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1. Some results from geometry

A Surjectivity of Gauss map

LetQ (C RV N > 2) be smooth, simple-connected, bounded and open. Then
(n(x); x € 0Q) = s (1)

Proof. This is geometrically obvious. The analytical proof is as follows.

m {n(x); x € 0Q} c S¥!is OK, since [n(x)| = 1.

m We proceed to show
SN {n(x); x € 0Q} .

To this end, choose a fixed ball B ¢ Q. For n € SV !, let H be the
tangent space of 0B such that n L H( see Figure 1). Consider

{H+1tn;, 0<t< oo},
since Q is bounded, we have

O<t0:sup{t>0; (H+tn)ﬂ§¢(2)}<oo.

% By continuity, (H + fon) N Q is a finite union of line segments
(which may degenerate to points).

% Claim (H + fyn) is the tangent space of dQ at x, (thus, n L
(H + ton) = T,,0Q, n = n(xo) as desired).
Indeed, for any v € T,,0Q, let

v :(-g,&) — 0Q, v(0) = xg, ¥(0) =v.
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Figure 1: Surjectivity of Gauss map

Then

(y(h) —y(0))-n<0
0. n <0, h>0
{ 0. n>0, h<0
(taking limits)0 <v-n <0
v-n=0
v € (H + tyn)
T,,0Q C (H + tyn)
T,,0Q = (H + ton) (by linear algebra) .

Gt LUl

U

Here we take (H + fyn) as a linear space assuming x to be 0.

A Relations to the second fundamental form.
Let Q(C RV N > 2) be a smooth, simple-connected, bounded and open.

Assume that ¥ € C¥(Q) satisfying u - n = 0 on dQ, where n is the unit
outward normal vector of 0Q2. Then
N

N
@ Vyn-u = Y wdmu=Bw =S w.uy=» Al . @)
i=1

ij=1
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Here

W u' is the components of # under some orthonormal principal directions
e;, to which the corresponding principle curvatures are A;.

B B is the second fundamental form of dQ.

m S is the shape operator.

Proof. Fixed a given point x € JQ we are calculating, let {e,-}fi , € T, 0Q be
an orthonormal basis such that

S(e) = Aie;,

where S (v) = V,n, v € T,0Q is the shape operator.

Then one has

and

w-Vyin-u = V,n-u
= S -u (=Bu,u))

=S [i uieiJ : [ZN‘J u'e j)

i=1 j=1

N
= D (S (e, enluP
i=1

=
z 2

= Z/ll |I/tl| .
i=1

O

Remark. One is referred to [? ? | for details of Gauss map, shape oper-
ator, principle curvatures (directions), and other fundamental concepts in
Riemannian Geometry. Cheers!
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2. 6.4 The compactness result

>
e Statement of the result If { 92 ,then
q>v

" in L, if (??) or periodic
P inL? , ifRV

loc?

YIi<p<g.

Remark. A The reason for the convergence in local sense is twofold.

The one comes from the compact imbedding H llocal cc L%z, and the

other is the utilization of weak-weak-convergence method.

A Recall that in (??), we have
pn - P, in L1 (Kl X (0’ T)) »

where
K - Q, if periodic or RN (N > 3),
"7\ cc Q, Dirichlet or R2.

The local sense follows as

m Dirichlet: in order to apply the nonlocal operator (—A)™" div , we
need cut-off!

m R2: no global control of LP-norm on u".

e Proof of the compactness result

We remark first that the proof here is similar in the spirit of that in Sub-
subsection ??, however, we do not need to consider the nonlocal operator
(=)' div or invoke any L? bounds of ", our result is global if the domain
is bounded!

The proof is made up of the following four steps.

A The inequality satisfied by (& + p)’, where 0 < 6 < 1 to be specified
later on.

Recall that (¢ + p)? is weak limit of (¢ + p")? (in L# for example), and
the (¢ > 0) is placed so that we are away from zones of vacuum.

