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The vulnerability of real-life networks subject to intentional attacks has been one of the outstanding chal-
lenges in the study of the network safety. Applying the real data of the US power grid, we compare the
effects of two different attacks for the network robustness against cascading failures, i.e., removal by
either the descending or ascending orders of the loads. Adopting the initial load of a node j to be
L= [kj(ng,ka)]" with k; and I'; being the degree of the node j and the set of its neighboring nodes,
respectively, where o is a tunable parameter and governs the strength of the initial load of a node, we

ﬁzz\ﬂf: failure investigate the response of the US power grid under two attacks during the cascading propagation. In
Attack . the case of o < 0.7, our investigation by the numerical simulations leads to a counterintuitive finding

on the US power grid that the attack on the nodes with the lowest loads is more harmful than the attack
on the ones with the highest loads. In addition, the almost same effect of two attacks in the case of & = 0.7
may be useful in furthering studies on the control and defense of cascading failures in the US power grid.
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1. Introduction

Recently, the resilience of real-world networks (Albert et al.,
2000; Albert and Barabasi, 2002; Holme et al., 2002; Strogatz,
2001; Newman, 2003; Goh et al., 2002) subject to random or inten-
tional attacks has been one of the most central topics in network
safety. Many real-world networks such as the Internet, the electri-
cal power grid, the transportation networks, and so on, are robust
to random attacks but vulnerable to intentional attacks. Evidence
has demonstrated that in such networks, even though intentional
attacks and random failures emerge very locally, the entire net-
work can be largely affected, even resulting in global collapse. Typ-
ical examples include several blackouts in some countries, e.g., the
largest blackout in US history took place on 14 August 2003 and
the Western North American blackouts in July and August 1996,
and the Internet collapse caused by congestion, e.g., a typical
example is recent Internet collapse caused by the submarine earth-
quake near Taiwan in December 2006. These severe incidents have
been attributed to cascading behaviors, and have been extensively
explored.

Wau et al. (2008) studied the onset and spreading of cascading
failure on weighted heterogeneous networks by adopting a local
weighted flow redistribution rule, where the weight and tolerance
of a node was correlated with its link degree k as k” and Ck’, respec-
tively. Li et al. (2008) proposed a novel capacity model for complex
networks against cascading failure, of which vertices with both
higher loads and larger degrees were paid more extra capacities,
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i.e., the allocation of extra capacity on vertex i would be propor-
tional to k}', where k; was the degree of vertexiand y > 0 was a free
parameter. Motter and Lai (2002) proposed a new model for over-
load or congestion breakdown in the process of data packet trans-
port on complex networks by assigning the capacity on a node.
Holme et al. (2002) discussed overload breakdown in an evolving
way and proposed a method to avoid such avalanches by using a
global and dynamical searching algorithm. Crucitti et al. (2004)
studied cascading failures by introducing efficiency dynamics.
Simonsen et al. (2008) studied cascading failures in networks using
a dynamical flow model based on simple conservation and distri-
bution laws. It was found that considering the flow dynamics
might imply reduced network robustness compared to previous
static overload failure models. Bao et al. (2008) introduced the con-
cept of load entropy, and then investigated the dynamics of load
entropy during the failure propagation using a new cascading fail-
ures load model. Wang and Chen (2008) investigated universal
robustness characteristic of weighted networks against cascading
failure by adopting a local weighted flow redistribution rule, where
the weight of an edge is (kik;)” with k; and k; being the degrees of
the nodes connected by the edge. In addition, a number of aspects
of cascading failures have been discussed in some literatures,
including the cascade control and defense strategy (Zhao and
Gao, 2007; Sun et al., 2008; Motter, 2004; Wang and Kim, 2007;
Ash and Newth, 2007), the model for describing cascade phenom-
ena (Bao et al., 2008; Wang and Xu, 2004; Wu et al., 2007), the ana-
lytical calculation of capacity parameter (Wang et al., 2008; Wang
and Rong, 2008; Zhao et al., 2004, 2005), and so on. In all cited
studies above, one have focused only on the dynamic properties
of the network showing that the removal of a group of nodes
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Fig. 1. The scheme illustrates the correlation between the initial load of a node i
and its neighboring nodes, i.e., nodes iy, i, i3, and is.

altogether can have important consequences. However, there are
few works (Motter and Lai, 2002) about the effects of different at-
tack strategies for the robustness against cascading failures on
real-life networks.

