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ABSTRACT.  The second-order radiative transfer equation (SORTE) [Numerical Heat Transfer B, Vol. 
51, pp. 391-409, 2007] is in a form like diffusion equation, hence no additional artificial diffusion or 
upwinding treatment is needed in the numerical discretization for stabilization. The computational 
efficiency of the finite element method based on SORTE is investigated by comparison with that of 
the finite element methods based on original first order radiative transfer equation (FORTE). The 
FORTE based finite element methods considered are the finite element method with Galerkin 
approach (Galerkin-FORTE) and the finite element method with least-square approach (LS-FORTE). 
By comparison, the accuracy of the finite element method based on the SORTE is generally better than 
those based on the FORTE under the same discretization scheme, spatial grid and angular grid. The 
finite element method based on the SORTE shows the best computational efficiency among the three 
finite element methods, i.e., to obtain the same target accuracy, the least computational time is required. 
 

NOMENCLATURE 
 

H  = Matrix defined in Eq. (10) 

, ,i j k  = Unit vectors of x, y and z direction 

,I I  = Radiative intensity, unknown vector of radiative intensity 

K  = Stiffness matrix defined in Eq. (10) 

L  = Side length of enclosure 

n  = Unit outward normal vector 

solN , elN  = Total number of solution nodes; total number of elements 

p  = Order of polynomial approximation 

q  = Radiative heat flux, W/m2 

r  = Spatial coordinates vector 

S  = Source function defined in Eq. (3) 

T  = Temperature, K 

V  = Solution domain 

, ,x y z  = Cartesian coordinates 
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β  = Extinction coefficient 

wε  = Wall emissivity 

φ  = Shape function 

NΓ  = Outflow boundary 

Φ  = Scattering phase function 

aκ  = Absorption coefficient, m-1 

sκ  = Scattering coefficient, m-1 

, ,μ ξ η  = Cartesian components of Ω  

σ  = Stefan-Boltzmann constant, W/m2K4 

Lτ  = Optical thickness 

ω  = Scattering albedo 

, ′Ω Ω  = Vector of radiation direction 

Ω  = Solid angle 

Subscripts 

b  = Black body 

g  = Medium 

,i j  = Spatial solution node index 

w  = Value at wall 

Superscripts  

,m m′  = The mth discrete ordinate direction 
 

INTRODUCTION 
 
Numerical solution of the radiative transfer in an absorbing, emitting, and scattering medium is of 
practical importance in many scientific and engineering disciplines. The well known radiative 
transfer equation (FORTE) is a first order differential equation, which can be written as 

I I Sβ∇ + =Ωi                                                                        (1) 
where μ η ξ= + +Ω i j k  is the unit direction vector of radiation; β  is the extinction coefficient; S  
is the source function accounting for the thermal emission of medium and in scattering. It is seen 
that the first term of the left hand side of Eq. (1) can be seen as a convection term with a convection 
velocity of Ω , namely, μ , η  and ξ  are taken as the velocity in x-, y- and z- directions, 
respectively. Because the vanishing of diffusion term, the FORTE can be considered as a special 
kind of convection dominated equation [1]. The presence of convection term may cause 
nonphysical oscillatory of solutions. This type of instability can occur in many numerical methods 
including finite difference method and finite element method if no special stability treatment is 
taken, which is one difficulty in the numerical solution of the FORTE. 
 