Claim

0" (e + p")9 + div {(8 + p”)g u”} —-&"A(e+ p”)g 3)
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> [N +edivu” + "el] (e + p) ' + (1 = 0) (e + p") div u".
The formal proof of (3) is as follows. (??), together with the following
observations:
[
e+ =" +0E) ez () +0E+p") e
(0" <& <e+p")
= 0" (¢+ p")g > " (p”)e +0[a"el] (e + ,o”)g_1 ;

]
div {(s +p"'u"} = (e +p" divu" + 6 (e + p") " u" - Vp"
= e+ p")" " div (0"u") + (e + p") div "
-0+ ") (e +p") — €] div u”
= 0(c+p)" " div (") + (1 - 0) (e + p») div "
+6 [ediv u"] (e + ,o")e_1 ;
]

die+p") =0 +p) 09", V1<i<N,
Ale+p" =00 -1 (e+p") IV +0(s+ ) ap",

—&"Ae+p")! = €91 -0)(e+p) V)

n

—&"0(e+p")" ' ap

\Y

> —£"9(e+p")" ' aph;
implies (3) (by multiplying (??) by 6 (¢ + p”)e_l).
While the justifications invoking regularization needs only

g+131:>9££1.
qg 2 2

We now write (3) into a form suitable for weak limits as

0a" (¢ + p”)e + div {(8 + p")e u”} —-&'Ae+p")
G[h" + a"eb] (e + p")H_1 +0(s+ ,0”)9_1 div "
+(1-0) (e +p"’ {div u" — b (")}
+(1=0)b(e+p" (")

Taking weak limits in the above inequality as n — oo, noticing

\%
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m o > a;
2N N-2 68
mu' suinlforL) 1<p< , and +-<1~0<1
oc N-2 N g
is OK;
m -0
m /> hin L'

m divu" —b(e+p") — divu—bp”in L or L}  where

1 <a < min {2, g}, and

Y
0 1 1
—+—S1:>O<9£q(1——)<min{g,q—y}; 4)
q a a 2
we obtain
be + p)’ + div {(s+p)"u} )

\%

Oh + ach] (e +p)9_1 + e (& +,o)9_1 div u
+(1=0) (s +p)’ {divu—bp?} + (1 - O) bl + p)’ p7

= Olh+ a&l] (e +p)9_1 + B¢ (& +p)9_1 div u
+(1=0) (e +p)divu+(1— 0)b{(8+p)9p7 _ +p)9ﬁ}.

1
7

A The inequality satisfied by (¢ + p)’

1_
4

1 1
Formally, multiplying (5) by 5(8 +p)  yields

1
0

ale +p)'' + div {(8 +p)’ u} (6)

[———i- S
= 5(8 + p)e [90’(8 + p)9 + 6(e + p)ediv u+u-Vie+ p)e]

1

1—t
= Se+p)

bl + p)’ + div {(8 T p)"u} —(1-0)(c+p)divu

1_q 1_q

[h + acl] (e + /0)9_1 -(e+ p)gg + &(e + p)e_ldiv u-(e+ p)HH
1-6 — 51

+—=b{E+p o - e+ 4o

\%
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Figure 2: A concave, slowly increasing function

= [+L+L.

However, the justification is a bit delicate, in the same spirit as in
11
0

1
Subsubsection ??. Multiplying (5) by 5,8;e ((8 + p)e) Br ((a + p)o) ,

where 3 has the graph as in Figure 2 , and Bz (-) = RS (1_3) Noticing
that
[ ]
-1
ate + o) B (& + ") i (e + o)
= BB (1 = e+ o)

1
g

< a0’ = afe (& + )
Indeed, we need only show
1B(0) < () = 18 ) < RB ()
= B <pX (x _ é)
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e 0< [ -pW] =p"(x), (7
which is OK by Fig 2.

|
div { R ((8 + p)g)é u}

1 1

5_1 [
A +p)”)u Ve +p) + a (e +p)) divu

(
(e + ,o)(’)é_l Br ((8 + p)‘)) div {(s + p)eu}

div u.

