
Natural populations harbour a stunning diversity of  
phenotypic variation for morphology, physiology, behav-
iour and disease susceptibility. This phenotypic variation 
is typically due to underlying genetic complexity from 
multiple interacting loci, with allelic effects that are sen-
sitive to the environmental conditions each individual 
experiences1,2. Understanding the relationship between 
DNA sequence variation and variation in phenotypes 
for these quantitative or complex traits will yield insights 
that are important for predicting disease risk and indi-
vidual therapeutic treatments in human populations, for 
increasing the speed of selective breeding programmes 
in agriculturally important plants and animals and for 
predicting adaptive evolution.

The principles of mapping quantitative trait loci 
(QTLs) that affect the natural variation in complex traits 
by linkage to polymorphic marker loci with Mendelian 
segregation have been known since the early twentieth 
century3. Until the late 1980s, the lack of polymorphic 
markers limited the genetic dissection of complex traits 
to a few model organisms4,5. Since then, the discovery 
of abundant molecular markers, advances in rapid and 
cost-effective genotyping methods and the development 
of statistical methods for QTL mapping have revolu-
tionized the field of mapping quantitative traits. The 
landmark paper by Lander and Botstein6 launched an 
avalanche of studies mapping QTLs, which has culmi-
nated in recent large-scale genome-wide maps of QTLs 
that affect human quantitative traits and diseases7–9.

Despite two decades of intensive effort, we have fallen 
short of our long-term goal of explaining genetic vari-
ation for quantitative traits in terms of the underlying 
genes, the effects of segregating alleles in different genetic 

backgrounds and in a range of ecologically relevant  
environments as well as on other traits, the molecular basis of  
functional allelic effects and the population frequency  
of causal variants10. The many studies mapping QTLs that 
affect human diseases and complex traits have uncov-
ered new loci and provided unexpected insights into the 
biology of disease but, together, these loci account for 
only a small fraction of the total genetic variation in the 
population and they rarely map to individual genes7–9. 
The hurdle is not the intellectual foundation of QTL 
mapping methods but technological limitations. We are 
currently in the midst of another genomic revolution, 
with the development of economical, massively paral-
lel technology for DNA and RNA sequencing and plat-
forms for rapidly genotyping hundreds of thousands of  
polymorphic markers. Here, we review the principles  
of QTL mapping and summarize insights from previ-
ous studies about the genetic architecture of quantitative 
traits. We then indicate how new technologies can be 
applied to solve current challenges and describe how a 
systems genetics approach11 for integrating genotype–
phenotype relationships across multiple levels of biologi-
cal organization can uncover genetic pathways that affect 
the variation of complex traits.

QTL mapping
The premise of QTL mapping is that QTLs can be localized  
through their genetic linkage to visible marker loci 
with genotypes that we can readily classify. If a QTL is 
linked to a marker locus, then individuals with different 
marker locus genotypes will have  different mean values 
of the quantitative trait3,6. The most common molecular 
markers are SNPs, polymorphic insertions or deletions 
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Quantitative trait locus
A region of the genome 
containing one or more genes 
that affect variation in a 
quantitative trait, which is 
identified by its linkage to 
polymorphic marker loci.
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Abstract | A major challenge in current biology is to understand the genetic basis of variation 
for quantitative traits. We review the principles of quantitative trait locus mapping and 
summarize insights about the genetic architecture of quantitative traits that have been 
obtained over the past decades. We are currently in the midst of a genomic revolution, which 
enables us to incorporate genetic variation in transcript abundance and other intermediate 
molecular phenotypes into a quantitative trait locus mapping framework. This systems 
genetics approach enables us to understand the biology inside the ‘black box’ that lies 
between genotype and phenotype in terms of causal networks of interacting genes.
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Linkage disequilibrium
(LD). The correlation 
(non-random association)  
of alleles at two or more 
polymorphic loci. Alleles  
that are in LD co-occur in 
individuals more often than the 
random expectation from  
the product of their allele 
frequencies in the population.

(indels) and simple sequence repeats (microsatellites). 
QTLs can be mapped in families or the segregating 
progeny of crosses between genetically divergent strains 
(linkage mapping), or in unrelated individuals from the 
same population (association mapping) (BOX 1).

Mapping QTLs has two components: detection and 
localization. The power to detect QTLs depends on their 
effects and allele frequencies. By effect, we mean the 
average difference in the phenotype of the trait between 
marker allele genotypes (δ), scaled by the phenotypic 
standard deviation of the trait within marker genotype 
classes (σW). Homozygous effects refer to the difference 
in the mean of the trait between the two homozygous 
genotypes, and heterozygous effects refer to the differ-
ence between the mean of the trait in the heterozygous 
genotype from the average of the means of the trait in 
the two homozygous genotypes1,2. The number of indi-
viduals needed to map QTLs increases as δ/σW decreases 
and as allele frequencies depart from 0.5. The power to 
detect QTLs at an intermediate frequency is similar for 
both linkage and association mapping studies. However, 
allele frequencies can be more extreme with association 
mapping designs and this translates to an increase in the  
sample sizes that are required to detect QTLs (FIG. 1).

Localizing QTLs depends on the recombination 
frequency. In a linkage mapping context, recombina-
tion events need to occur in the mapping population. 
As the size of the interval in which we wish to localize 
the QTL decreases, the number of individuals required 
to detect at least one recombinant in the region of inter-
est increases, as does the number of molecular markers 
necessary to detect recombination events. Association 
mapping uses historical recombination between QTLs 
and marker alleles in a random mating population and 
does not require as many individuals as linkage map-
ping for localizing QTLs (FIG. 1). The number of markers 
required in an association mapping study depends on 
the scale and pattern of linkage disequilibrium (LD). If a 
group of markers is in high LD, we only need to geno-
type one of them as a proxy for all of the other markers 
in the LD block. Thus, in species with large LD blocks, 
such as pure breeds of dogs, only a few markers might 
be required for QTL detection, but it will not be possible 
to localize QTLs precisely by within-breed association 
mapping12. By contrast, knowledge of all sequence vari-
ants is necessary for association mapping in species such 
as Drosophila melanogaster, in which LD can decline 
rapidly over short physical distances. However, in this 
scenario,  QTL localization can be quite precise13.