The traditional differential equation discretization based methods, such as DOM [2], FVM [3-5] and 
FEM [6, 7], are often based on the FORTE. Because of the convection dominated characteristics of 
the FORTE, numerical solution of it has to be taken carefully and special stabilization technique is 



often necessary for the numerical discretization schemes to correctly model the transfer process. 
Special stabilization techniques such as upwinding scheme or artificial viscosity are often used in 
FVM, DOM and FEM. Besides taking various numerical stabilization schemes, another method to 
overcome the stability problem is to analytically transform the FORTE into a numerically more 
stable equation, for example, the second order partial differential equation. It is well known that the 
second order derivative term have the characteristic of diffusion and good numerical properties. The 
second-order derivative term can serve as a viscosity term to ensure stability of solution, thus 
additional artificial diffusion or upwinding treatment is not required in the numerical discretization 
for stabilization. One famous transformed equation is the even-parity formulation (EPF) of the 
FORTE, which is a second order partial differential equation of the even parity of radiative intensity. 
Cheong and Song [8] examined several spatial discretization schemes in the discrete ordinates 
solution of the EPF. Fiveland and Jessee [9, 10] studied the finite element solution of the EPF. 
Though the stability of the finite element solution of the second order even-parity equation is 
ensured, numerical results indicate that the solution obtained using the FEM is less accurate as the 
optical thickness and the wall emissivity are increased. 
 
Recently, a new second-order form of the radiative transfer equation (SORTE) is proposed by Zhao 
and Liu [11]. The working variable in the SORTE is radiative intensity which is in contrast to the 
EPF [12] and thus overcomes most of the drawbacks of the EPF. Hassanzadeh and Raithby [13] and 
Tan et al. [14] evaluated the performance of the SORTE by using the FVM and meshless method. It 
was demonstrated that the FVM and meshless method based on SORTE can significantly improve 
the accuracy of solutions. Because of the stability issue caused by the convection term in the 
FORTE, it is estimated that the requirement of grid number for solving the FORTE should be 
higher than that for solving the SORTE to obtain the same target accuracy. Hence the 
computational efficiency of the methods based on FORTE should be lower than that of the SORTE. 
A comprehensive investigation of the computational efficiency of the SORTE is needed for a 
broader application of the SORTE. The point is initially demonstrated in Ref. [14] by using 
meshless method. However, because of the difference of algorithms implemented in different kind 
of methods, it should be further clarified for FEM implementation. 
 
In this paper, the computational efficiency of the finite element method based on SORTE is 
investigated by comparison with that of the finite element methods based on FORTE. The FORTE 
based finite element methods considered are the Galerkin finite element method (Galerkin-FORTE) 
and the least-squares finite element method (LS-FORTE).  
 

MATHEMATICAL FORMULATION 
 
The discrete-ordinates form of the FORTE [Eq.(1)] in two-dimension can be written as [15] 
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For the opaque and diffuse boundary, the boundary conditions are given as 
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where wn  is the unit outward normal vector of the wall; m m mμ η= +Ω i j  is the two-dimensional 
direction vector; wε  is the wall emissivity, and 'mw  is the weight of direction m′Ω  for angular 
quadrature.  



 
The presence of the convection terms may cause oscillatory behavior of solutions sometimes. By 
transforming the original FORTE into a second order equation, the SORTE is formulated into a 
special diffusion equation, and which can successfully eliminate this kind of nonphysical oscillation 
[11]. The discrete-ordinates form of the SORTE for homogeneous medium in two-dimension can be 
expressed as [11] 
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where mU  is defined as 
m m m mU S Sβ= ∇ −Ω i                                                       (6) 

In order to obtain a solution from SORTE, both the inflow boundary and the outflow boundaries are 
needed to impose boundary conditions. The boundary condition for the inflow boundary 
( 0m

w <Ω ni ) is same as Eq. (4). For the outflow boundary, the boundary condition is given by 
m m
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Finite element discretization of the SORTE 
 
In finite element methods, such as traditional finite element method which uses monomial basis or 
nodal spectral element method which uses orthogonal polynomial as basis, the unknown field 
variables can be generally approximated by shape functions. For spectral element methods or higher 
order finite element methods, two kinds of refinement scheme are available to approach the exact 
result, namely, the traditional mesh refinement (or h-refinement) and by increasing the order of 
polynomial approximation (or p-refinement). Both the two kinds of refinement scheme are 
considered in this paper. Based on the shape function, the radiative intensity of each discrete 
direction can be approximated as 

1
( ) ( )

solN
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i i
i
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=
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where iφ  is the nodal basis function, m
iI  denotes radiative intensity of direction mΩ  at solution 

nodes i , and solN  is the total number of solution nodes. In this paper, the Chebyshev polynomial 
expansion is employed to build the shape function on each element. Details on building global 
nodal basis function were described elsewhere in Ref. [16]. 
 
