中国现代化指标体系评价的实证研究

朱 强 俞立平

摘 要:为了客观评价各种现代化指标体系的科学性和合理性,本文以《国家现代化报告 2007》为例,利用排序多元离散选择模型进行分析。研究表明:影响我国各地区现代化排名的主要因素是产业结构、城乡居民收入差距、成人识字率、城市化水平,而医疗服务、大学普及率等对排名没有影响,报告总体上是科学合理的;现代化指标体系用来评价国家现代化比评价地区现代化有更高的可信度。本方法也可以作为评价其它指标体系的一种研究范式。

关键词:现代化;指标体系;评价;排序多元离散选择模型

中图分类号: F272 3 文献标识码: A

文章编号: 1001 - 490X(2010)6 - 050 - 03

作 者: 朱强,南京农业大学经管学院博士研究生,扬州 大学经济学院;南京,210095/俞立平,中国科学技术信息 研究所博士后,扬州科技学院教授;扬州,225000

基金项目: 江苏省教育厅哲学社科基金项目 (06SJD790025);江苏省社科联项目(A - 07 - 47)

一引言

现代化作为一种世界性的历史发展过程,反映了人类社会从传统农业社会向现代工业社会所经历的转变。对国家或地区现代化水平进行评价,已经成为学术界研究的热点,目前的主流方法是指标体系法,较代表性的有: 1960年,在日本箱根的国际现代化会议上,提出了 8 项标准^[1]。 布莱克(1966)^[2]提出的有关现代化的 10 项标准。 坎特里尔(1966)^[3]在其著作《人类事务模式》(The pattern of human concems)一书中,利用 11个"结构变量 '所构成的复合指数,来测量 14个国家的社会经济发展水平。 20世纪 70年代,美国社会学家英克尔斯^[4]提出了现代化度量的 10 项标准,该标准影响较大。 1998年世界财富论坛上,由世界著名的财团和企业提出了衡量现代化水平的 14 项标准,这个标准较新,已经注意到了网络经济、信息产业和经济全球化对于现代化进程的作用和影响。

在我国现代化指标体系就有数 10种之多,其中较权威的是由何传启领衔的中国科学院中国现代化战略研究课题组所做的现代化测度指标体系,最新发布的报告是《中国现代化报告 2007》^[5](以下简称报告),课题组认为第一次现代化指从农业时代向工业时代、农业经济向工业经济、农业社会向工业社会、农业文明向工业文明的转变过程及其深刻变化。第二次现代化的典型特征是知识化和信息化。

国内外各种现代化指标评价体系相差很大。其原因首先

是现代化问题涉及的领域和学科极其广泛,传统的现代化理论在概念和空间范围方面存在着不确定性,不同学科的学者从不同的角度分析问题,所关注的指标也就不同。其次是不同时空的现代化发展条件、环境、进程特征和模式也都存在着差异,评价的指标和重点也就不同。第三是对指标的权重赋值方法不同,即使对同一指标体系,不同学者权重赋值也不相同,存在人为因素。

对现代化指标体系的科学性和合理性评价,除了理论分析方法外,指标体系系统本身提供了一些方法,如层次分析法的总排序随机一致性比例检验,但本质上仍然是自成体系的评价方法。从外部对现代化指标体系评价的方法极少,目前报道的只有张爱珠、苏明君(1998)^[6]利用回归分析法对指标体系打分结果与一级指标的关系进行分析,从而检验指标体系的合理性。

从客观的角度对各种不同的现代化指标体系进行评价,可以对每种指标体系的科学性和合理性进行衡量,进而在各指标体系界定的现代化框架内对现代化进行进一步的测评。本文以《中国现代化报告 2007》为例,利用排序多元选择离散模型,对我国 31个省市的现代化排名进行分析,对其科学合理性进行客观评价,同时分析影响现代化排名的主要因素。作为一种对指标体系评价方法的尝试,本文重点对第一次现代化指标体系进行分析。

二 排序多元离散选择模型

当因变量只有两种选择时,称为二元选择模型,如购买或者放弃,赞成或者反对等。在现实生活中,当因变量不止两种选择时,就要用到多元选择模型(multiple choice model),多元选择模型又分为两种,一种是因变量之间存在优先顺序,如一个人购买汽车时,首先考虑价格、其次考虑安全、最后考虑节油。另一种情况是因变量有多种选择,但没有先后次序。前者称为排序因变量模型或者排序多元离散选择模型,后者就是一般的多元选择模型。

在排序模型中,作为被解释变量的观察值 y表示排序结果或者分类结果,其取值为整数,如 0,1,2,3.....。解释变量是可能影响被解释变量排序的各种因素, x_i 可以是多个解释变量的集合,即向量。