Because large numbers of individuals and genotypes 
per individual are necessary to detect and localize QTLs 
in a single mapping effort, QTL mapping is an iterative 
procedure, in which we first determine the general loca-
tions of QTLs and subsequently focus on high-resolution 
mapping of the regions containing the QTLs. The second 
phase requires generating or sampling more individuals 
to obtain the necessary recombinations and identify-
ing molecular markers in the region of interest. These 
experiments are laborious and rarely result in positional 
cloning of QTLs, but instead delimit genomic regions 
that contain many positional candidate genes.

In organisms with well-annotated genomes, we can 
query which of the candidate genes in the QTL region 
are causal. High-resolution recombination mapping 
provides unambiguous proof of causality. Strategies 
to corroborate evidence of causality in the absence of 
recombination mapping include replication in inde-
pendent studies, identifying potentially functional 
DNA polymorphisms between alternative alleles of 
one of the candidate genes, showing a difference in 
mRNA expression levels between genotypes, showing 
that mRNA or protein is expressed in tissues thought 
to be relevant to the trait and showing that mutations 
in candidate genes affect the trait or fail to comple-
ment QTL alleles. Formal proof that a specific allelic 
substitution affects the trait is provided by replacing 
the allele of a candidate gene in one strain with the 
allele in another strain without introducing any other 
changes in the genetic background, which is currently 
only possible in yeast14.

Genetic architecture: lessons learned
Many loci with small effects. early QTL mapping studies  
were performed with sample sizes in the order of hun-
dreds of individuals and approximately 100 molecular 
markers and, for most traits, consistently detected few 
QTLs with moderately large effects10. These results, 
combined with the successful positional cloning and 
identification of several QTLs with large effects15–18, 
were encouraging and indicated that the genetic archi-
tecture of quantitative traits was moderately complex. 
This led to optimism that high-resolution mapping, 
one QTL at a time, would identify the genes that cause 
the natural variation in quantitative traits. A more pes-
simistic interpretation was that the experiments were 
underpowered and could not detect most of the QTLs 
with smaller effects that truly caused variation in the 
traits, and that the initial experiments were either lucky 
in mapping QTLs with smaller effects in the same 
direction that happened to cluster together or that the 
initial effects were overestimated19. If the effects were 
overestimated, one would expect that increasing the 
numbers of individuals and markers used would lead 
to estimates of larger numbers of QTLs with smaller 
effects, and that high-resolution mapping would iden-
tify multiple closely linked QTLs that underlie each 
linkage or association peak. These expectations have 
been confirmed. In both model organisms and humans, 
increasing sample sizes and marker densities increases 
the number of QTLs detected, with concomitant  
decreases in the average effect sizes20.

High-resolution mapping typically shows that sin-
gle QTLs fractionate into multiple closely linked QTLs, 
which often have opposite effects20. A striking example 
was provided by the detailed dissection of the effects 
on growth rate of a 210 kb region of the Arabidopsis 
thaliana genome that was not associated with growth 
rate in a QTL genome scan21. This random genomic 
region contained two tightly linked QTLs with clear — 
albeit small — effects on growth rate, which occurred 
in opposite directions in the two parental strains used 
to construct the mapping population. Furthermore, the 
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Box 1 | Quantitative trait locus mapping

The purpose of quantitative trait locus (QTL) 
mapping is to uncover the genetic basis of 
quantitative phenotypic variation. Any QTL 
analysis therefore assumes that the organismal 
phenotype is variable within the mapping 
population. Linkage-based analyses, which 
focus on individuals for which the relationships 
are known, seek to identify segregating genetic 
markers that predict the organismal phenotype. 
Predictive markers are near  
(linked to) causal loci, and 
so the predictive markers 
and the causal loci tend  
to segregate together.  
This tendency is disrupted 
by recombination, and  
the probability of 
recombination increases 
with physical distance; the 
most predictive markers are 
therefore expected to reside in 
proximity of the causal locus.

The figure shows an F
2
 mapping 

population. The parental generation 
(P

1
) consists of two genetically 

divergent inbred lines that are 
crossed to create the F

1
 generation. 

Crossing individuals from the F
1
 

generation yields the F
2
 mapping 

population. M1, M2, M3 and M4 are 
markers that distinguish the two 
parental strains and are 
used to map the organismal 
phenotype. The yellow star 
indicates the position of a 
causal locus or QTL. 
Recombination in the F

2
 

population creates new 
haplotypes and can 
uncouple marker genotypes 
from the causal locus.

Association mapping is 
also based on recombination, but the 
recombination used in this strategy is 
historical. Thus, the association 
mapping population shown in the 
figure is removed by many generations 
from its progenitors. We show six initial 
founder haplotypes and the haplotypes 
in the population after many 
generations of random mating, indicating how recombination has effectively shuffled the initial haplotypes.  
The effect of this shuffling is to uncouple all but the most tightly linked markers from the causal locus; because only these 
tightly linked markers will predict the organismal phenotype, the causal locus can be localized with precision.

In either strategy, the purpose of the mapping population is to supply the genotypic variation through which variation in 
the organismal phenotype can be explained. As such, both approaches require that organismal phenotypes and marker 
genotypes are scored (0 and 2 indicate alternative homozygous genotypes and 1 indicates the heterozygous genotype at 
each biallelic marker). The marker and trait data are then assessed to determine whether there is a mean difference in the 
trait phenotypes between marker genotype classes. If there is, the marker is linked to the QTL. Linkage mapping typically 
uses interval mapping to estimate the map position and effect of each QTL1,2,6,105,106, whereas markers are tested singly in 
association mapping designs. In both cases, the significance threshold needs to be adjusted for the number of 
independent tests performed. In linkage-based studies, the haplotype blocks in the mapping population might be large 
and, as a consequence, the causal locus might only be mapped to a large region. The haplotype blocks in an association 
mapping population tend to be much smaller, so it might be possible to localize the causal locus to a small genomic 
region. The QTL region might identify relevant genes for future study or suggest candidates for targeted sequencing or 
experimental perturbation.
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Figure 1 | Power to localize and detect quantitative trait loci. a | Numbers of individuals (log
10

 scale) required to 
detect quantitative trait loci (QTLs) for a range of effect sizes (δ/σ

w
) in backcrossed (blue) and F

2
 (red) linkage mapping 

populations. b | Numbers of individuals (log
10

 scale) required to detect QTLs for a range of effect sizes in association 
mapping populations in which the minor allele frequency is 0.5 (blue), 0.25 (red) and 0.1 (green). c | Log

