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Abstract Selective genotyping of individuals from

the two tails of the phenotypic distribution of a

population provides a cost efficient alternative to

analysis of the entire population for genetic mapping.

Past applications of this approach have been con-

founded by the small size of entire and tail popula-

tions, and insufficient marker density, which result in

a high probability of false positives in the detection of

quantitative trait loci (QTL). We studied the effect of

these factors on the power of QTL detection by

simulation of mapping experiments using population

sizes of up to 3,000 individuals and tail population

sizes of various proportions, and marker densities up

to one marker per centiMorgan using complex genetic

models including QTL linkage and epistasis. The

results indicate that QTL mapping based on selective

genotyping is more powerful than simple interval

mapping but less powerful than inclusive composite

interval mapping. Selective genotyping can be used,

along with pooled DNA analysis, to replace genotyp-

ing the entire population, for mapping QTL with

relatively small effects, as well as linked and inter-

acting QTL. Using diverse germplasm including all

available genetics and breeding materials, it is theo-

retically possible to develop an ‘‘all-in-one plate’’

approach where one 384-well plate could be designed

to map almost all agronomic traits of importance in a

crop species. Selective genotyping can also be used

for genomewide association mapping where it can be

integrated with selective phenotyping approaches. We

also propose a breeding-to-genetics approach, which

starts with identification of extreme phenotypes from

segregating populations generated from multiple

parental lines and is followed by rapid discovery of

individual genes and combinations of gene effects

together with simultaneous manipulation in breeding

programs.
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Two contrasting approaches have been routinely used

for marker-trait association analysis (viz. genetic

mapping): (1) testing the average phenotypic
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difference between groups of individuals with distinct

marker genotypes and (2) comparing marker allele

frequencies amongst groups of individuals with

distinct phenotypes. The first approach is usually

based on genotyping an entire germplasm collection

or segregating population with markers evenly cov-

ering the genome (Edwards et al. 1987; Soller and

Beckmann 1990). However, this approach is exten-

sive, time-consuming and expensive, while generat-

ing precision multilocational phenotype data at this

scale may be logistically difficult or even impossible

for some traits. Unfortunately, reducing the overall

size of a mapping population will, in general,

decrease the power of QTL detection (Charcosset

and Gallais 1996), and increase the confidence

interval related to the estimated position of the

QTL, as well as increasing the probability of

detecting false positive QTL. The second approach

provides a partial solution to this problem by focusing

on the individuals from the high and low tails of the

phenotypic distribution across the germplasm collec-

tion or segregating population (‘selective genotyp-

ing’; Lebowitz et al. 1987; Lander and Botstein

1989). In selective genotyping, marker analysis only

needs to be carried out on individuals from those

tails, and further economic savings can be made by

generating pooled DNA from groups of individuals

with similar phenotypes. Marker-trait association is

then inferred by analyzing the differences in allelic

frequency between the two tails (Stuber et al. 1980,

Fig. 1 Selective genotyping and pooled DNA analysis.

A Pooled analysis using disease resistance (R) and susceptive

(S) plants as example. DNA pools are constructed from R and

S plants selected from a mapping population and then

genotyped by molecular markers. When two DNA pools show

different alleles at a specific marker locus, the marker is linked

with the disease response, while when the both pools show the

same heterozygous genotype, the marker is unlinked with the

disease response. B Pooled DNA analysis using extreme plants

selected for a target quantitative trait from two tails of a normal

distribution in the mapping population. Marker-trait linkage is

revealed by allele frequency at specific marker loci. When

allele frequencies at a marker locus are significantly different

between the two pools at a marker locus, the marker is linked

with the target trait, while when the allele frequencies are very

close to each other (each approximately 0.5), the marker is

unlinked with the target trait. In both A and B, assume that the

marker is dominant and reveals polymorphism between the

parental lines that are used to derive the mapping population
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1982) or the difference in signal strength between the

DNA pools from those two tails (‘pooled DNA

analysis’) (Fig. 1). Of course, this approach does not

reduce the need (and associated cost) for accurate

phenotyping of the entire original population in order

to accurately identify the individuals with genotypes

for extreme phenotypes of the target trait.

The underlying approach of selective genotyping

has also been used in ‘tail analysis’ (Hillel et al.

1990; Dunninnton et al. 1992; Plotsky et al. 1993),

‘bulked segregant analysis’ (Giovannoni et al. 1991;

Michelmore et al. 1991), and ‘selective DNA pooling’

(Darvasi and Soller 1994). It can be bidirectional if the

two tails of the distribution are considered, or unidi-

rectional if only one tail is considered (Navabi et al.

2009). The unidirectional approach is more suitable

for traits that have been subjected to strong negative

or lethal selection pressure in unfavorable environ-

ments. But, bidirectional selective genotyping is

generally more effective and commonly used in

practice as the effect of segregation distortion can be

properly avoided. Selective genotyping and pooled

DNA analysis have been widely used in genetic

mapping in plants with numerous reports for single

major genes (e.g., Barua et al. 1993; Hormaza et al.

1994; Villar et al. 1996; van Treuren 2001; Zhang

et al. 2002) and for detection and validation of

quantitative trait loci (QTL) (Foolad and Jones 1993;

Zhang et al. 2003; Wingbermuehle et al. 2004; Coque

and Gallais 2006), including traits controlled by a few

major-effect QTL (Quarrie et al. 1999). This

approach has also been used to detect significant

changes in marker allele frequency through two

cycles of recurrent selection (Moreau et al. 2004). A

fractioned DNA pooling approach has also been used

in which the tails of the population distribution are

randomly allocated among a number of independent

sub-pools (Sham et al. 2002; Brohede et al. 2005;

Korol et al. 2007; Shifman et al. 2008).

Selective genotyping and pooled DNA analysis

have been shown to have significant advantages in

terms of cost savings, compared to entire population

analysis, with negligible practical disadvantages in

terms of power of detection in medical genomics

research (Knight and Sham 2006; Macgregor et al.

2008). For example, for analysis of a large population

with 1,000 individuals where 30 individuals from

each tail are selected, selective genotyping will only

cost 6% of that required for genotyping the entire

population. Combining this with pooled DNA

analysis would provide a substantial further saving

in genotyping costs now equating to 0.2% of the cost

of individually genotyping the entire population.