By Galerkin approach, namely, substitute Eq. (8) into the SORTE [Eq.(5)] and do weighted 
integration by ( )jφ r  over the spatial solution domain yields 
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Following the manipulations presented in Ref. [11], the discretized system of linear equations are 
obtained as 

m m m=K I H                                                                  (10) 
where 
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The source term function mS  can also be expressed using basis function interpolation as 
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The stiffness matrices mK  and mH  can then be calculated by some tool matrices as 
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in which the series of tool matrices A , B  and N  are defined as 
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It can be seen that the series of tool matrices, namely, A , B  and N  are independent of angular 
direction. They only depend on the various integrations of shape functions over the solution domain 
and the boundary. This indicates that they only need to be calculated and assembled once for all 
global iteration. The program implementation of the method has best utilized this property to 
efficiently solve the SORTE, which will be described in following section. 
 
Finite element discretization of the FORTE 
 
Two kinds of finite element discretization are considered for solving the FORTE, namely the 
Galerkin approach and the least-squares (LS) approach. For Galerkin approach, substitute Eq. (8) 
into the FORTE [Eq.(2)] and do weighted integration by ( )jφ r  over the spatial solution domain 
yields 
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The discretized system of linear equations can be written in the form same as Eq. (10), while the 
stiffness matrices mK  and mH  can be calculated by the tool matrices defined above as 

( ) ( )m m xo T m yo T ooμ η β= + +K B B B                                             (20) 
m oo m=H B S                                                           (21) 

For the LS approach, though it is generally derived from functional minimization, it can also be 
formulated in a similar way to the Galerkin approach, the different is that the weight function is 

taken as j jm m
jx y

φ φ
μ η βφ
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. The discretized system of linear equations for the LS approach can 

also be written in the form same as Eq. (10). The stiffness matrices mK  and mH  for the LS 
approach are calculated by the tool matrices defined above as 

2

2

2

( )

( ) ( )
( ) ( ) ( )

m m xx m m xy m xo

m m xy T m yy m yo

m xo T m yo T oo

μ μ η μ β

η μ η η β

β μ βη β

= + +

+ + +

+ + +

K A A B

A A B
B B B

                                       (22) 

( )m m xo m yo m zo oo mμ η ξ β= + + +H B B B B S                                         (23) 



Details on the derivation of LS finite element method for solving the FORTE refer to Ref. [16]. 
 
Implementation 
 
For solving the SORTE by the Galerkin finite element approach (Galerkin-SORTE) given above, 
the outflow boundary condition have been imposed implicitly in the Galerkin discretization 
formulation by using Gauss theorem, here we use collocation technique to impose the inflow 
boundary condition, that’s, for each node j  on the inflow boundary of direction mΩ  described by 
Eq. (4), the stiffness matrix mK and right hand side vector mH  is modified according to 
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For solving the FORTE, the inflow boundary condition is also imposed by the same collocation 
technique described above for both the Galerkin approach (Galerkin-FORTE) and the LS approach 
(LS-FORTE). 
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Fig. 1 Generic solution procedures for the finite element methods. 

 
As presented in this paper, the three finite element methods are formulated in a similar manner, thus 
program code with similar solution procedure can be implemented. A generic solution procedure 
suitable for all the three finite element methods is carried out according to steps presented in Fig. 1. 
The major difference in the solution procedure for the three different methods is the assembling of 
stiffness matrices mK  and mH  from tool matrices. The maximum relative error 10-4 of incident 
radiation is taken as stopping criterion for the global iteration. 