10 
of the number  

of individuals required to detect at least one recombinant in an interval of size c (c = 100 centiMorgans; cM) (blue) and 
log

10
 of the number of marker genotypes needed to localize QTLs per 100 cM (red). d | The expected frequency of 

recombinants after t generations of recombination in a random mating population, for a per generation recombination 
fraction of c = 0.01 (blue), c = 0.005 (red) and c = 0.001 (green). δ, average difference in the trait phenotype between 
marker allele genotypes; σ

W
, phenotypic standard deviation of the trait within marker genotype classes.

dissection of a 32 kb region containing a QTL with a 
large effect on the ability of yeast to grow at high tem-
peratures identified 3 tightly linked QTLs with smaller 
effects as the true genetic basis of this trait22. The ines-
capable conclusions from the past two decades of stud-
ies are that QTL alleles with large effects are rare and 
that the bulk of genetic variation for quantitative traits 
is due to many loci with effects that were individually 
or in aggregate (owing to the tight linkage of QTLs with 
opposite effects) too small to detect because previous 
studies were underpowered.

Novel loci. Most knowledge on the genetic basis of complex  
traits comes from analysis of mutations in model  
organisms, which have been invaluable in identifying 
the genes and genetic networks required for produc-
ing the wild-type trait phenotype. Classical mutagen-
esis screens focus on null alleles with large phenotypic 
effects. It is possible that segregating variation might 
not be maintained in natural populations at loci that 
are required for wild-type expression of the trait, and 
that mutagenesis screens miss or possibly ignore loci at 
which mutations with subtle effects could affect quanti-
tative traits. Mapping natural variants that affect quan-
titative trait phenotypes thus potentially complements 
mutagenesis; therefore, it is important to ask to what 
extent the genes detected by both methods overlap. 

The best evidence for some, but not extensive, overlap 
between the results from mutagenesis and QTL mapping 
comes from D. melanogaster, in which several quantita-
tive traits have been studied by both approaches. For 
example, many genes in which mutations affect bris-
tle and wing development map to the same regions as 
QTLs affecting sensory bristle number23,24 and wing 
shape25,26, and molecular polymorphisms at several of 
these loci are associated with quantitative genetic vari-
ation in these traits in natural populations27–29. However, 
many QTLs affecting sensory bristle number do not 
span genomic regions that contain obvious candidate 
genes23,24,30. QTLs for longevity, resistance to starva-
tion stress, male mating behaviour, olfactory behaviour 
and locomotor behaviour rarely map to known genes 
affecting these traits, and conversely, complementation 
tests to mutations show that variation in unexpected 
and new loci potentially correspond to the QTLs13,31–37.  
Collectively, these results highlight how little we know 
about candidate genes that affect quantitative traits 
and that most of the genome is uncharted territory 
with respect to the phenotypic effects of naturally 
segregating alleles that affect even extensively stud-
ied phenotypes in a genetic model organism. More 
optimistically, it is clear that quantitative genetic 
analysis is an efficient method for functional genome  
annotation.
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Epistasis
This occurs when the 
homozygous or heterozygous 
effects at one locus differ 
depending on the genotype  
of the interacting locus.

Genotype-by-environment 
interaction
This occurs when the 
homozygous and heterozygous 
effects of a locus change in 
magnitude or direction  
in different environments.

Context-dependent effects. If the effects of QTL alleles  
differ in their magnitude or direction in different genetic 
backgrounds, different environments or between males 
and females, they are said to be context dependent. 
Context-dependent effects are formally identified by 
appropriate statistical analyses as significant genotype- 
by-genotype interactions (epistasis), genotype-by- 
environment interactions (geIs) and genotype-by-sex 
interactions (gSIs). Context-dependent effects are often 
considered a nuisance because estimates of allelic effects 
are relevant only to the sex, environment and genetic 
background in which the phenotypes were assessed, and 
inferences made under laboratory conditions might not 
be valid across a wide range of natural environments. 
Furthermore, marginal effects of alleles with highly 
context-dependent effects might not be detectable when 
they are averaged over multiple environments or genetic 
backgrounds. However, context-dependent effects are 
important. epistatic interactions identify genetic net-
works that affect complex traits38, and geIs and gSIs are 
potential mechanisms that maintain the genetic variation  
of quantitative traits in natural populations39,40.

In quantitative genetics, epistasis refers to the masking 
of genotypic effects at one locus by genotypes of another 
locus38 and also to any statistical interaction between the 
genotypes at two or more loci1,2. epistasis is common 
between mutations that affect the same quantitative trait, 
as shown by the extensive epistatic networks between 
D. melanogaster mutations that affect metabolic activity41 
and olfactory42,43 and locomotor44,45 behaviours. It is more 
difficult to detect epistatic interactions in QTL mapping 
studies because the significance threshold becomes low 
after adjusting for the large number of pairwise tests for 
marker–marker interactions, and large mapping popu-
lations are required to sample individuals in the rarer 
two-locus genotype classes. Nevertheless, epistasis is a 
common hallmark of the genetic architecture of quantita-
tive traits in organisms in which controlled crosses reduce 
genetic heterogeneity (because the frequency of all seg-
regating alleles is 0.5) and optimize the power to detect 
genotype-by-genotype interactions. epistatic interactions 
have been documented in D. melanogaster between QTLs 
affecting numbers of sensory bristles, wing shape, longev-
ity and locomotor behaviour20,46; in mice for a number of 
traits related to growth, body weight and morphometry20; 
and for the growth rate of chickens47, A. thaliana21 and 
yeast22,48. epistatic effects can be as large as main QTL 
effects, and can occur in opposite directions between dif-
ferent pairs of interacting loci and between loci without 
significant main effects on the trait. epistatic effects can 
also occur between closely linked QTLs21,22,48 and even 
between polymorphisms at a single locus49. given the dif-
ficulties in detecting epistasis in model organisms, it is not 
surprising that epistatic interactions have not been widely 
implicated in genome-wide association studies for human 
complex traits and diseases20. However, widespread epista-
sis might plausibly account for the small marginal effects 
of loci with significant associations in these studies. 