Clearly, the larger the original population size, the

greater the power of this approach and the higher the

savings compared to entire population genotyping.

For small to moderate sized populations (n = 200–

500), the optimum size for each tail, in terms of power

of detection, is 20–30% of the entire population

(Darvasi and Soller 1992; Gallais et al. 2007; Navabi

et al. 2009). As the population size increases, the

proportion of individuals required for a given power

of QTL detection will decrease such that an absolute

optimum number of plants from each tail can be

defined. Gallais et al. (2007) simulated the detection

of marker-trait association by studying changes in

marker frequencies amongst groups of individuals

with distinct phenotypes and analyzed the effect that

different ratios of genotyping and phenotyping had on

QTL detection power and overall cost. They found

that the optimum size of the tail population (as a

proportion of the entire population), which determines

the level of cost savings that can be realized by this

approach, is mainly determined by the ratio between

cost of genotyping and cost of phenotyping.

There are several issues that have confounded

many applications of selective genotyping and pooled

DNA analysis (Xu and Crouch 2008): (1) a relatively

small number of markers has often been used to cover

the whole genome with the assumption that genes can

be readily identified using a marker density of

15–25 cM, while frequently this is not feasible;

(2) contrasting individuals have been selected from

a relatively small-size population (e.g., 100–300

individuals), this reduces the power of QTL detection

such that only large-effect genes/QTL may be

detected, which depending on the germplasm used

may not exist for many complex agronomic traits; (3)

when the allele signal is determined through a gel-

based genotyping system, allele frequency in each

pool cannot be quantified accurately and the signal

generated by a rare allele present in only a small

number of individuals of a pool may not be detected

which substantially reduces the power of the

approach; (4) pools are often based on a relatively

small number of individuals (10–15) from each tail,

causing a high level of false positive marker-trait

associations. These confounding factors have led to
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an apparent mixed success of selective genotyping

and pooled DNA analysis in literature.

It can be hypothesized that plants with extreme

phenotypes chosen for selective genotyping would be

those with an accumulation of favorable alleles from

multiple loci with various additive effects. However,

several significant issues remain to be resolved before

the full potential of selective genotyping and pooled

DNA analysis can be achieved, including: (1) can

selective genotyping be used to replace entire pop-

ulation analysis for both qualitative and quantitative

traits; (2) how many independent genes can be

identified simultaneously; (3) can selective genotyp-

ing be used for mapping linked genes and/or genes

with epistatic interactions; and (4) can selective

genotyping be used for fine mapping to the level

required for map-based cloning? The objectives of

this study were to use computer simulation to better

understand the effects of potential confounding

factors on the power of selective genotyping, includ-

ing entire population size, relative and absolute tail

size, and marker density under various genetic

models (including linkage and interaction effects

between target QTL as well as different levels of the

phenotypic variation explained by the target QTL),

by comparison with other QTL mapping methods

based on entire population analysis. Our assumption

for selective genotyping is that allelic frequencies

could be determined for the two selected tails either

based on individual genotyping or pooled DNA

analysis. Based on this analysis we also provide a

detailed discussion of potential uses of selective

genotyping (and pooled DNA analysis) in genetic

analyses and plant breeding.

Materials and methods

Genetic models and mapping populations

used in simulations

Simulations were based on a genome consisting of 10

chromosomes, each of 150 cM in length with four

levels of marker density (MD); one marker every 1,

2, 5 or 15 cM. Markers were assumed to be evenly

distributed on each chromosome, so the actual

number of markers per chromosome at the four

MD levels was 151, 76, 31 or 11, respectively. A

recombinant inbred line (RIL) population was chosen

as the mapping population for this study. The genetic

effect of a QTL is measured as the proportion of

phenotypic variation explained by that QTL, abbre-

viated as PVE (%). By definition, PVE of a QTL is

the genetic variation caused by the QTL, i.e., VQ,

Table 1 Six independent QTL used in simulation study and their distances to the nearest markers under four marker densities (MD)

QTL Chr. Position

(cM)

Additive

effect

PVE

(%)

Distance of each QTL to its nearest marker under four marker densities (MD)

MD = 1 cM MD = 2 cM MD = 5 cM MD = 15 cM

IQ1 1 18 0.1000 1 0 0 2 3

IQ2 2 28 0.1732 3 0 1 2 3

IQ3 3 34 0.2236 5 0 0 1 4

IQ4 5 48 0.2646 7 0 0 2 3

IQ5 7 22 0.3162 10 0 1 2 7

IQ6 9 76 0.3873 15 0 1 2 2

Table 2 Genetic effects of

two pairs of linked QTL in

the coupling and repulsive

linkage phases

QTL Chr. Position

(cM)

PVE (%) Additive genetic effect

Model 1

(coupling linkage)

Model 2

(repulsive linkage)

LQ1 3 12 5 0.2236 0.2236

LQ2 3 32 5 0.2236 -0.2236

LQ3 5 12 5 0.2236 0.2236

LQ4 5 62 5 0.2236 -0.2236
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divided by the total phenotypic variation, VP, i.e.,

PVEQ ¼ VQ

VP
� 100%.

Three QTL models were compared; (1) independent

QTL (Table 1), (2) linked QTL (Table 2), and (3) QTL

with epistatic effects (Table 3). For the independent

QTL, our purpose was to investigate the detection

power of selective genotyping for QTL with various

genetic effects. We assumed a quantitative trait was

controlled by a total of six QTL distributed on

chromosomes 1, 2, 3, 5, 7 and 9, and the PVE of these

QTL were 1, 3, 5, 7, 10, and 15%, respectively

(Table 1). The distance of QTL to the nearest marker

changed with marker density, ranging from 0 to 7 cM

(Table 1). When linkage and epistasis are ignored, the

total genetic variance is the sum of genetic variances

from all QTL. For the independent QTL model in

Table 1, the total genetic variance is Vg = 0.41, and

the random error variance is Ve = 0.59. Therefore, the

phenotypic variance is VP = 1.0, and the broad-sense

heritability is Vg/VP (%) = 41%. The additive effect of

each QTL used in the simulation is, therefore, equal to

the square root of PVEQ (Table 1). In addition, two

selective genotyping strategies were compared for a

QTL with PVE = 10%: (1) ‘rough’ mapping with

population size = 200, marker density = 15 cM

and selected proportion (SP) = 5%; and, (2) ‘fine’

mapping with population size = 500, marker

density = 1 cM and SP = 5%.