 
RESULTS AND DISCUSSION 

 
Computer codes of the three methods, namely, the Galerkin-SORTE, the Galerkin-FORTE and the 
LS-FORTE are developed based on the formulations and procedures described above. Two distinct 
test cases are taken to comparatively investigate the accuracy and solution cost of the three methods. 
As for quantitative evaluation the accuracy of numerical results to the exact results, the maximum 
relative error is used: 

Numerial ExactMaximum Relative Error % = max 100
Exact

⎛ − ⎞
×⎜ ⎟

⎝ ⎠
,                          (26) 

In the following analysis, the computational time is obtained by run the codes on a personal 
computer with an Intel Core 2 Duo T7100 Processor. 



Case 1: Semicircular enclosure with a circular hole 
 
We consider radiative heat transfer in a semicircular enclosure with a circular hole filled with 
nonscattering gray media as shown in Fig. 2. In this case, the circular hole plays a role as an 
obstacle. The shielding effect of the obstacle will cause discontinuity in angular distribution of 
radiative intensity along the bottom wall, which will induce ray effects [17]. The optical thickness 
of the media is L Rτ β= =0.1. The media is kept hot ( gT =1000K), while all other walls are black 
and kept cold (0K).  
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Fig. 2 Configuration of the semicircular 
enclosure and mesh decomposition (272 

elements). 

Fig. 3 Dimensionless net radiative heat 
fluxes distribution on the bottom wall of the 

semicircular enclosure. 
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(a) Galerkin-FORTE 
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(b) LS-FORTE 
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(c) Galerkin-SORTE 

Fig. 4 Incident radiation field solved using different finite element approaches 
 based on the FORTE and SORTE. 

 
The three finite element methods based on the FORTE and the SORTE, namely, the Galerkin-
SORTE, the Galerkin-FORTE and the LS-FORTE, are all applied to obtain the dimensionless 
radiative heat flux along the bottom wall ( 4

1 /w gq Tσ ) of the enclosure. The enclosure is decomposed 



into 272 quadrilateral elements as shown in Fig. 2. The element shape function is constructed 
through 3rd order Chebyshev approximation [16]. The angular space is discretized using PCA 
approach [18] with N Nθ ϕ× 20 40= × . The solved dimensionless radiative heat flux along the 
bottom wall is presented in Fig. 3. The exact solution obtained by Kim et al. [19] is taken here as a 
benchmark. For the finite element methods based on the FORTE, strong unrealistic ‘wiggles’ are 
observed in the results obtained by the Galerkin approach, namely, the Galerkin-FORTE. A clearer 
demonstration is given by the incident field distribution in the medium as shown in Fig. 4. It is 
shown that the LS-FORTE is more stable than the Galerkin-FORTE, even though, some weak 
unrealistic wiggles can be observed in the contour lines of incident radiation. However, the result 
obtained by the finite element method based on the SORTE using the Galerkin approach, namely, 
the Galerkin-SORTE, is stable and free of nonphysical ‘wiggles’. The maximum relative error of 
the results obtained by the Galerkin-FORTE, the LS-FORTE, and the Galerkin-SORTE, are 4.7%, 
5.6% and 2.8%, respectively, which indicate that the Galerkin-SORTE is the most accurate. Though 
more stable than the Galerkin-FORTE, the LS-FORTE results in a larger relative error than the 
Galerkin-FORTE, which is explained by its accuracy deteriorate near x=0 as seen in Fig. 3. The 
Galerkin-SORTE is shown to be the most stable and accurate. 
 