QTL mapping studies are not usually performed in 
multiple environments, but when such studies are done, 
the effects often differ in magnitude and sometimes in 

direction, depending on the environmental circumstances.  
geIs have been shown for most phenotypes for which 
they were assessed in mice50–52 and D. melanogaster 20. 
There is evidence that context-dependent effects are 
also important for human complex traits. A promoter 
variant of the monoamine oxidase A (MAOA) gene 
is associated with violent behaviour only if the indi-
vidual was abused as a child53, and a promoter vari-
ant in the solute carrier gene SLC6A4 (also known as 
5-HTT) is associated with symptoms of depression, 
but only if the individuals have suffered stressful life 
events54. Finally, many QTLs have different effects 
in males and females, even if they are not X-linked  
and are not subject to dosage compensation23,55–58.

Pleiotropy. In a broad sense, the term pleiotropy refers to 
the effect of a gene on more than one phenotype, and in 
a narrow sense, the term refers to the effect of a particu-
lar allele on more than one phenotype. Pleiotropy in the 
narrow sense is responsible for stable genetic correlations 
between quantitative traits if pleiotropic effects at multiple 
loci affecting the traits are in the same direction1. Positive 
genetic correlations can occur between traits that share 
a common biological process or are components of the 
same structure, and negative genetic correlations are often 
found between components of fitness1. Understanding 
the underlying pleiotropic connections between quan-
titative traits is thus important for predicting corre-
lated responses to artificial selection1 and assessing the 
contribution of new mutations to standing variation 
for quantitative traits59,60 and understanding genetic  
constraints on the evolution of natural populations61.

evidence is accumulating that pleiotropy is even more 
pervasive than previously imagined and also occurs 
between traits that are not thought to be functionally 
related. Furthermore, the pleiotropic effects of differ-
ent genes that affect pairs of traits are often not in the 
same direction and therefore do not result in significant 
genetic correlations between the traits. Widespread plei-
otropy arises by necessity when large numbers of genes 
affect each trait. In linkage mapping studies, it is diffi-
cult to disentangle close linkage from pleiotropy, as the 
intervals to which QTLs map contain multiple genes. 
However, pleiotropy can be clearly shown by examin-
ing the effects of new mutations on multiple traits and 
by association mapping in instances in which there is 
little LD between adjacent genes. In D. melanogaster, 
homozygous viable transposable P-element insertional 
mutations in genes that are known to be essential for 
development or metabolism also affect adult quan-
titative traits, and several of the mutant alleles simul-
taneously affect multiple traits20. In mice, exhaustive 
phenotypic profiling of 250 knockout strains provides 
similar evidence for widespread and often unexpected 
pleiotropic effects (see Further information for a link to 
the Mouse genome Informatics website). Pleiotropy is 
also implicated by the results of genome-wide associa-
tion studies in humans. In several cases, the associations 
are between diseases that plausibly share a common 
aetiology and, in others, the shared associations show  
unexpected relationships between diseases and traits20.
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Quantitative trait nucleotide
A causal molecular variant 
(allele) that affects variation  
in a quantitative trait.

Endophenotype
An intermediate molecular 
phenotype associated with an 
organismal level quantitative 
trait. Variation in the 
endophenotype affects 
variation in the organismal trait.

Pleiotropy at the level of individual genes is hardly 
surprising. The realization that most genes have multiple 
functions has motivated geneticists working on model 
organisms to develop methods for temporal and spatial 
control of mutant alleles and to create allelic series to parse 
gene function. The combinatorial possibilities of muta-
tions in even a single gene are enormous and impractical 
to test systematically. However, analysis of the effects of 
genetic perturbations on quantitative traits using natu-
ral variants that have survived natural selection provides 
insights into the subfunctionalization of individual genes; 
that is, which regions of the gene are responsible for effects 
on multiple traits and which regions are specific for indi-
vidual traits. Preliminary evidence for the specificity of 
individual natural polymorphisms comes from D. mela-
nogaster, in which the scale of LD is sufficiently fine that 
polymorphisms in close physical proximity are not corre-
lated, and it is possible to differentiate the effects of molec-
ular polymorphisms in the same gene. In all cases in which 
polymorphisms in a single gene have been associated with 
more than one quantitative trait20, different polymorphic 
sites were independently associated with the different 
traits. Thus, genes are pleiotropic, but individual vari-
ants are not. In genomic regions with little LD, pervasive 
pleiotropy does not necessarily impose evolutionary con-
straints in the form of strong genetic correlations between 
traits. Finally, pleiotropic effects can themselves be geneti-
cally variable when differences in epistatic interactions  
occur between loci that affect multiple traits45.

Molecular basis of quantitative variation. Insights into 
the mechanisms of maintenance of quantitative genetic 
variation and the evolution of quantitative traits require 
that we understand the causal molecular variants (quan-
titative trait nucleotides; QTNs) affecting quantitative 
traits. The distribution of QTN allele frequencies can 
indicate the nature of the selective forces operating on 
the trait. variation maintained by a balance between the 
input of new mutations and their removal by natural 
selection would lead to a frequency distribution that is 
skewed towards rare minor allele frequencies62. QTNs 
maintained by a balance of selective forces would tend 
to have a frequency distribution centred around inter-
mediate frequencies39,60, and the frequency distribution 
of selectively neutral alleles would span the entire fre-
quency range63. Inference of QTN allele frequencies is 
restricted to association mapping designs in which all 
of the variants in a candidate gene or gene region have 
been identified. otherwise, the polymorphism associ-
ated with a trait could be in LD with the true QTN with 
a different frequency. evidence from D. melanogaster13,64 
and humans65–69 indicates that rare variants and variants 
with minor allele frequencies less than 5% are frequently 
associated with variation in quantitative traits.