排序模型的一般形式是: $y_i^* = x_i + o$ 式中, y_i^* 是隐变量 (latent variable)或潜变量,是不可观测的, x_i 是解释变量集合,是待估计参数,是随机扰动项。相对于显式变量 y而言,隐变量 y_i^* 没有观察值,一个典型的解释变量是把隐变量理解为某种效用,效用的大小可以用数值衡量。在估计排序模型时,只需输入 y的观察值和各解释变量 x_i 的观察值。隐

变量 vi 由解释变量 xi 作线性解释后,依据 vi 所对应的如下 规则,对 y,进行排序分类:

$$y_i = \left\{ \begin{array}{cccc} 0 & \text{if} & y_i^{\star} & _1 \\ 1 & \text{if} & _1 & y_i^{\star} & _2 \\ 2 & \text{if} & _2 & y_i^{\star} & _3 \\ \dots \dots & & & \\ m & \text{if} & _m & y_i^{\star} \end{array} \right.$$

式中,各 ,是决定 v,排序的门限值 (threshold values)或端 值。决定 y_i排序的值是 0, 1, 2,m,也可以是任意值。排 序模型要求,对于 yi 而言,较大的 yi 对应于较大的隐变量 y_i^* 。所以,当 $y_i < y_i$ 时,就意味着 y_i^* y_i^* 。

各 v观察值的概率由下式确定:

$$\begin{split} &P\left(y_{i}=0\,|\,x_{i},\ ,\ \right)=F\left(\ _{1}\,-\,x_{i}\ \right)\\ &P\left(y_{i}=1\,|\,x_{i},\ ,\ \right)=F\left(\ _{2}\,-\,x_{i}\ \right)-F\left(\ _{1}\,-\,x_{i}\ \right)\\ &P\left(y_{i}=2\,|\,x_{i},\ ,\ \right)=F\left(\ _{3}\,-\,x_{i}\ \right)-F\left(\ _{2}\,-\,x_{i}\ \right)\\ &\dots \\ &P\left(\ _{n}\,-\,x_{i}\ \right)=F\left(\ _{n}\,-\,x_{i}\ \right) \end{split}$$

$$P(y_i = m | x_i, ,) = 1 - F(_m - x_i)$$

式中 F是 的累积分布函数。如果选择 Probit模型, F就 是标准的分布函数;如果选择 Logit模型, F就是逻辑分布函 数。由此可知,排序模型估计得到的实际上由各观察值 y落 入到不同区间 (等级)的概率。

是与系数 一起估计的门限值(端值),由极大化下列 对数似然函数得到 和:

$$\begin{split} L\left(\ ,\ \right) &= \inf_{i} \underset{y_{i} = 0}{\text{log}} \left(p\left(y_{i} = 0 \mid x_{i},\ ,\ \right)\right) \ + \inf_{i} \underset{y_{i} = 1}{\text{log}} \left(p\left(y_{i} = 1 \mid x_{i},\ ,\ ,\ \right)\right) \\ &+ \ldots + \inf_{i} \underset{y_{i} = 0}{\text{log}} \left(p\left(y_{i} = m \mid x_{i},\ ,\ ,\ \right)\right) \end{split}$$

需要指出的是,m个临界值 1,2,..., m事先也是不确 定的,所以也作为参数和系数一起回归。利用经济计量软件 Eviews5. 0可以方便地进行估计。

三 变量与数据

根据 2007年中国现代化报告,第一次现代化的特点是工 业化、城市化、福利化、民主化、世俗化等。包括人均 GNP、农 业增加值比重、服务业增加值比重、农业劳动力比重、城市人 口比例、医疗服务、婴儿存活率、预期寿命、成人识字率、大学 普及率 10个指标。由于民主化、世俗化的界定很难定量,因 此重点选择工业化、城市化、福利化的8个指标作为自变量进 行分析,因变量为第一次现代化我国 31个省市的排序。表 1 是变量及其说明。

表 1 变量说明

变量名称	变量含义	说明	单位
XH	地区现代化排名	共分为 4档,从高到低分值分别为 4321	
JM SR	农村城镇居民收入 比	农村居民人均收入 / 城镇居民人均收入	100%
CZRK	城镇人口比	城镇人口,地区总人口	100%
DYCY	第一产业比	农业占 GDP比重	100%
DSCY	第三产业比	服务业占 GDP比重	100%
WSRY	医疗卫生人员比	医疗卫生人员 地区总人口	人 万人
YYCW	医院床位比	医院床位 地区总人口	张 /万人
SZL	成人识字率	15岁以上人口的识字率	100%
ZXSB	大学在校生比	大学在校生 地区总人口	人 万人

地区现代化排名的分值,90分以上前7个省市有上海、

北京、天津、浙江、江苏、广东、辽宁:80~89分的有福建、重庆、 山东等 14个省市: 70~79分的有新疆、江西、河南、青海、甘 肃、海南、广西 7个省市; 60~69分的有西藏、贵州、云南 3个 省市:将4类排序依次赋值为4、3、2、1、以便进一步分析。