Case 2: Isotropic Scattering Medium in a Square Enclosure 
 
In this case, a square enclosure filled with purely isotropic scattering medium is considered. The 
bottom wall of the enclosure is kept hot, but all other walls and the medium enclosed by the 
enclosure are kept cold. The three finite element methods based on the FORTE and the SORTE are 
applied to this case. The square enclosure is uniformly decomposed into elN M M= ×  quadrilateral 
elements, where M  is the number of elements per side of the square enclosure. In this notation, the 
total number of elements is elN M M= ×  and total number of solution nodes is ( )21solN M p= × + . 
In the following analysis, the order of polynomial for build nodal shape function is taken as p=1 and 
the angular space is discretized using S8 approximation.  
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Fig. 5 Dimensionless net radiative heat fluxes distribution on 

the bottom wall of the square enclosure. 
 

Figure 5 presents the obtained dimensionless heat flux along the bottom wall ( 4
1 1/w wq Tσ ) for three 

values of optical thickness, namely, Lτ =0.25, 1 and 10, by the three finite element methods with 
24 24elN = ×  quadrilateral elements. The results obtained by Crosbie and Schrenker [20] is also 

shown as benchmarks. As for the finite element methods based on the FORTE, the LS-FORTE 
show better accuracy at high optical thickness ( Lτ =10) than the Galerkin-FORTE. Some weak 
‘wiggles’ can also be observed in the results obtained by the Galerkin-FORTE at high optical 
thickness, which is due to the stability problem related to the Galerkin approach for the FORTE as 
demonstrated in Case1. The results obtained by the Galerkin-SORTE and the LS-FORTE are 



smooth and nearly the same. Detailed analysis of the performance of the three methods is given in 
the following figures. 
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Fig. 6 The convergence characteristics of the finite element methods 

 for different optical thickness. 
 
The convergence characteristics of the three finite element methods are presented in Fig. 6(a)-(c) 
for three values of optical thickness, namely, Lτ =0.25, 1 and 10, respectively. Generally, under the 
same spatial decomposition, the accuracy of the Galerkin-SORTE and the LS-FORTE is better than 
the Galerkin-FORTE, though they tend to require more computational time than the latter. However, 
to obtain the same accuracy 0.2% as shown in Fig. 6(b), the Galerkin-FORTE requires about 3s, 
while the Galerkin-SORTE and the LS-FORTE both requires about 0.7s. This indicates that the 
Galerkin-SORTE and the LS-FORTE has better computational efficiency than the Galerkin-FORTE. 
The convergence curve of the Galerkin-SORTE and the LS-FORTE is almost the same for different 
optical thickness; however, the Galerkin-SORTE requires less computational time than the LS-
FORTE, which is due to the fact that less computational work is needed in obtain the stiffness 
matrix mK  for the Galerkin-SORTE, as can be seen by comparing Eq. (14) and Eq. (22). For 
different optical thickness, the trends of the curve of convergence and computational time are 
nearly the same for the finite element methods based on the FORTE and the SORTE. With the 
optical thickness increasing 10 times (from Lτ =1 to Lτ =10), the accuracy of all the three finite 
element methods decreases about 10 times, meanwhile, the corresponding computational time 
increases about 10 times. This reveals that the computational effort is very sensitive to the optical 
thickness, and is approximately proportional to the square of optical thickness for this case. 

 
CONCLUSION 

 
The computational efficiency of the finite element method based on SORTE is investigated by 
comparison with that of the finite element methods based on FORTE. The LS-FORTE gives 
comparable stability and accuracy with the Galerkin-SORTE under same computational conditions, 
while the computational time of the Galerkin-SORTE is shorter than that of the LS-FORTE, especially 
for strong scattering medium. The stability and accuracy of the Galerkin-SORTE and the LS-FORTE is 
better than the Galerkin-FORTE, though they tend to require more computational time than the latter. 
However, to obtain the same accuracy, much more computational time is needed for the Galerkin-
FORTE, which illustrates that the Galerkin-SORTE and the LS-FORTE has better computational 
efficiency than the Galerkin-FORTE. By comparison, the accuracy of the finite element method based 
on the SORTE is generally better than those based on the FORTE under the same discretization scheme, 
spatial grid and angular grid. The finite element method based on the SORTE shows the best 
computational efficiency among the three finite element methods.  
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