For the linked QTL, our purpose was to investigate

the effect of linkage distance and linkage phase on

QTL detection when using selective genotyping. Thus,

we considered a trait controlled by two pairs of linked

QTL, where LQ1 and LQ2 were linked on chromo-

some 3 at a distance of 20 cM apart, and where LQ3

and LQ4 were linked on chromosome 5 at a distance of

50 cM apart. When linked in coupling phase, the four

QTL have the same amount and direction of genetic

effect; but when linked in repulsion phase, LQ1 and

LQ2 have the same amount but opposite genetic

effects, and similarly for LQ3 and LQ4 (Table 2). The

genetic effects of the four QTL given in Table 2 were

used in the simulation together with a random error

variance Ve = 0.80, resulting in a broad-sense herita-

bility of 20% if the four QTL were unlinked. It should

be noted that the total genetic variance is not equal to

the summation of individual genetic variances under

linkage (Li et al. 2008). For the QTL linked in coupling

phase, genetic variation is greater than the sum of

individual QTL variations, leading to a higher herita-

bility. For QTL linked in repulsion phase, the genetic

variation is less than the sum of individual QTL

variance, leading to a lower heritability. The broad-

sense heritabilities for the two models in Table 2 were

25.48 and 13.64%, respectively. To understand the

effect of population size and marker density on the

power of QTL detection, two linked QTL (20 cM

apart), each of PVE = 5%, were mapped using

different entire population sizes, tail sizes that were

different proportions of the entire population and

different marker densities.

For the QTL with epistatic effects, we considered a

trait controlled by two interacting QTL distributed

across two chromosomes, i.e., EQ1 and EQ2 on

chromosomes 1 and 2 (Table 3), respectively. In this

case, the total genetic variance VG ¼ a2
1 þ a2

2 þ aa2,

where a1 and a2 are the additive effects of the two

interacting QTL, and aa is the additive by additive

epistatic effect between the two QTL. In the epistasis

model, we assume EQ1 and EQ2 together explain 15%

of the phenotypic variance. In Epistasis Model 1, all

genetic effects are present, i.e., a1 = a2 = aa =

0.2236, each accounting for 5% of the phenotypic

variation. In Epistasis Model 2, only the epistatic effect

is present, i.e., a1 = a2 = 0, aa = 0.3873, where

epistasis is the only genetic effect influencing pheno-

typic variation and accounts for 15% of the phenotypic

variation. In Epistasis Model 3, one additive effect and

the epistatic effect are present, i.e., a1 = 0.2739,

a2 = 0, and aa = 0.2739 (Table 3), each of which

account for 15% of the phenotypic variation. The

random error variance is Ve = 0.85 for the three

epistasis models.

Table 3 Genetic effects of the three models of digenic interaction used in the simulated study

QTL Chr. Position (cM) Model 1 Model 2 Model 3

EQ1 EQ2 EQ1 EQ2 EQ1 EQ2

EQ1 1 18 0.2236 0.0000 0.2739

EQ2 2 33 0.2236 0.2236 0.3873 0.0000 0.2739 0.0000
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Entire population sizes ranged from 100 to 3,000

with 100, 150, 200, 250, 300, 350, 400, 500 and 600

steps used for most models. Tail population sizes used

represented SP of the entire population from 5 to 50%

for each tail (i.e., 5, 10, 15, 20, 25, 30, 35, 40, and 50%).

RIL populations were simulated by crossing two

inbred parental lines, and QTL mapping was carried

out using QTL IciMapping software (Li et al. 2007;

Wang 2009; available from http://www.isbreeding.net).

A total of 100 simulation runs were conducted for

each combination of population size and selected

proportion.

QTL detection based on selective genotyping

For selective genotyping, a t-test comparing the marker

frequency in each selected tail population is normally

used to analyze the association between QTL and

markers. In contrast, a likelihood ratio test is normally

used in interval mapping-based methods to compare

mean phenotypes of groups of individuals with the

same genotype. In order to compare the two

approaches in this study, a likelihood ratio test was

derived for selective genotyping. Thus, in the two-tail

selective genotyping situation used in this study

(Table 4), pH and pL represent the frequencies of a

marker allele (i.e. M in Table 4) in the two tail

populations. The null hypothesis is H0: pH = pL,

indicating that there were no QTL associated with the

marker, and the alternative hypothesis is HA: pH = pL,

indicating the association between QTL and the

marker. The number of the plants with two marker

types in each tail follows a binomial distribution, and

the likelihood function under HA is therefore,

LA ¼ Cn1H
nH

pHð Þn1H 1� pHð Þn2H�Cn1L
nL

pLð Þn1L 1� pLð Þn2L :

The likelihood function under H0 is,

L0 ¼ Cn1H
nH

p0ð Þn1H 1� p0ð Þn2H �Cn1L
nL

p0ð Þn1L 1� p0ð Þn2L ,

where p0 ¼ n1Hþn1L

nHþnL
; representing the frequency of the

marker under H0. Therefore, the LOD score can be

defined as the natural logarithm of the ratio of the two

likelihoods, as defined in other QTL mapping meth-

ods. The above procedure was implemented using the

QTL IciMapping software.

Comparison with empirical mapping data

from a barley mapping population

A barley mapping population, derived from a cross

between two-row barley (Hordeum vulgare L.)

genotypes (Harrington 9 TR306), was used to pro-

vide an empirical comparison with the simulated

mapping results from selective genotyping versus

entire population mapping. The mapping population

consisted of 145 random doubled haploid (DH) lines

(Tinker et al. 1996). A linkage map was constructed

using 127 markers covering all seven chromosomes

with a total map length of 1,274 cM. This mapping

population was evaluated in 1992 and/or 1993 at 17

locations (Tinker et al. 1996) providing average

kernel weight data from 25 environments. The

average kernel weight was 38.7 mg for Harrington,

and 45.0 mg for TR306. The minimum, mean and

maximum kernel weight of the 145 DH lines were

35.8, 42.0, and 48.1 mg, respectively. The family-

level broad-sense heritability was 0.71 for this

population (also see Li et al. 2008).

