−k

= IN − bkLτ−k are nonnegative matrices with positive diagonal

entries and every nonzero entry of Pt−k
is no smaller than δk;

(iii) There exists a constant µ > 0 such that
(1− δ2k/N)e4θ(tk−tk−1) ≤ µ < 1, k ∈ N+.
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Simulations

Example 1

Consider the following networked nonlinear dynamical system,
which consists of two duffing systems,

ẋi(t) = f(xi(t), t) + ui(t), i = 1, 2, (6.1)

where xi = (xi1, x
i
2)
T ,

f(xi(t), t) = (xi2(t), x
i
1(t)− (xi1(t))

3 − δxi2(t) + γ cos(ωt))T ,
δ = 0.25, γ = 0.4, ω = 1. The control input of agent i is designed
as

u1(t) =
∑+∞

k=1 δ(t− tk)bk(x2(t)− x1(t)), k ∈ N+,

u2(t) =
∑+∞

k=1 δ(t− tk)bk(x1(t)− x2(t)), k ∈ N+.
(6.2)
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Simulations

Example 1

By some computation we get λ2 = 2, c1 = (λ2)
2/λ2 = 2,

c2 = (λ2)
3/λ2 = 4, θ = 11. For simplicity, choose the impulsive

constants 0 < bk = p = 0.2 < c1/c2, αk = q = 0.6, k ∈ N+, and
the equidistant impulsive interval
∆tk = tk − tk−1 = ∆ = 0.02 < ln(1/q)/(2θ) = 0.0232. From
Corollary 1, we know that the synchronization is achieved. The
initial values are chosen as x1(0) = (3 − 1)T , x2(0) = (−1 2)T .
Simulation results are shown in Figs. 1-2.
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Simulations

Simulation results–Example 1

Fig.1 The time histories of e2,1(t)
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Simulations

Simulation results–Example 1

Fig.2 The phase graph of x1(t), x2(t) and x̄(t)
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Simulations

Example 2

The chaotic Chua’s circuit is used as agent of the networked
nonlinear dynamical system. The state equation of agent i is

ẋi1(t) = η(−xi1(t) + xi2(t)− l(xi1(t))),
ẋi2(t) = x1(t)− xi2(t) + xi3(t),
ẋi3(t) = −βxi2(t),

(6.3)

where l(xi1(t)) = bxi1(t) + 0.5(a− b)(|xi1(t) + 1| − |xi1(t)− 1|).
When η = 10, β = 18, a = −4/3, and b = −3/4, system (6.3) is
chaotic.
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Simulations

Example 2

Fig.3 Schematic representation of G1, G2, G3 and G4
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Simulations

Example 2

In the following, we give simulation results of the synchronization
problem for networks with switching topologies. Here we consider
4 graphs indexed by G1,G2,G3,G4. We define a switching signal
σ : [t0,+∞)→ {1, 2, 3, 4}, σ(t) = 4− ((k − 1) mod 4),
t ∈ [tk−1, tk). For simplicity, choose the impulsive constants
bk = p = 0.25, k ∈ N+, and the equidistant impulsive interval
∆tk = tk − tk−1 = ∆ = 0.01, αk = 0.9, k ∈ N+. It is easy to
check that αke

2θ(tk−tk−1) = γ = 0.9979 < 1, where θ = 5.1623.
Thus the conditions (i) and (ii) in Theorem 2 are satisfied.
Simulation results are shown in Figs. 4-6.
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Simulations

Simulation results–Example 2

Fig.4 The time histories of ei,11 (t), i = 2, 3, 4
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Simulations

Simulation results–Example 2

Fig.5 The time histories of ei,12 (t), i = 2, 3, 4
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Simulations

Simulation results–Example 2

Fig.6 The time histories of ei,13 (t), i = 2, 3, 4
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Simulations

Example 3

The chaotic Chua’s circuit is used as agent of the networked
nonlinear dynamical system. The state equation of agent i is

ẋi1(t) = η(−xi1(t) + xi2(t)− l(xi1(t))) + ui1(t),
ẋi2(t) = x1(t)− xi2(t) + xi3(t) + ui2(t),
ẋi3(t) = −βxi2(t) + ui3(t),

(6.4)

where l(xi1(t)) = bxi1(t) + 0.5(a− b)(|xi1(t) + 1| − |xi1(t)− 1|),
i = 1, 2, · · · , 10. When η = 10, β = 18, a = −4/3, b = −3/4 and
ui(t) = 0, system (6.3) is chaotic. The graphs Gi, i = 1, 2, 3, 4, are
shown in Fig. 7.
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Fig.7 Schematic representation of G1, G2, G3 and G4
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We define a switching signal
σ : [t0,+∞)→ {1, 2, 3, 4}, σ(t) = ((k − 1) mod 4) + 1,
t ∈ [tk−1, tk). For simplicity, choose the impulsive constants
bk = p = 0.2, k ∈ N+, and the equidistant impulsive interval
∆tk = tk − tk−1 = γ = 0.00003, k ∈ N+. It is easy to check that
(1− (δk)

2/N)e4θ(tk−tk−1) ≤ (1− (δ̄)2/N)e4θγ = µ = 0.9998 < 1,
where δ̄ = 0.2, θ = 31.7763. Thus the conditions (i)- (iii) in
Theorem 3 are satisfied. The initial values are randomly chosen in
the interval [−5, 5]. Simulation results are shown in Figs.8. The
simulation results show that the impulsive control protocol is
efficient to solve the consensus problem for the networks with
switching topologies.
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Fig.8 The phase graph of xi(t), i = 1, 2, · · · , 10 and x̄(t)
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Conclusions

We have investigated the problem of impulsive
synchronization of networked nonlinear dynamical systems.

Case I: Undirected networks. A design scheme of the discrete
instants and impulsive constants is given for network with fixed
topology by the largest and the second smallest eigenvalues of
the Laplacian matrix and a design procedure is given for
networks with switching topologies.

Case II: Directed networks. Sufficient conditions are given to
guarantee the impulsive consensus of the networked nonlinear
dynamical system in directed networks with switching
topologies. Furthermore how to design the impulsive control
protocol is also presented.

The future work is to consider the impulsive synchronization
problem of networked nonlinear dynamical systems with
stochastic topologies.
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