In view of the importance of the study of attacks on real-life
networks, which can be used either for protection in many infra-
structure networks, e.g., in an electrical power grid, or for destruc-
tion in the spread of rumors and the control of epidemic diseases,
we compare the effects of two attacks for the network robustness
against cascading failures, i.e., the attacks of the nodes with the
highest loads and the lowest loads, respectively. Adopting the
famous US power grid, we numerically investigate the universal
cascading phenomenon. Compared with the key role of the hub
nodes of networks in many previous cascading studies, some inter-
esting and counterintuitive results are found. It is expected that
our findings will be helpful for real-life networks to protect the
key nodes selected effectively and avoid cascading-failure-induced
disasters.

2. The model

In all studies cited above, the load on a node (or an edge) was
generally estimated by its degree or betweenness' and the redistri-
bution load were usually forwarded following the shortest path.
However, both load estimation and redistribution rules have their
own drawbacks. Specially, the principle based on betweenness is
reasonable only for small or medium-sized networks due to the
requirement of structural information of the whole networks; while
the principle based on node degree outweighs by its simplicity, but
is inferior owing to its only consideration of single node degree,
which loses much information thereby restricting many actual appli-
cations. Therefore, how to balance the complexity and the informa-
tion quantity is a significant topic.

To reduce the complexity of the betweenness and improve the
practicability of the degree, we present a new measure to assign
the initial load of a node (see Fig. 1). Assume that the initial load
L; of a node j in the network is a function of the product of its de-
gree k; and the summation ngl"jkm of the degrees of its neighbor-
ing nodes, and is defined as: L = [kj(Zmerkn)]”, where I}

! The betweenness of a node can be obtained by counting the number of geodesics
going it. More precisely, the betweenness b; of a node i, sometimes referred to also as
load, is defined as: b; = 37 e jkMjk (i) /Mjk, Where ny is the number of shortest paths
connecting j and k, while n (i) is the number of shortest paths connecting j and k and
passing through i.

Fig. 2. The scheme illustrates the load redistribution triggered by an node-based
attack. Node i is removed and the load on it is redistributed to the neighboring
nodes connecting to node i. Among these neighboring nodes, the one with the
higher load will receive the higher shared load from the broken node.

represents the set of all neighboring nodes of the node j and « is
a tunable parameter, which controls the strength of the initial load
of a node. After a node i is attacked, its load will be redistributed to
its neighboring nodes (see Fig. 2). The additional load AL;; received
by the node j is proportional to its initial load, i.e.,

Lj L [kjEmdj km]
Sherln l Sner, knZper, kel

AL =1L; (1)

The capacity of a node is the maximum load that the node can han-
dle. In man-made networks, the capacity is severely limited by cost.
Thus, it is natural to assume that the capacity C; of a node j is pro-
portional to its initial load (Wu et al., 2008; Motter and Lai, 2002;
Crucitti et al., 2004; Wang and Chen, 2008; Zhao and Gao, 2007;
Sun et al., 2008; Motter, 2004; Wang et al., 2008; Wang and Rong,
2008; Zhao et al., 2004, 2005), i.e, C; =TL;,j =1,2,3,...,N, where
the constant T(> 1) is a tolerance parameter?, and N is the number
of nodes in the network. If L; + AL; > C;, then the node j will be bro-
ken and induce further redistribution of flow L; + AL; and potentially
further breaking of other nodes. After the cascading process is over,
we will calculate the number of broken nodes. To this end, we use
CF; to denote the avalanche size induced by removing node i. It is
evident that 0 < CF; < N — 1. To quantify the attack-based robust-
ness of the whole network, we adopt the normalized avalanche size,
ie,

. . CF:
CFattack = % (2)

where A and N, represents the set and the number of nodes at-
tacked, respectively.