Most association mapping studies have used SNPs 
at intermediate frequencies, owing to the ease of mul-
tiplex genotyping of these SNPs and maximizing the 
power to detect QTLs. However, indels and larger-
scale copy number variants might potentially have 
larger effects on complex traits and tend to be rare. In 
humans, rare copy number variants are more common 

in individuals with autism70 and schizophrenia71 than in  
unaffected individuals.

Determining the functional consequences of QTNs 
addresses the long-standing debate about the relative 
contribution of protein-coding changes versus regula-
tory changes in phenotypic evolution72,73. Associations 
of non-synonymous polymorphisms in coding regions 
with variation in quantitative traits are easy to understand 
mechanistically17,18. However, synonymous polymor-
phisms in coding regions could be associated with mRNA 
stability64,74, and polymorphisms in promoters and introns 
could affect transcription factor binding and mRNA splic-
ing, and affect the amount, timing or tissue-specific pat-
tern of expression. For example, a QTL with a major effect 
on the difference in plant architecture between maize and 
its undomesticated ancestor, teosinte, maps to the tb1 gene, 
but a polymorphism that causes the difference lies in a reg-
ulatory element 58–69 kb upstream of this gene75. Indeed, 
several replicated associations with human diseases  
lie in gene deserts far from any annotated gene20.

Genetic architecture: challenges
The genetic dissection of quantitative traits faces two 
main challenges: the power to detect and localize QTLs 
and QTNs, and the biological context in which to place 
genotype–phenotype associations. Accurate phenotypes 
and high-density molecular genotypes are needed for 
many thousands of individuals to map QTLs with effect 
sizes of the magnitude we now expect, with the high 
resolution required to separate closely linked QTLs and 
with the power to detect interactions between QTLs. 
The implication of widespread pleiotropy is that we can-
not accelerate the QTL-mapping end game by selecting 
likely candidate genes for functional validation, but need 
to perform unbiased scans for genes that correspond to 
the QTLs. Pervasive pleiotropy also highlights the fal-
lacy that there are genes ‘for’ particular traits76. The chal-
lenge is to catalogue the full range of pleiotropic effects 
of each gene and to distinguish the QTNs affecting each 
trait. Superimposed on this challenge is the issue of 
environment-specific and sex-specific effects, which can 
only be estimated by repeating the mapping in a range 
of ecologically and medically relevant environments. 
Detecting epistatic interactions presents a statistical chal-
lenge given the large number of genes that are expected to 
be associated with any one trait and the expectation that  
epistasis can occur between QTLs without main effects.

The challenge of dissecting quantitative traits into 
individual genes and their causal QTNs should be met 
in the near future by applying new sequencing and geno-
typing technologies (TABLE 1, Supplementary informa-
tion S1 (table)) to the problem, in combination with 
new community resources (BOX 2). However, a list of 
all genes and QTNs associated with quantitative traits 
is just that — a list, devoid of biological context. But 
QTNs do not affect traits directly; they do so through 
complex networks of transcriptional, protein, metabolic 
and other molecular endophenotypes. The new challenge 
is to understand the causative and correlative effects 
of genetic perturbations on these networks and their  
downstream effects on organismal phenotypes.
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Expression quantitative 
trait locus
A region of the genome 
containing one or more genes 
that affect variation in gene 
expression, which is identified 
by linkage to polymorphic 
marker loci.

Quantitative trait transcript
A transcript for which variation 
in its expression is correlated 
with variation in an organismal 
level quantitative trait 
phenotype.

Systems genetics: from QTL to biology
Associating DNA sequence variation with variation in 
organismal phenotypes omits all of the intermediate 
steps in the chain of causation from genetic perturba-
tion to phenotypic variation. Intermediate molecular 
phenotypes such as transcript abundance also vary 
genetically in populations and are themselves quantita-
tive traits77,78. ‘genetical genomics’ (rEF. 79) or systems 
genetics11 approaches integrate DNA sequence variation, 
variation in transcript abundance and other molecular 
phenotypes and variation in organismal phenotypes in 
a linkage or association mapping population, and allow 
us to interpret quantitative genetic variation in terms of 
biologically meaningful causal networks of correlated 
transcripts. These approaches have been allowed by 
the development of massively parallel technologies for 
quantifying genome-wide levels of transcript abundance 
(TABLE 1, Supplementary information S1 (table)). The 
logic of systems genetics is outlined in FIG. 2. In addition 
to obtaining genotype and organism phenotype data, 
whole-genome transcript abundance for each individual 
in a linkage or association mapping population is quanti-
fied. As usual, marker–organismal trait associations are 
performed to map QTLs, but the same association tests 
are performed between the markers and gene expression 
traits to map expression quantitative trait loci (eQTLs), and 
the correlations between gene expression and organismal 
level phenotypes are determined to identify quantitative 
trait transcripts (QTTs).

eQTLs. Advances in high-throughput genotyping and 
transcriptional profiling have facilitated an increase in 
the number of eQTL studies11,78,80–82. Two features distin-
guish eQTL studies from their traditional predecessors: 
the number of traits, that is, transcript levels, tends to be 
much larger than the number of individuals in the study; 
and unlike organismal phenotypes, transcripts have a 
local genomic context. If the molecular variant is located 
within the gene region of the transcript under investiga-
tion, the regulation is called a cis, proximal or local eQTL, 
but if the polymorphism associated with variation in the 
transcript is in another gene, it is called a trans or distal 
eQTL78. Common features of most eQTL studies11,78,80–82 
are that large numbers of transcripts are genetically 