本文选取的 8个变量大部分是以报告对现代化的界定为 依据进行选取的,这样进行实证分析更为客观。第一产业比 例、第三产业比实际上从另一个侧面反映了工业化的水平:城 镇人口比反映了城市化水平:农村城镇居民收入比、医疗卫生 人员比、医院床位比反映了福利水平;成人识字率、在校大学 生比反映了教育水平。

数据来自于 2007年中国现代化报告以及 2006年中国统 计年鉴。表 2 为数据的描述统计量。

表 2 描述统计量

变量名称	变量含义	均值	最大值	最小值	标准差
XH	地区现代化排名	2 19	4	1	0. 91
JM SR	农村城镇居民收入比	33. 45	44. 24	22 03	6. 51
CZRK	城镇人口比	45. 41	89. 09	26. 65	15. 39
DYCY	第一产业比	14. 07	33. 62	0.88	6. 82
DSCY	第三产业比	40. 43	69. 10	30. 00	7. 22
WSRY	医疗卫生人员比	46. 11	102 06	25. 43	15. 64
YYCW	医院床位比	28. 23	51. 41	16. 51	8. 45
SZL	成人识字率	87. 63	96. 08	55. 16	8. 19
ZXSB	大学在校生比	129. 45	356. 48	55. 43	69. 58

四 实证结果

表 3 回归结果

回日
MSR (0. 927) (2. 448) (2. 880) CZRK (0. 743) (0. 325) DYCY (-0. 841) (-2. 671) (-2. 786) DSCY (0. 831) (1. 988) (2. 373) WSRY (0. 927) (2. 448) (2. 880) (0. 325)
CZRK 0 129 0 037 - 0 458 - 0 475 - 0 475 - 0 510 - 0 510 - 0 510 - 0 603 - 0 6
CZRK (0 743) (0 325) DYCY -1. 379 -0 458*** -0 475*** (-0. 841) (-2. 671) (-2. 786) DSCY 1. 680 0. 471** 0. 510*** (0. 831) (1. 988) (2. 373) W SRY -0. 603
DYCY
DYCY (-0.841) (-2.671) (-2.786) DSCY 1.680 0.471** 0.510*** (0.831) (1.988) (2.373) W SRY -0.603
DSCY
W SRY (0. 831) (1. 988) (2. 373) - 0. 603 (- 0. 868) (- 0. 868)
W SR Y (0. 831) (1. 988) (2. 373) - 0. 603 (-0. 868) (-0. 368)
W SR Y — — — — — — — — — — — — — — — — — —
(- 0. 868)
YYCW
(0. 836)
SZL 0 928 0 245 ** 0 267 ***
(0. 825) (1. 961) (2. 423)
ZXSB - 0. 048
(- 0. 614)
对数似然值 - 6 869 似然比统计量 64 199 似然比相伴概率 0 000
对数似然值 - 6 922 似然比统计量 64 092 似然比相伴概率 0 000

注: *表示 10%水平显著, * *表示 5%水平显著, * * *表示 1%水平显著,括号内为 z检验值

首先采用排序因变量模型对所有8个自变量进行回归,如 表 3的回归 1所示,结果没有一个变量的统计检验是显著的,并 且大学在校生比、医疗卫生人员比两个变量的系数为负值,即这 两个变量值越大,越不利于现代化排名靠前,将这两个变量删 除,重新进行回归,发现医院床位比的系数既不显著,而且也是 负值,再将其删除,得到表 3中回归 2的结果,发现除城镇人口 比的系数为正且不显著外,其他变量 z检验都比较显著,进一步 将城镇人口比变量删除,得到表 3中回归 3的结果:所有变量在 1%的水平都是显著的,对数似然函数值为 - 6.922,似然比统计量为 64.092,似然比相伴概率为 0.000,统计检验比较显著。从系数看,影响排序的变量从大到小依次是:第三产业比、第一产业比、农村城镇居民收入比、成人识字率。下面对各变量进行进一步分析。

第三产业和第一产业占 GDP的比重对排序的影响最大,即服务业和农业是决定排序的最重要的因素,服务业的系数为正,即一个省市服务业所占比重越大,现代化程度越高,农业的比例为负,即一个省市农业的比重越大,现代化程度越低。二者相结合,说明产业结构对我国各省市现代化有较大的影响。

农村城镇收入比的系数为正,即城乡居民收入差距越小,现代化程度越高,实现现代化,首先要缩小城乡差距,缩小贫富差距,提高人民福利水平。当然,农村城镇收入比指标说明的仅仅是城乡平均收入的差距情况,与基尼系数表达的贫富差距是两个不同的概念,后者更具有代表性。