3. Analysis of attack strategies

In our cascading model, given a value of «, when the value of
T is sufficiently small, we can imagine that it is easy for the

2 In general, the more the load of a node, the stronger the capacity of the node.
Therefore, considering the simplicity of a linear relationship and inspired by many
cascading models cited above, we assume that all the nodes have the same tolerance
parameter T. However, for a nonlinear relationship between the capacity and the load
of some real complex networks, since it is very complicated and may further increase
the frequency of overloads compared with a linear relationship, there is few works on
exploring the impact on this model.
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whole network to fully collapse in the case of an arbitrary node
failure because the capacity of each node is limited. On the other
hand, for sufficiently large T, since all nodes have the larger extra
capacities to handle the load, no cascading failure occurs and the
system maintains its normal and efficient functioning. Thus, with
the increase of T, there should be some crossover behavior of the
system from large scale breakdown to no breakdown, going
through small scale ones. Therefore, inspired by many previous
studies (Wu et al.,, 2008; Wang and Chen, 2008; Wang et al.,
2008; Wang and Rong, 2008), we also use the crossover behavior
to quantify the network robustness, i.e., the critical threshold T,
at which a phrase transition occurs from normal state to collapse.
When T > T,, the system maintains its normal and efficient func-
tioning; while when T < T,, CFy suddenly increases from 0O
and cascading failure emerges because the capacity of each
node is limited, propagating the whole or part network to stop
working. Therefore, T, is the least value of protection strength
to avoid cascading failure. Apparently, it is very important to
investigate the effect of the other parameters for the critical
threshold T..

Since few works discuss the role of different nodes of real-life
networks in cascading failures, the aim of this paper is to compare
the effects of different attacks for the network robustness against
cascading failures. We adopt two simple attacks in our cascading
model.

(1) Attack on the nodes with the highest loads (HL): a common
attack strategy, used in the original study of computer net-
works, is to select the nodes in the descending order of
loads in the network and then to remove nodes one by
one starting from the node with the highest loads (if some
nodes happen to have the same highest loads, we randomly
choose one of them). In the heterogeneous networks, i.e.,
scale-free networks, the removal of the nodes with the high-
est loads is more likely to trigger cascading failures in
general;

(2) Attack on the nodes with the lowest loads (LL): contrary to
the strategy with HL, this attack strategy, rarely used to
the real-life networks, is to select the nodes in the ascending
order of loads in the network and then to remove nodes one
by one starting from the node with the lowest load (if some
nodes happen to have the same lowest loads, we randomly
choose one of them).

In most previous studies, it was expected to undergo large-scale
cascades if some vital nodes were attacked, but rarely in the case of
random breakdown. As an example we consider the electrical
power grid (Watts and Strogatz, 1998) of the western United States
which has 4941 nodes and 6594 edges and discuss the effects of
two attacks for the network robustness. To obtain an effect esti-
mate of two attacks, we focus on the relationship between the crit-
ical threshold T, and some parameters of our cascading model.

For each attack, we choose 50 nodes as the targeted ones at-
tacked, and each simulation result is obtained by averaging over
ten realizations of the electrical power grid of the western United
States. According to the role of the tunable parameter « in adjust-
ing the initial load of a node, we investigate the effects of two at-
tacks in two cases® of & < 0.5 and o > 0.5.

Fig. 3 illustrates the normalized avalanche size CF g, after cas-
cading failures of all attacked nodes, as a function of the tolerance
parameter T, for the electrical power grid of the western United

3 In our study, to accord with the positive proportion correlation between the
initial load of a node j and kj(Emer; km), we set o > 0. In addition, taking the impact of
the product of k; and Eme,-jkm, we simply choose two ranges, i.e., 0 <« < 0.5 and
o> 0.5.
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Fig. 3. Illustration of the relation between two attack strategies in the case of
o< 0.5.