variable; cis eQTLs tend to have larger effects than trans 
eQTLs; there tend to be more cis than trans-acting poly-
morphisms; some genomic regions are associated with 
variation in the expression levels of many transcripts 
(eQTL hot spots); and the expression levels of many tran-
scripts are highly correlated. A further commonality is 
that the sample sizes of most studies have been restricted 
to 30–100 individuals or strains, owing to the expense 
of whole-genome transcript profiling. Nevertheless, the 
same statistical considerations apply to eQTLs as to more 
traditional organismal level traits. The fact that these 
studies are underpowered to detect and localize eQTLs77 
could explain the observation that there are fewer trans 
than cis eQTLs, and raises the possibility that many cis 
eQTLs are trans-regulated by linked loci. eQTL studies 
are also plagued by the statistical challenge of the mas-
sive number of hypothesis tests required to associate a 
dense marker map with tens of thousands of transcripts. 
Few studies have attempted to control the false discov-
ery rate, but instead have chosen to report the number 
of significant marker–eQTL associations at different 
significance levels. As the cost of genome-wide expres-
sion profiling declines (TABLE 1, Supplementary infor-
mation S1 (table)), larger eQTL studies will be possible,  
which will alleviate many of these concerns.

Coexpression networks. Although many thousands of 
transcripts are genetically variable, they are not inde-
pendent: the levels of expression of many transcripts 
co-vary between individuals in the mapping popula-
tion11,78,83 (FIGS 2,3). genetically correlated transcripts 
might be coexpressed because they belong to a regu-
latory network, which could provide insights into the 
underlying biology. Several statistical methods84,85 have 
been developed to group genetically correlated tran-
scripts into modules, in which each module consists of 
a group of transcripts with higher correlations to each 
other than to the rest of the transcriptome (FIG. 3). The 
statistical information encoded in highly correlated 
transcripts is redundant; assembling such genes into 
modules reduces the number of hypothesis tests one 
must consider. The correlations between transcripts in 
a module can be visualized graphically as a network with 
nodes denoting transcripts and edges connecting nodes 

Table 1 | Technologies that allow systems genetics of quantitative traits 

Level of variation technology Potential applications

High-throughput 
sequencing

•	Deep sequencing
•	Sequence capture

•	SNP identification and resequencing reference panels
•	Resequencing quantitative trait locus regions following detection  

to allow localization using a larger number of individuals; 
identification of rare alleles

Genotyping •	Genotyping arrays •	Multiplexed high-density markers for quantitative trait locus detection

Whole-genome 
transcriptional profiling

•	cDNA microarrays
•	Tiling arrays and RNA-seq

•	High-throughput, cost-effective examination of genome-wide mRNAs
•	High-throughput, unbiased examination of genome-wide mRNAs

Proteomics •	Tandem mass spectrophotometry •	Detecting quantitative and qualitative variation in proteins

Metabolomics •	Gas chromatography and high-performance 
liquid chromotagraphy mass spectrophotometry

•	Detecting quantitative and qualitative variation in cellular 
metabolites

Organismal phenotypes •	Image or video analysis-based phenotyping •	Phenotyping large samples required for systems genetics analyses
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Gene ontology
A widely used classification 
system of gene functions and 
other gene attributes that uses 
a controlled vocabulary.

KEGG pathway
The Kyoto Encyclopedia of 
Genes and Genomes (KEGG)  
is a database comprising  
a collection of graphical  
pathway maps for metabolism, 
regulatory processes and  
other biological processes.

that are genetically correlated (FIGS 2,3). In the absence 
of information on DNA polymorphisms, these networks 
represent indirect statistical relationships rather than 
direct interactions. Incorporating information about cis 
and trans eQTLs can be used to determine the direction 
of flow of information through the network and infer 
which relationships are caused directly by genetic per-
turbations and which ones are coregulated by genetic 
perturbations (FIG. 2). Coexpression networks are biolog-
ically plausible, as judged by enrichment of gene ontology 
categories, KEGG pathways, protein–protein interactions, 
tissue-specific expression patterns and transcription 
factor-binding sites83,86,87. Coexpression networks thus 
allow the prediction of the function of computation-
ally predicted genes based on ‘guilt by association’ with  
well-annotated genes in the network83,88.

QTTs. one insight into the molecules associated with 
variation in organismal phenotypes comes from identi-
fying transcripts that are genetically correlated with an 

organismal quantitative trait83,89,90. Typically, several hun-
dred quantitative trait transcripts (QTTs) are associated 
with any single organismal phenotype83,89,90. However, 
this observation is subject to the caveat described above 
regarding the low statistical power and high false-positive 
rate of studies with small sample sizes. QTTs associated 
with an organismal quantitative trait are also genetically 
correlated. Thus, one can construct networks relating 
transcriptional variation to organismal trait variation 
from modules of correlated QTTs, in the same manner 
as when networks are derived from transcript data alone 
(FIG. 3). Module-based approaches have been applied to 
various organisms to uncover pathways and processes 
associated with organismal quantitative traits, including 
Alzheimer’s disease in humans86, mouse models of type 2 
diabetes91 and sleep90 and several ecologically relevant 
quantitative traits in D. melanogaster83. However, causal 
relationships cannot be inferred from modules of cor-
related QTTs alone, and also require information from 
DNA sequence variation.

 Box 2 | From quantitative trait loci to quantitative trait nucleotides

The process of detecting and localizing quantitative trait nucleotides (QTNs) will be accelerated by full DNA sequences 
and comprehensive phenotypic descriptions of tens of thousands of individuals in linkage or association mapping 
populations. Next-generation sequencing technologies (TABLE 1, Supplementary information S1 (table)) are bringing 
this scenario closer to reality. Community projects are ongoing to determine the whole-genome sequence of 1,000 
humans (the 1000 Genomes Project), 1,001 Arabidopsis strains107 (the 1001 Genomes Project) and 192 Drosophila 
strains. The human project follows the HapMap model108, with the goal of cataloguing SNPs and structural variants with 
frequencies of at least 0.5–1%, but with no phenotypic information. An immediate application of these data will be in 
studies testing for the functional effects of variants in regions that have previously been identified to affect disease risk. 
The Arabidopsis and Drosophila species projects are intended to allow genome-wide association studies.