For comparison, other QTL mapping methods

such as simple interval mapping (SIM; Lander and

Botstein 1989) and inclusive composite interval

mapping (ICIM; Li et al. 2007; Zhang et al. 2008;

Wang 2009), were applied to the simulated and

empirical datasets. For ICIM, marker selection was

conducted only once through stepwise regression by

considering all marker information simultaneously,

and the phenotypic values were then adjusted by all

markers retained in the regression equation except the

two markers flanking the target mapping interval. In

the first step of ICIM for additive QTL, a probability

value for entering variables (PIN) of 0.01, and a

probability value for removing variables (POUT) of

0.02 were used to select the significant markers.

There was no background genetic control when SIM

was used. The threshold LOD of 2.5 was used to

declare significant QTL for all methods.

Table 4 The two-tail selective genotyping

Marker type MM mm Sum

The high tail

Sample size n1H n2H nH

Frequency of M pH 1 - pH 1.0

The low tail

Sample size n1L n2L nL

Frequency of M pL 1 - pL 1.0

The two marker alleles segregating in the two parental lines

were represented by M and m

Mol Breeding

123

http://www.isbreeding.net


Results

Use of selective genotyping for rough mapping

and high-resolution mapping

The effect of marker density on the power of QTL

detection was studied by comparing the outcomes of

selective genotyping for two very different mapping

goals (Fig. 2). In the first instance, conventional

selective genotyping was used for rough mapping

(Fig. 2, Strategy A), where relatively small entire

population (n = 200) and tail sizes (n = 10) were

used with a low density of marker coverage (one

marker every15 cM). In this case, selective genotyp-

ing resulted in the detection of only one marker in the

target region (with an average LOD score just above

2.5). Moreover, the power of QTL detection of 48%

observed in this situation cannot distinguish a false

positive without validation through genotyping the

entire population. In contrast, where large entire

population (n = 500) and tail sizes (n = 25) were

used for high-resolution mapping (Strategy B, Fig. 2)

along with a high density of marker coverage (one

marker per cM), selective genotyping resulted in the

detection of multiple markers around the target

region with the highest having a LOD score of 9.82

and a power of detection of 99%. Although the region

with a LOD score[6 spans more than 10 cM (Fig. 2,

Strategy B), there is a sharp peak for LOD scores

within a 3-cM region that directly brackets the target

QTL. This suggests that selective genotyping can be

used for fine mapping when a high-density marker

map is available. The accumulative probability of

finding false positives decreases proportionally with

an increase in the number of markers that simulta-

neously show significant association. Thus, there is

no need to confirm associations identified by high-

resolution mapping through genotyping the entire

population, which has been the routine procedure for

putative markers identified through bulked segregant

analysis.

Factors that influence the QTL detection power

of selective genotyping

The power of detecting QTL with various genetic

effects (listed in Table 1) under different scenarios

for the proportion of the entire population selected for

each tail population (SP) and different marker

densities is shown in Fig. 3, for entire population

sizes of 250 and 500. Differences in power of

detection can be seen at four levels of marker density

(one marker ever 1, 2, 5 or 15 cM) for IQ1 which is

the QTL with the smallest effect. When a marker
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Fig. 2 Effects of selective genotyping strategies on detection

power and mean LOD score around the target region (15 cM,

grey area) assuming the QTL explain 10% of phenotypic

variation. Strategy A population size = 200, selected propor-

tion = 0.05 (bidirectional selection), resulting no clear peak

because the QTL are located in the middle of two makers;

Strategy B population size = 500, selected proportion = 0.05

(bidirectional selection), marker density = 1 cM, resulting in

multiple markers showing positive in the target region with

LOD = 9.82 and power = 99%, which is proposed for

selective genotyping-based fine mapping
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density of 15 cM is used, there is a low power of

detection for IQ3 and IQ5, even though these two

QTL are fairly well separated (as defined in Table 1).

Darvasi et al. (1993) reported that a QTL located at

the mid-point between flanking markers is the most

difficult scenario for QTL detection. This is con-

firmed in our simulation for PVE = 10% at a marker

density of 15 cM where the distance between the

QTL and markers is the largest (7 cM) (Table 1). For

QTL with other effects at various marker densities,

the detection powers are very similar, providing the

proportion of tail population to entire population is

maintained the same (Fig. 3). When the population

size is 250, the power of detection for all methods

was over 90% for QTL with PVE = 15% (Fig. 3A).

When the population size is 500, however, the power

of detection for most methods was around 90% for

much smaller QTL with PVE = 5%. Only 5% of the

plants from an entire population of 500 need to be

included in each tail for the power of detection of

selective genotyping to reach 100% for a QTL with

PVE = 15%, irrespective of marker density (within

the range tested; 1–15 cM) (Fig. 3B).

As expected, power of detection increases with

increasing QTL effect (higher PVE; Fig. 3) and

population size (Fig. 4). For a population size over

400 and a marker density of 5 cM with PVE = 5%

and SP = 5%, power of detection is over 80%

(Fig. 4). It can be seen from Figs. 3 and 4 that for

most independent QTL, the detection power is

maximized with SP = 25%. Selecting more than

25% of the entire population for each tail population

does not significantly improve the detection power

(Figs. 3 and 4). In some cases, the detection power

may even be reduced at higher SP levels (Fig. 4), due

to confounding effects of mixed genotypes within the

same tail particularly when the population size is too

small.

For convenience, the SP level that maximizes the

detection power of selective genotyping at a marker

0
10
20
30
40
50
60
70
80
90

100

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

P
ow

er
 (

%
)

A MD=1 cM
MD=2 cM
MD=5 cM
MD=15 cM

PVE=1% PVE=2% PVE=5% PVE=7% PVE=10% PVE=15%

0
10

20

30
40

50

60
70

80

90
100

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
50

 

P
ow

er
 (

%
)