+6r (e + p)ﬁ)é_l [ﬁR (e+0))- %ﬁ;e (+0) e+
‘We obtain

Br ((8 + p)‘)); + div { 2 ((8 + p)e)é u}

[+ ast] (e +p) By (& +0)° ) B (e + p)")é_l

\%

+& (e +p)" div u - By ((8 + p)a)ﬁR ((8 + /J)H)é_1

+1%9b {(8 +p)'p7 = (e + p)gﬁ}ﬁ}e ((8 + p)")ﬁR ((8 + ;O)")é_1

div u

-1
+8(e+ 0| |e(@+ o)) - i@+ oV ) e+ 0
= R+ B+ R+ IR
Now it is the right time to take R — oo, observing that

&,R
I 1

\%

1
-1 6\’
(h+ agb) (e +p)" Br ((8 +p) ) 1<g+p>f’sR

-1
(h + agh) (e + p)g_1 +p)" 1
> 0,

\%

(a+p)0SR
thus by Fatou’s lemma, lilren inf If’R > I7 in 2, that s,

lim inf f [edx > f lim 7% gdx
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= flfqbdx, VO<g¢eD.

|I‘29’R| < Ce- (80_1 div u|) (e +P)]_H

1-6

]

< cé 'div al -GG 1p)

which is bounded in L!; thus Igim I?R =I5, in L' by Lebesgue
dominated convergence theorem;
m Due to (??),

(e+p) p"—(+p)p" 20, ae.,

1
5> L {(8 +p)'pY = (e +P)Hﬁ} (e+p)"1 0,

— =
(e+p)"<R

and again by Fatou’s lemma, I%im I§’R >[5 in 9
|

&,R
I 4

< e = Br ¥ Brtor| - div a £ = G+ ) ) by (7)
< Cto|div ul 1,5z

— 0, inL}, (divuel? pel?);

loc

we find the desired inequality (6).
A Passage to limit € — 0,.

In this circumstance, we shall invoke Lebesgue dominated conver-
gence theorem, thus the following dominated functions are needed:

m We’ve already shown

I

T 11 1-6
SC'divu‘-(l+p)]_"eL}oc (§’§+TS1);
m andforVO<¢eCY,

0
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< [aeme

< fa(8+p)9;¢+fdiv {(g+p)"‘l’u}¢—f1§¢

< Cfa(l+p)¢+f(l+p)|u-V¢|+Cf‘M‘(l+p)1_9¢,
with

a(l+p) ¢, +p)|u-V¢|,'m‘(1 v o) el

Thus letting € — 0, in (6), we find that

1

b= 1-6 _—
ap?’ +divp? u>h+ Tb{pyw _pype}pgﬁ ’ )

where we use the fact

h( 6-1 961’_1_ [ e O 6
e+p) (e+p) =ht'"7-t (l—(8+p))

v

1=l _1_
W 1(by convexity)
= h.

A Invoking convexity to conclude the proof.
Taking € — 0, in (??), we have

ap +div {pu} = h, )
thus

9 -@®
1-6 — 1

= as+div {su} < _Tb {py+9 _ﬁﬁ}pge

(s =p-p' € [O,p])

(f) = 0<p’p’—pr*, ae.on {E>O} (10)

= 0=p’pf —pr*¥, ae.on {E>O}
[ Y

N E = p7+0m,ﬁ = p7+9m, a.e. on {E > 0}
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N py+9 :E%H, a.c. on {E > 0}
= (0" = p" in L,

((pn)9 N pg in Lll()c ({E = 0}))
loc

= p'—>pinlL
= p'-pinl] ,V1<p<yq.

Remark. m Here, the local convergence really mean the conver-
gence in Q N Bg, Y 0 < R < oo. Thus the global convergence for
bounded domains.

B The integration over Q in (10) needs justification in different set-
tings.

% Periodic case. In this case, Q is a smooth compact manifold

without boundary (closed manifold), thus divergence theorem

tells us fdiv (su) = 0.
Q
% (2?) case. In this case,

fdiv (su):f su-n=0.
oQ

* RY case. Cut-off function technique is needed, for a ¢ as in
Figure ??, we have

RHS of (10) > fdiv {su}dr = —fsu-ngR
C C
z -2 f VP (VP ul) 2 = NIl || vl

(see the Claim in Subsubsection ?7?)

— 0, as R - oo.
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