Most linkage mapping studies are limited by the lack of dense polymorphic molecular marker maps. Next-generation 
sequencing methods empower individual laboratories to sequence parental strains of interest to rapidly identify marker 
loci and design custom genotyping arrays (TABLE 1, Supplementary information S1 (table)). Short-oligonucleotide 
arrays that represent the whole genome are efficient platforms for obtaining dense molecular marker maps109 but the 
cost of genotyping thousands or more individuals is usually prohibitive. Strategies to overcome this limitation include 
genotyping individuals110 or pools of individuals111 in the extreme tails of the phenotypic distribution of the mapping 
population. Although the simultaneous detection and localization of QTLs may not become routine in the near future, 
the simultaneous dissection of multiple QTL regions identified by an initial genome scan in large populations is now 
possible. Methods for multiplexed capture of targeted sequences, before the application of next-generation 
sequencing technologies to only these targeted sequences112–115, offer promise for rapidly identifying causal genes and 
variants associated with quantitative traits116.

Understanding pleiotropy necessitates that tests of association to multiple phenotypes (including the same phenotype 
in multiple environments and both sexes1) are performed for the same genotypes. In model organisms, this is most 
conveniently achieved by community sharing of common inbred genetic reference panels, which only need to be 
genotyped once. First-generation mapping populations of recombinant inbred lines of mice117, A. thaliana118 and  
D. melanogaster34–37 have shown the success of this approach. However, the small size of these reference populations 
gave low-resolution recombination maps and only two parental genomes were used to establish these maps. The 
second-generation projects address both deficiencies of the first-generation projects. The recombinant inbred line 
strategy has been adopted by the mouse Collaborative Cross Consortium119 and the Maize Diversity Project120; 
sequencing the parental strains will yield a dense polymorphism map for genotyping. The Arabidopsis and Drosophila 
projects rely on association mapping and next-generation sequencing of all strains. Crosses between the inbred lines of 
each reference population extend the genotypic and phenotypic space that can be explored and directly address 
whether dominance and epistatic effects are important. In humans, large prospective cohort studies (for example, the 
UK Biobank and Framingham Heart Study) for which detailed phenotypic measurements and medical histories are 
obtained serve as reference panels. The challenge of genetic dissection in such ‘natural’ settings is to accurately 
measure and account for the direct and interaction effects of relevant environmental exposures on the traits121.

Large-scale mapping of genotype to phenotype associations depends on accurate measurements of phenotype and 
strict attention to the principles of experimental design to avoid confounding of phenotypes and common 
environmental conditions1. In the future, the limitation of identifying genotype–phenotype associations will shift from 
assessing multilocus genotypes towards obtaining accurate, multidimensional phenotypes for large numbers of 
individuals. The development of high-throughput methods for automated phenotyping will be highly beneficial, 
especially in model organisms122,123 (TABLE 1, Supplementary information S1 (table)).
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Figure 2 | systems genetics integrative framework. The relationship between DNA sequence variation and quantitative 
variation for gene expression and an organismal phenotype is given for two genes. a | Values of the organismal phenotype 
are shown for several individuals that are homozygous at two SNPs (AA or TT in gene 1 and CC or AA in gene 2). The mean 
difference in the phenotype between the AA and TT genotypes identifies gene 1 as a quantitative trait locus (QTL) for the 
trait. b | An expression QTL (eQTL) mapping study in which SNPs in gene 1 and gene 2 are tested for association with  
the variation in transcript abundance of gene 1 (TX1) and gene 2 (TX2). The schematics below the x axes denote gene 
structure, with boxes indicating exons and lines non-coding regions. Circles indicate the result of an association test 
(scaled as –log p) and horizontal lines denote the significance threshold. SNP2 in the promoter of gene 1 is significantly 
associated with TX1 and TX2 abundance and there is no association with gene 2. SNP2 is a cis-regulatory polymorphism 
for TX1 and a trans-regulatory polymorphism for TX2. c | TX1 and TX2 are correlated, suggesting that the transcripts act 
as two nodes in a network. Combined with the information gained from the eQTL mapping, we can infer the direction in 
this network. SNP2 in gene 1 controls variation in the expression level of gene 2. d | Association between TX1 and TX2 
abundance and the organismal phenotype. TX1 and TX2 are quantitative trait transcripts (QTTs).

Bayesian network
A graph with directed edges 
that connect nodes. The nodes 
represent assertions about 
relationships between the 
nodes; for example, a node A is 
related to a node B by an edge 
that represents that A is a 
cause of B with a certain 
probability. Bayesian networks 
with many interconnected 
nodes can be constructed.

Partial correlation analysis
This quantifies the association 
between a pair of variables 
after controlling for the effect of 
a set of potential confounders.

Empirical Bayes procedure
A hierarchical model in which 
the hyperparameter is not a 
random variable but is 
estimated by some other 
(often classical) means.

Systems genetics of complex traits. QTNs allow us to 
map phenotype to genotype in the absence of biological 
context. To gain this context, we need to describe the 
flow of information from DNA to the organismal phe-
notype through RNA intermediates, proteins, metabo-
lites and other molecular endophenotypes. This could 
be achieved by dissecting a QTN into its constituent 
eQTLs and QTTs, but in practice this is not easy; one 
can expect a substantial coexpression network of rel-
evant transcripts that associate both with the molecular 
variant and with the organismal phenotype92. Systems 
genetics promises to integrate these layers of informa-
tion to produce directed biological networks that link 
molecular variants to organismal phenotypes. The 
systems genetics approach, in conjunction with com-
munity resources, will allow us to explore the space of 
possible genotypes with large sample sizes; nevertheless, 
sophisticated techniques are needed to construct mean-
ingful networks from natural genetic perturbations.  
The sophistication that is required is based on subtlety: 