Selected proportion

B MD=1 cM

MD=2 cM

MD=5 cM

MD=15 cM

PVE=1% PVE=2% PVE=5% PVE=7% PVE=10% PVE=15%

Fig. 3 Power of

bidirectional selective

genotyping at four levels of

marker densities (marker

densities = 1, 2, 5 and
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proportion of the entire
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density of 5 cM has been summarized in Table 5. In

large mapping populations (up to 3,000), the QTL

detection power can reach 100%, even for QTL

explaining 1–3% of the phenotypic variation. For

example for IQ2 (a = 0.1732) (PVE = 3%) as

shown in Table 1, the detection power is only 90%

when for a population size of 600 with SP = 20%,

but the detection power reaches 100% for a popula-

tion size of 2,000 with SP = 5% even though the

absolute number of individuals genotyped is lower in

the latter scenario (Table 5). For QTL with larger

effect, say IQ5 (a = 0.3162) and IQ6 (a = 0.3873), a

much smaller population is required to reach the

power of 100% (Table 5). Thus, as expected, it is

much easier for selective genotyping to detect major

QTL, which is also the case for all other mapping

methods. When PVE is 5% or larger, similar power of

detection can be obtained for some QTL with a large

population but a small SP, or a small population with

a large SP. Taking IQ5 (PVE = 10%) as an example,

for a population size of 250 the detection power of

95% is achieved when SP = 15%, but for a popula-

tion size of 400 a higher detection power of 97% is

achieved at a lower SP = 5% (Table 5). Thus, across

most scenarios, genotyping costs can be reduced

while at the same time increasing QTL detection

powers by increasing the entire population size and

decreasing the SP.

Since increasing the SP above 25% does not

improve detection power in moderate to large pop-

ulation sizes (Figs. 3, 4; Table 5), in the following

sections, we have used a population size of 500 and a

marker density of 5 cM with SP = 25% for most

comparisons of selective genotyping mapping (SGM)

with other available methods, i.e. simple interval

mapping (SIM) and inclusive composite interval

mapping (ICIM).

Comparison of selective genotyping with other

methods for mapping independent QTL

For QTL with PVE = 5%, detection powers of SGM,

SIM, and ICIM were simulated by the QTL IciMap-

ping software, as shown in Fig. 5. For population

sizes of 500 or larger, all methods have a detection

power of 100% for a QTL with PVE = 5% (Fig. 5).

For smaller population sizes, ICIM has the highest

detection power, which reflects the gains from using

model selection in controlling background genetic

variation (Li et al. 2007; Zhang et al. 2008). Thus

Table 5 The proportion of the entire population selected for each tail population where the maximum detection power was achieved

at the marker density of 5 cM in bidirectional selective genotyping

PS PVE = 1% PVE = 3% PVE = 5% PVE = 7% PVE = 10% PVE = 15%

SP Power (%) SP Power (%) SP Power (%) SP Power (%) SP Power (%) SP Power (%)

100 0.30 8 0.35 22 0.35 36 0.20 46 0.35 66 0.35 84

150 0.20 9 0.25 33 0.30 58 0.25 59 0.25 83 0.15 96

200 0.10 13 0.25 39 0.25 78 0.20 80 0.25 92 0.10 95

250 0.35 19 0.30 50 0.25 76 0.20 92 0.15 95 0.10 99

300 0.15 15 0.25 57 0.30 85 0.25 93 0.20 98 0.10 99

350 0.25 27 0.25 55 0.25 86 0.15 95 0.10 97 0.05 98

400 0.25 33 0.30 72 0.15 92 0.15 96 0.05 97 0.05 97

500 0.20 30 0.25 78 0.15 97 0.10 98 0.05 100 0.05 100

600 0.30 35 0.20 90 0.10 97 0.05 95 0.05 100 0.05 100

700 0.25 46 0.20 96 0.10 98 0.05 100 0.05 100 0.05 100

800 0.25 56 0.25 93 0.05 95 0.05 98 0.05 100 0.05 100

1,000 0.25 60 0.15 98 0.05 97 0.05 100 0.05 100 0.05 100

1,500 0.20 83 0.05 99 0.05 100 0.05 100 0.05 100 0.05 100

2,000 0.25 92 0.05 100 0.05 100 0.05 100 0.05 100 0.05 100

2,500 0.15 95 0.05 100 0.05 100 0.05 100 0.05 100 0.05 100

3,000 0.10 95 0.05 100 0.05 100 0.05 100 0.05 100 0.05 100

PVE phenotypic variation explained, PS population size, SP selected proportion
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where it is possible to use moderate to large mapping

populations there is no loss of power for detected

unlinked QTL from the application of selective

genotyping.

Comparison of selective genotyping with other

methods for mapping linked QTL

For linked QTL (Table 2), LOD scores and detection

powers of SGM, SIM, and ICIM were simulated. The

average LOD scores are shown in Fig. 6A, C, E, G,

and detection powers are shown in Fig. 6B, D, F, H,

for the chromosome where two linked QTL are

located. Two clear peaks can be seen on the LOD

profile from ICIM for the two linkage distances and

two linkage phases, indicating the high power of

ICIM to dissect linked QTL. For both SGM and SIM,

the distinction of two peaks at the true QTL positions

was obscure in the LOD profile when the linkage

distance was 20 cM (Fig. 6A, E). When the linkage

distance was 50 cM, two peaks around the true QTL

positions can be seen, but there is still a substantial

overlap (Fig. 6C, G), which will lead to a much wider

confidence interval for these QTL in the resultant

map.

Marker interval-based power analysis (Li et al.

2007) confirms the property of LOD profile of each

method. ICIM has high powers of detection around

the two QTL positions for the two linkage distances

and two linkage phases, but rather low in those

marker intervals where no QTL were located

(Fig. 6B, D, F, H). This means that ICIM can have

a high detection power combined with a low rate of

false positives. For the linkage phase of coupling,

SGM and SIM have rather higher detection powers

than ICIM across the marker intervals where QTL

were located but the rate of false positives is also high

(Fig. 6B, D). For the linkage phase of repulsion, the

detection powers of SGM and SIM are lower than

ICIM (Fig. 6F, H). Therefore, the use of SGM may

not be recommended when dissecting linked QTL,

unless a large population size with a large tail size is

used with a high density of markers.