States. It is original expected that the presence of a few nodes with
larger loads has a disturbing side effect: the attack on the nodes
with the highest loads may be prone to trigger a cascade of over-
load failures capable of disabling the network almost entirely than
the attack on the ones with the lowest loads. However, as a result,
our findings is on the contrary, i.e., the bigger cascades can be more
likely to be triggered by the LL than by the HL when « < 0.5, as
shown in Fig. 3.

We furthermore try to explain this counterintuitive phenome-
non by adopting two sub-graphs of a network (see Fig. 4). Assume
Fig. 4 to be two different parts of a network. When o = 0.2, we
compare the local effects of two attacks on nodes with the higher
or lower loads for the network robustness. In order to avoid the
breakdown of the neighboring nodes, we find that the lowest value
of the capacity parameter « is 1.2872 and 1.5 in two cases of the
failures of the nodes i and j in Fig. 4, respectively. Therefore, in this
case the node with the lower loads plays more important in net-
work safety than the one with the higher loads.

In Fig. 3, one can see: the bigger the value o, the smaller the
difference of the effects of two attacks. In addition, as the value
of the parameter « increases from 0.1 to 0.5, we can also see
two interesting phenomena in our cascading model: on the one
hand, the network robustness has a negative correlation with o
under the HL (i.e., the estimate critical threshold T. is positive cor-
relation with o); while on the other hand, the network robustness
has a positive correlation with o under the LL. Our finding has an
important implication that it can provide guidance in protecting
some nodes selected effectively to avoiding cascading-failure-in-
duced disasters according to the different cases in real-life
networks.

In the case of o > 0.5, we also check the network robustness un-
der two attacks in Fig. 5. It is easy to find two special point, i.e.,
o= 0.6 and o = 0.7. In the case of « = 0.6, the HL is more effective
than the LL in the bigger avalanche size of the broken nodes in-
duced by cascading failures, while based on the obtained estimate
T. by CF4tqck, the result is on the contrary. When o = 0.7, the almost
same T, originating from two attacks is also different from many
previous studies on cascading failures. In addition, when o > 0.7,
the HD is an efficient way to destruct the electrical power grid of
the western United States.

We further investigate the relationship between the critical
threshold T, and the parameter o under two attacks. As shown in
Fig. 6, switching of the efficiency of two attacks exists at the point
of « =0.7.
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Fig. 4. A comparison between the effects of the breakdowns of two nodes with the higher (node i) or lower loads (node j) for theirs neighboring nodes, i1, i, i3, i4, j;, and j,. For
example, to avoid the failures of the neighboring nodes, it is found when o = 0.2 that the lowest values of the capacity parameter T are 1.2872 and 1.5 in two cases of the
removals of the nodes i and j, respectively, and the LL strategy is more likely to trigger cascading failures; when o = 1.2, the lowest values of the capacity parameter T are
1.5743 and 1.5, respectively, and the HL strategy is harmful to disrupt the US power grid than the LL one.
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Fig. 6. Relation between the critical threshold T, and the parameter o under two
attacks.

4. Conclusion

In summary, adopting the local preferential redistribution rule
of an overload node, we investigate the effects of two attack for
the network robustness against cascading failures on the electrical
power grid of the western United States. Assuming the initial load
of a node j to be L; = [kj(Zmer,km)]” with k; and I'; being the degree
of the node j and the set of its neighboring nodes, respectively,
where o is a tunable parameter and governs the strength of the
node load, we numerically obtain the estimate for the network

robustness under two attacks. Some interesting and counterintui-
tive results are found in our cascading model, of which an interest-
ing finding is that the attack on the nodes with the lowest loads is a
more effective may to destroy the electrical power grid of the wes-
tern United States due to cascading failures when o < 0.7. It is also
found that the effects of two attacks are almost identical when
a=0.7.

The study of attacks on complex networks is important in order
to identify the robustness and vulnerability of real-life networks,
which can be used either for protection in many infrastructure net-
works, e.g., in an electrical power grid, or for destruction in the
spread of rumors and the control of epidemic diseases. Our work
may have practical implications for protecting the key nodes se-
lected effectively and avoid cascading-failure-induced disasters in
the real world.
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