of the transcripts that associate both with sequence and 
trait, only a subset will be causal. experimentally, a causal 
transcript is identified when directly perturbing it leads 
to variation in the organismal phenotype. By contrast, a 
consequence of observing natural genetic perturbations 
is that non-causal associations between a transcript and 
phenotype can be driven by upstream transcripts, which 
are the true causative transcripts. A fraction of QTTs will 
be consequential associations, the perturbation of which 
will not affect the organismal phenotype. Disentangling 
causal relationships from consequential relationships is 
the key to reconstructing biological networks, and the 
principal tool to study these relationships is the statisti-
cal concept of conditional dependence93 (FIG. 4). Current 
techniques for causal inference include Bayesian net-
works94, partial correlation analysis95 and empirical Bayes 
procedures96; several of these are available as packages 
in the statistical programming language ‘R’. The power 
of the systems genetics approach for understanding the 
biological basis of variation for quantitative traits and 
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Figure 3 | coexpression gene networks. a | The first step in building coexpression gene networks is to calculate a 
pairwise correlation matrix between all variable transcripts. Here we show a representation of such a matrix and the 
correlation between the abundances of two transcripts, TX1 and TX2. The scatterplot shows the mean expression of 
these two transcripts for different genotypes in a mapping population. b | An extensive coexpression network in 40 
inbred Drosophila melanogaster lines83. The 10,096 genetically variable transcripts formed 241 modules and in each 
module the transcripts are more closely correlated with each other than to the other transcripts. c | There were  
414 quantitative trait transcripts for competitive fitness in these lines, which formed 20 modules of correlated 
transcripts83. d | Network representation of fitness module 8. Each node in this network corresponds to a transcript, 
and an absolute correlation threshold of 0.6 was used for the edges connecting each node. Acp, accessory gland 
protein; Anp, andropin; eIF4E-5, eukaryotic initiation factor 4E-5; Obp56g, odorant-binding protein 56g;  
Pka-C2, cAMP-dependent protein kinase 2. Part b reproduced, with permission, from Nature Genetics rEF. 83  (2009) 
Macmillan Publishers Ltd. All rights reserved. Part c is modified from rEF. 85.

the potential for evolutionary conservation of these  
networks is shown by two recent studies of body weight 
and obesity in mice92 and humans97. In both studies, 
body weight was correlated with the same directed  
coexpression gene network.

Statistically defining the molecular interactions that 
govern phenotypic variation through natural genetic 
perturbations leads to tests of the models. one predic-
tion that has been confirmed in several studies is that 
causal genes in the network will affect the trait when 
perturbed by an induced mutation90,92,98,99. A higher-level 
test is to determine whether the genomic effects of a new 

mutant allele are as predicted by the network; that is, 
whether transcripts downstream of the focal gene will 
be altered in the background of the mutant allele and 
whether transcripts unconnected with that gene will not 
be affected90. The biological networks provide a frame-
work for targeted testing of epistatic interactions, with 
the prediction that genetically correlated transcripts that 
are also regulated by cis eQTLs in a module associated 
with the organismal trait fit the criteria for potential 
epistasis. Reducing the statistical penalty for testing all 
possible pairwise interactions should improve the power 
to detect two-way and higher-order epistasis. Finally, 
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assessing many different organismal level phenotypes 
for the same genotypes will provide insights into the 
molecular basis of pleiotropy83.

The future of complex trait genetics
New technologies will allow us to perform genotype–
phenotype mapping studies on the scale and with the 
density of molecular markers required to simultane-
ously identify many genes that affect variation for 
quantitative traits. We are beginning to interpret these 
associations in terms of genetic networks through the 
incorporation of information on whole-genome vari-
ation in transcript abundance in the mapping popu-
lations. This provides unprecedented insights into  
the biological underpinnings of complex traits and the 

pleiotropic connections between traits. As technologies 
advance and costs fall, we could perform systems genet-
ics analyses on larger samples, more developmental time 
points and tissues, more environmental conditions and 
with an unbiased sample of the transcriptome. Not all 
functional molecular polymorphisms  exert their effects 
on organismal traits through measurable alterations in 
gene expression. Adding information on qualitative 
and quantitative variation in proteins and metabolites, 
as well as epigenetic modifications, will give a more 
complete picture of the effects of genetic perturbations 
on the whole organism100 (TABLE 1, Supplementary 
information S1 (table)). Profiting from the forthcom-
ing avalanche of data will require interactive databases 
that can organize and integrate these heterogeneous 
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	Figure 4 | Inside the black box between genotype and phenotype. A biological network encompassing a molecular variant, three transcripts (TX1–3) and an organismal phenotype (OT) is shown. a | A molecular variant upstream of the gene that encodes TX1 causes variation in TX1 abundance. TX1 increases the transcription of TX2, which in turn increases the transcription of TX3. Variation in TX2 is also the proximal cause of variation in the organismal phenotype. The molecular variant is a quantitative trait nucleotide with respect to the organismal phenotype and an expression quantitative trait locus for TX1 (cis), TX2 (trans) and TX3 (trans). The three transcripts form a coexpression network and each may manifest as a quantitative trait transcript; however, TX3 is a consequential rather than causal transcript. Data consistent with the relationships in panel a are shown in panels b–g. Each plot shows 500 individuals; both states of the molecular variant are equally represented. b | Linear relationship between the abundance of transcripts TX1 and TX2 (red shows molecular variant A and blue shows molecular variant T). The vertical and horizontal lines indicate the mean abundance of TX1 and TX2, respectively. In both cases, the T variant on average leads to higher values. c | Because the influence of the molecular variant on TX2 is realized though the variation it induces in TX1, after conditioning on TX1 (that is, statistically accounting for the effect of TX1), the variant-specific difference in TX2 abundance vanishes. d | Conversely, conditioning on TX2 does not eliminate the relationship between the molecular variant and TX1 abundance. Panels b – d thus support the order of TX1 upstream of TX2. e | Relationship between TX3 and the organismal phenotype. Despite the absence of a causal relationship, TX3 abundance is strongly correlated with the organismal phenotype. As the variables on both axes are downstream of the molecular variant, both show variant-specific differences. f | Conditioning on TX2 uncouples TX3 from both the molecular variant and from the organismal trait. g | Conversely, conditioning TX3 on TX2 does not eliminate the relationships between the molecular variant, TX2 abundance and the organismal phenotype. Data shown in panels b–g inspired by ref. 93.