Genetic separation of two tightly linked QTL has

been a challenge for most, if not all, statistical

methods even when using the entire population

genotyping approach. Using population sizes much

larger than those used in Fig. 5, with marker densities

from 1 to 15 cM, and four different SP levels, Fig. 7

provides the result for two QTL linked at a distance

of 20 cM. At a marker density of 1 cM, the two target

regions (spanning 4 cM) are associated with two

peaks for both detection power and mean LOD score,

although there are LOD scores above the 2.5

threshold across the entire region containing the

two QTL. Among the five scenarios studied through

simulation analysis (Fig. 7A), those based on larger

entire population sizes and high SP values show not

only stronger association but also more distinguish-

able peaks for two linked QTL, compared to results

from smaller entire population sizes and lower SP

values. However, at a marker density of 15 cM, the

two linked QTL could not be separated at all

(Fig. 7B). These results indicate that when the

population size is larger than 500 and marker density

is 1 cM, two linked QTL 20 cM apart could be

separated by selective genotyping. In contrast, none

of the methods tested could separate two QTL tightly

linked (5 cM apart), irrespective of the population

size or marker density tested (data not shown).
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Comparison of selective genotyping with other

methods for mapping epistatic QTL

For epistatic QTL (Table 3), the average LOD scores

are shown in Fig. 8A, C, E, and the detection powers

are shown in Fig. 8B, D, F, for the two chromosomes

where the two epistatic QTL are located. Two clear

peaks can be seen on the LOD profile generated by

each method, when both QTL have additive effects

(Fig. 8A). In contrast, no peaks were observed when

additive effects were absent (Fig. 8B). When one of

the two additive effects was present, only one peak

around the position of the additive QTL was observed

(Fig. 8C). Interestingly, SGM has the highest power

to detect epistatic QTL as shown by its higher LOD

score (Fig. 8A, E). As with the results on independent

and linked QTL, ICIM generates much sharper peaks,

indicating the narrower confidence interval of ICIM.

Comparative analysis of the three methods using

empirical data from a barley DH population

In a barley DH population of 145 individuals,

genotyped by 127 markers, ICIM identified nine

0
10
20

SGM

0
10
20

LO
D

 

SIM

0
10
20

A Mean LOD score, coupling linkage, and GD=20cM
ICIM

0
10
20

SGM

0
10
20

LO
D

 

SIM

0
10
20

C Mean LOD score, coupling linkage, and GD=50cM

ICIM

0
10
20

SGM

0
10
20

LO
D

 

SIM

0
10
20

E Mean LOD score, repulsive linkage, and GD=20cM

ICIM

0
10
20

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Chromosomal position (cM)

SGM

0
10
20

LO
D

 

SIM

0
10
20

G Mean LOD score, repulsive linkage, and GD=50cM

ICIM

0

20

40

60

80

100

P
ow

er
 (

%
)

B Power, coupling linkage, and GD=20cM

ICIM SIM SGM

0

20

40

60

80

100

P
ow

er
 (

%
)

D Power, coupling linkage, and GD=50cM

0

20

40

60

80

100

P
ow

er
 (

%
)

F Power, repulsive linkage, and GD=20cM

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

P
ow

er
 (

%
)

Chromosomal position (cM)

H Power, repulsive linkage, and GD=50cM
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detection (B, D, F, H) from ICIM, SIM and SGM (selective

genotyping under bidirectional selection) for two linked QTL
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additive QTL contributing to kernel weight that were

distributed across five of the seven barley chromo-

somes (although all were under the LOD threshold of

2.5) (Fig. 9; Table 6). The largest two were

qKWT5H (PVE = 38.27%) located at 5.0 cM on

chromosome 5H, and qKWT7H (PVE = 17.51%)

located at 95.0 cM on chromosome 7H. The nine

QTL collectively explained a total of 80.76% of the

phenotypic variation, indicating additive effects are

the major source of genetic variation in this popula-

tion. In contrast, SIM was only able to identify the

three largest QTL identified by ICIM: qKWT5H,

qKWT7H-1, and qKWT7H-2 (Table 6).

SGM identified six significant markers around the

nine QTL positions identified by ICIM (Table 6). The

two independent QTL (qKWT4H and qKWT5H)

were identified by SGM. Though on the same

chromosome, qKWT7H-1 and qKWT7H-2 have a

linkage distance of about 90 cM (Table 6), which

less affects the QTL detection by SIM and SGM.

qKWT2H-1, -2 and -3 are linked in the repulsion

phase on chromosome 2H. The linkage distances are

54 cM between qKWT2H-1, and -2, and 62 cM

between qKWT2H-2, and -3. The repulsive linkage

reduces the power of detection for SIM and SGM and

therefore, only qKWT2H-3 was detected by SGM.

Moreover, by chance in this empirical map there was

a marker closely linked to qKWT2H-3 (at 201.7 cM)

which will have further aided SGM to identify

qKWT2H-3. qKWT3H-1 and qKWT3H-2 are also

linked in the repulsion phase at a genetic distance of

22 cM. SIM failed to identify either of these QTL

while SGM only identified qKWT3H-2 due to its

relatively large effect.

Discussion

Power of QTL mapping based on selective

genotyping

In this report, we have revealed that QTL mapping

based on differences in allelic frequency between

high- and low-tails of the phenotypic distribution of

an RIL mapping population had a lower QTL

detection power than ICIM but higher than SIM.
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We have confirmed that SGM has been very

successful in mapping QTL with large effect

(PVE = 15% or higher) by using relatively small

population sizes (150–250), low proportions in each

tail (SP = 15–20%), and low marker density (15–

25 cM). However, our simulation results indicate that

the efficiency of SGM has been far from fully

exploited in terms of the QTL detection power that

can be achieved when the critical factors are

addressed. By improving population size, proportion

of the population selected for each tail and marker

density, the QTL detection power can be substantially

increased and the rate of false positives can be

significantly reduced.

SGM can be effectively used for almost all genetic

models we have simulated including QTL with

linkage, epistasis and various levels of PVEs. First,

SGM can be used to simultaneously map as many

QTL as there are chromosomes if each chromosome

has only one QTL. QTL with very low effects

(PVE = 1%) can be detected if the population size is

increased to 3,000 with a suitable tail size (n [ 100)

and marker density (\5 cM). Second, two linked

QTL can be readily separated if they are more than

20 cM apart. Third, interaction between two QTL can

be detected if at least one of the QTL has significant

additive effects and population size is relatively large

(500 or larger). Our results support the conclusions of

A Mean LOD score, two interacting QTL with a1=a2=aa=0.2236 B Power, two interacting QTL with a1=a2=aa=0.2236

C Mean LOD score, two interacting QTL with a1=a2=0, aa=0.3873 D Power, two interacting QTL with a1=a 2=0, aa=0.3873

E Mean LOD score, two interacting QTL with a1=aa=0.2739, a2=0 F Power, two interacting QTL with a1=aa =0.2739, a2=0
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Fig. 8 Mean LOD score (A, C, E) and power (B, D, F) from

ICIM, SIM and SGM (selective genotyping under bidirectional

selection) for the two interacting QTL defined in Table 3. Two

chromosomes are shown, where the two interacting QTL are

located. The population size is 500, marker density is 5 cM,

and the proportion of the entire population selected for each tail

population is 25% for bidirectional selective genotyping. ICIM
inclusive composite interval mapping, SIM simple interval
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two previous studies combining analysis of marker

frequencies with selective genotyping and compara-

tive ANOVA and allele frequency analysis for

independent QTL (Gallais et al. 2007; Navabi et al.