成人识字率反映了我国长期来教育存量水平,该指标也是报告中所用的现代化评价指标之一,一个省市成人识字率越高,现代化程度越高。每万人在校大学生比变量不显著,可能原因是我国高等教育宏观布局不均衡所至,因此变量不显著甚至为负也属于正常现象,大学普及率可以作为国家的现代化评价指标,但在目前我国的教育体制下,将其作为衡量地区现代化水平的指标之一是不合适的,因为高校跨省市招生是非常普遍的现象。

城市化是第一次现代化的重要标志之一,然而城市人口比变量并不显著,可能原因是统计数据对城市人口的统计口径问题,据中宣部理论局组织编写的通俗理论读物《理论热点面对面 2006》介绍,中国农民工的数量,已超过了传统上由城镇居民构成的产业工人,使中国产业工人队伍结构发生重大变化,我国农民工的数量已经超过 1亿人。农民工在城市工作生活,已经成为城市居民的重要组成部分,如果这部分数据不加以统计,不能客观反映我国的城市化进程。

医疗卫生人员比和医院床位比两个变量的影响均不显著,一方面说明报告中所用的现代化评价指标体系没有很好地反映 医疗卫生水平;另一方面说明我国的医疗卫生资源的地区配置可能不尽合理,因此用这两项指标衡量现代化水平不尽合理。

五 结 论

报告所采用的第一次现代化指标体系总体上是科学合理

的,较客观地反映了我国各省市的现代化水平和排名情况,在产业结构、城市化、基本教育水平、居民收入等方面得到了较好的体现,反映了农业社会向工业社会迈进所带来的深刻变化,但是部分指标的选取存在一些问题,区分度较低,如城市人口比例、医疗服务、大学普及率等。

作为一种对现代化指标体系科学性和合理性的检验方法,采用排序多元离散选择模型进行评价取得了较好的效果,排除了人为因素。研究表明,影响我国各地区现代化排名的主要因素是产业结构、城乡居民收入差距、成人识字率,城市化水平,报告提出中国在 2015年前所有省市可能完成第一次现代化是有根据的,这些指标都在稳步提高。同时,从这些指标也可以看出,我国的现代化仍然是初级现代化。

现代化是一个复杂的过程,指标体系作为一种主要方法已经得到公认,但在指标选取时必须注意指标的真实内涵,许多指标可以用于国家现代化评价但不能用于国家内部地区的评价。

需要说明的是,自变量的选择必须以该指标体系界定的现代化内涵为依据,如果基本概念的界定不一样就失去了指标体系评价的意义,这也正是本文方法的意义所在。此外,采用本方法还必须拥有足够的数据量,如果数据少、变量多容易造成自由度问题,从而影响模型的解释力,在数据量充足的情况下,可以适当增加解释变量,从而提高评价效果。作为一种普遍的研究范式,本文提供的方法也可以用来评价其它指标体系。

参考文献:

[1]西里尔·布莱克:《比较现代化》,上海译文出版社 1996年版,第 19 - 20页。

[2]西里尔·布莱克:《比较现代化》,上海译文出版社 1996年版.第 56 - 78页。

[3] H. Cantril The pattern of human concerns[M]. New Brunswick: Rutgers University Press, 1966.

[4]阿力克斯·英克尔斯:《人的现代化素质探索》,天津社会科学院出版社 1995年版,第 18 - 19页。

[5]张爱珠、苏明君:《中国城市现代化指标体系及理论模型探析》,《数量经济技术经济研究》1998年第 10期,第 42 - 45页。

[6] http://www.cas.ac.cn

(责仟编辑:南 桥)

(上接 39页)

的指标当属最终核心成本,供应链可以通过提高产品质量指标,也可以通过提高各业务流程指标(降低运输损失率、降低仓储货物损失率、提高存货周转率等)来降低整个供应链的运作成本,使得核心成本降低。

供应链竞争优势的取得是和供应链中各个企业的共同努力分不开的,在加盟某个供应链时,企业都会从各自的自身利益出发展开合作对策研究,但唯有从供应链总体最佳效益出发,才有可能获得各自的最大收益。供应链管理就是要将"零和博弈"这种利益分配模式转变为所有参与者都赢的"双赢"模式。从而使整个供应链获得更大利益,并使处于供应链上的所有企业都能获得应得利益。

参考文献:

[1] Lee, H. L, Billington, C. Managing supply chain inventory: pit-falls and opportunies Sloan Management Review, 1992, (33): 65 - 73.

[2]徐天亮、徐娟:《供应链绩效评价中递阶综合方法的应用》、《物流技术与应用》2003年第 4期。

[3]Beamon, B. M., Performance measures in supply chain management Proceedings of the 1996 Conference on Agile and Intelligent Manufacturing Systems, Rensselaer Polytechnic Institute, Tory, New-York, 1996.

(责任编辑:余小平)