2009). Our studies simulated the factors affecting the

mapping power much beyond the range of conven-

tional selective genotyping, with population sizes up

to 3,000, PVE down to 1%, and marker density up to

1 cM using genetic models involving linkage and

epistasis. Genotyping costs would not change very

much for SGM as entire population sizes are

increased, as the larger the entire population size

the smaller the proportion of individuals required in

each tail in order to maintain the same QTL detection

power. Comparative analysis with the empirical

dataset from barley confirmed almost all of the

trends observed in the simulation results, indicating

that SGM is more powerful than SIM but less

powerful than ICIM in detecting most QTL. As

concluded from the simulation results, the QTL

detection power should be improved by using a

larger population size and a higher density marker.

Replacement of entire population genotyping

with selective genotyping

Selective genotyping can be used to replace entire

population genotyping in almost all cases we have

simulated, without loss of QTL detection power if the

entire and tail population sizes are large enough and a

high density of markers is used. In addition, there is

no need to eliminate false positive markers through
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Table 6 Mapping of kernel weight in the barley DH popula-

tion with ICIM, SIM, and SGM

QTL ICIM (PIN = 0.01, and

POUT = 0.02)

SIM SGM

Position

(cM)

Additive LOD PVE

(%)

LOD LOD

qKWT2H-1 83.00 0.39 4.16 3.04 0.35 0.53

qKWT2H-2 139.00 -0.46 5.28 4.23 1.99 2.44

qKWT2H-3 201.00 0.45 5.60 4.20 2.21 4.36

qKWT3H-1 0.00 -0.35 3.35 2.40 0.05 0.02

qKWT3H-2 22.00 0.57 8.00 6.50 1.11 2.97

qKWT4H 125.00 -0.31 2.73 1.95 1.50 3.55

qKWT5H 5.00 -1.38 32.19 38.27 13.05 19.82

qKWT7H-1 4.00 -0.56 7.81 6.38 2.55 3.55

qKWT7H-2 95.00 -0.94 18.86 17.51 5.36 9.41

Notes: The LOD peak from SIM is at the same position of the

corresponding QTL identified by ICIM; the LOD peak of SGM

is at the nearest marker of the corresponding QTL identified by

ICIM with SP = 25% for each tail. Bold values indicate

LOD [ 2.5

SGM selective genotyping mapping under bidirectional

selection, ICIM inclusive composite interval mapping, SIM
simple interval mapping, SGM selective genotyping mapping,

PVE phenotypic variation explained
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validation screening of the entire population, as the

power of QTL detection under these conditions is

extremely high and the accumulative probability of

false positives within a specific chromosome region

decreases significantly with the increase of marker

density.

Selective genotyping can be used for genetic

mapping of QTL with relatively small effects as well

as for epistatic QTL with additive effects and two

linked QTL that are not too close to each other. In

addition, selective genotyping can be used for fine

mapping to narrow down associated genetic regions

to less than 1 cM or even a few candidate genes. Our

recommendation for selective genotyping for QTL of

large effects (PVE = 10–15% or larger) would be:

minimum 20 individuals (or more than SP = 10%) in

each tail from an entire population of around 200

individuals. Conversely, for QTL of medium effect

(PVE = 3–10%) we would recommend around 50

individuals (SP = 5–10%) in each tail from an entire

population of 500–1,000 individuals. Finally, for

QTL of small effect (PVE = 0.2–3%) we would

recommend around 100 individuals (SP = less than

5%) in each tail from an entire population of 3,000–

5,000 individuals. The need for populations of this

large size to detect small QTL was recently demon-

strated in mapping QTL for flowering time in maize

using nested mapping populations totaling over 5,000

lines (Buckler et al. 2009). The proportions of the

entire population recommended above for each tail

population (SP), are significantly lower than the

optimum SP (20–30%) proposed by previous studies

(Darvasi and Soller 1992; Gallais et al. 2007; Navabi

et al. 2009). By using large entire population sizes

combined with a low SP, the absolute amount of

genotyping will remain highly cost effective.

However, the initial phenotyping of the entire

population may become rate limiting. The overall

cost of the experiment may not be reduced (or may be

increased) due to the increased cost of phenotyping a

larger entire population—unless quicker, easier and

cheaper methods for accurately identifying extreme

phenotypes (for the target trait) can be devised. When

the cost ratio of genotyping to phenotyping was

higher than 1, the optimal SP appeared to be between

10 and 20% for each tail (Gallais et al. 2007). As the

number of QTL and their effects are unknown in

most cases, the entire and tail population sizes

required for a specific experiment will depend on

the objectives of the study. The empirical barley

dataset used in this study provides a practical

demonstration of SGM, highlighting which factors

such as those simulated in this study should be

improved when replacing entire population-based

QTL mapping. However, we would like to indicate

some limitations of selective genotyping, including

limited usefulness for multiple traits, difficulty to

estimate QTL genetic effects, and reduced suitability

for non-additive epistatic QTL and QTL by environ-

ment interaction.

Using selective genotyping for ‘‘All-in-one plate’’

mapping of all target traits in one step

A large number of highly homozygous trait-specific

materials have been developed for genetic analysis

and breeding in many crops. These include inbred

lines and cultivars with extreme phenotypes, eternal/

fixed segregating populations (such as RILs, doubled

haploids, near isogenic lines and introgression lines),

genetic stocks (e.g. single segment substitution lines)

and mutant libraries. These are all valuable directly

for the purpose they were developed but also offer a

novel resource for genetic mapping and gene discov-

ery when used collectively. These materials have

often been phenotyped in multiple environments due

to their permanently fixed genetic composition. By

collecting phenotypic extremes from currently avail-

able genetic and breeding materials, and utilizing

selective genotyping and pooled DNA analysis, it is

theoretically possible that one 384-well plate could

be designed to cover the mapping of almost all major

gene/QTL controlled agronomic traits of importance

in a crop species. Progress towards testing this

approach is already underway in maize at CIMMYT

(Xu et al. 2009).

Genomewide linkage and linkage disequilibrium

mapping

Recent developments in SNP genotyping technolo-

gies and application methodologies have enabled cost

effective genomewide linkage disequilibrium (LD)-

based association mapping in humans using selective

genotyping, pooled DNA analysis and microarray-

based SNP genotyping with 10,000–1,000,000 mark-

ers (Sham et al. 2002; Meaburn et al. 2006; Yang

et al. 2006; Wilkening et al. 2007; Docherty et al.
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2007; Kruglyak 2008; McCarthy et al. 2008). This

system has the power to estimate allele frequencies

and identify unique alleles from a pooled DNA

sample of several hundreds of individuals. If this

approach is successfully translated to plants it will

resolve many of the constraints of pooled DNA

analysis and can be used for both linkage mapping

and LD mapping.

In a segregating population of plant species, SNP

markers that are tightly linked to the target trait or

within the gene, particularly for major-gene con-

trolled traits, will clearly show one of the two

polymorphic nucleotides, the segregation of which

are completely correlated with the two contrasting

phenotype pools. Thus, this situation is similar to

genotyping two contrasting homozygotes. Any

markers with less clear segregation would be

automatically rejected on the assumption of less

than optimum linkage to the target locus (Xu et al.

2009). As a result, it is not a prerequisite to develop

a set of SNPs optimized for pooled DNA analysis as

done in human genomics in order to make the

pooled DNA analysis practical in linkage-based

genetic mapping in plant species. This type of

pooled DNA analysis strategy has been successfully

used with seed DNA-based genotyping developed

by Gao et al. (2008) for linkage mapping of genes

affecting quality protein maize (QPM), where a SNP

chip containing 1536 SNP markers was screened

across seven F2 populations derived from

QPM 9 QPM crosses that segregated for kernel

hardness (Xu et al. 2009). With the much higher-

density of markers recently developed in maize,

individual results from pooled DNA-based genetic

mapping can be confirmed by multiple linked

markers within the same experiment and thereby

the power of QTL detection can be significantly

increased as indicated by Fig. 2.

Genomewide association (linkage disequilibrium)

mapping may provide a shortcut to discovering

functional alleles and allelic variations that are

associated with agronomic traits of interest. Selective

genotyping, along with pooled DNA analysis, can be

extended to using inbred lines with extreme pheno-

types selected from various collections of germplasm.

This is in principal similar to LD-based association

mapping but using selected phenotypic extremes. For

association mapping of quantitative traits governed

by a large number of minor genes which interact with

each other and with the environment, selective

genotyping will face the same challenges as experi-

enced with linkage-based QTL mapping using entire

population genotyping.

Combining selective genotyping with selective

phenotyping

The selective phenotyping method involves selecting

individuals that maximize genotypic dissimilarity.

Selective phenotyping is most effective when prior

knowledge of genetic architecture allows focus on

specific genetic regions (Jannink 2005; Jin et al.

2004) and specific allele combinations. Gallais et al.

(2007) analyzed the cost ratio of genotyping to

phenotyping when an optimal selected proportion of

genotypes was determined. As genotyping becomes

cheaper, it may be more efficient to first carry out low

density genotyping of the whole population in order

to identify the most informative subset of individuals

in terms of minimum level of relatedness plus

optimum subpopulation structure and allele represen-

tativeness. Precision phenotyping using physiological

component and surrogate traits can then be carried

out on this subset to enable further selection followed

by whole genome genotyping. In this way, the

optimum number of individuals (from a genetic and

cost perspective) can be phenotyped and genotyped to

maximize the power of the QTL detection while

minimizing the overall cost of the experiment. For

some target traits, phenotypic extremes can be easily

identified by using a simple screening method, for

example by using a strong abiotic stress screen to

identify the most and least tolerant lines for geno-

typing and eliminate a large proportion of the rest of

the population (Lebowitz et al. 1987). In these cases,

selective genotyping can be highly optimized for

maximum power of QTL detection and minimum

cost of the overall experiment. High-density planting

and selection at early stages of plant development,

combined with selective phenotyping and genotyping

should also be investigated as a potential option for

some traits in order to allow one to work with more

plants/families at the same cost (Xu and Crouch

2008). Where the target trait is influenced by planting

density or strong selection pressure this will clearly

confound the ability to make genetic gain. However,

many major-gene controlled traits can be investigated

in this way without much disturbance.
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Using selective genotyping to develop

a breeding-to-genetics approach

Traditionally molecular biologists start with genetic

mapping of target genes in a specifically designed

population, validate candidate markers in a represen-

tative target population and then select for those

mapped genes in plant breeding through marker-

assisted selection (Table 7). For many complex traits,

favorable alleles at the genetic loci contributing to a

specific trait are usually dispersed through a range of

genetic materials. As a result, several mapping

populations have to be developed plus phenotyped

and genotyped. Moreover, combining multiple favor-

able alleles from different genetic loci in different

sources requires multiple cycles of intermating and

selection. We believe that the process could work

better in reverse, starting with identification of

extreme phenotypes from segregating populations

involving multiple parental lines that are being used

in breeding programs. The selected extremes are

assumed to host diverse favorable alleles and loci

from different sources but have been brought together

into a single population by intermating and selection.

The selected extremes are then used for rapid discovery

of individual genes/alleles and their combined effects

(Table 7). This approach would be particularly pow-

erful (in terms of speed and cost) when combined with

selection under appropriate target biotic or abiotic

stresses where a large number of plants can be selected

for extreme phenotypes. Compared with the normal

genetics-to-breeding approach, this reversed approach

can save 3–4 crop seasons in each cycle and can be

fully integrated with ongoing breeding programs.

Several long-term selection programs in maize and

rice (Dudley 2004; Xu et al. 1998), indicate that

favorable alleles for a complex trait from different

genetic loci can be combined through multiple cycles

of selection for extreme phenotypes.
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