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The current interest in complex networks is a part of a broader movement towards
research on complex systems. Motivation of this work raises the two challenging ques-
tions: (i) Are real networks fundamentally random preferential attached without any
deterministic attachment for both un-weighted and weighted networks? (ii) Is there a
coherent physical idea and model for unifying the study of the formation mechanism of
complex networks? To answer these questions, we propose a harmonious unifying hybrid
preferential model (HUHPM) to a certain class of complex networks, which is controlled
by a hybrid ratio, d/r, and study their behavior both numerically and analytically. As
typical examples, we apply the concepts and method of the HUHPM to un-weighted
scale-free networks proposed by Barabasi and Albert (BA), weighted evolving networks
proposed by Barras, Bartholomew and Vespignani (BBV), and the traffic driven evo-
lution (TDE) networks proposed by Wang et al., to get the so-called HUHPM-BA,
HUHPM-BBV and HUHPM-TDE networks. All the findings of topological properties
in the above three typical HUHPM networks give certain universal meaningful results
which reveal some essential hybrid mechanisms for the formation of nontrivial scale-free
and small-world networks.

Keywords: Network science; harmonious unifying hybrid preferential model; hybrid ratio
d/r; un-weighted and weighted networks; universal properties; small-world; effects; scale-
free property; sensitivity of exponent to hybrid ratio.

1. Introduction

The interdisciplinary research into complex networks has exploded across the aca-
demic spectrum as has the great potential for applications. Conferences on these
fields from natural to social sciences have become a very hot activity all over the
world since the small world (SW) effect and the scale-free (SF) property were dis-
covered by Watts and Strogatz (the so-called WS model) in 1998 [1] and by Barabasi
and Albert (the so-called BA model) in 1999 [2], respectively. These two discoveries
and substantial advances on a number of previously intractable problems has shown
that complex network research has broken free of the imprisonment of random graph
analysis that began in the 1960s and has since made unprecedented progress in the
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following forty years. A variety of theoretical models of networks have been pro-
posed and investigated [1-3, 8-24]. Most real-world networks have shown both the
SF and the SW effects, which include small average path length (APL), large aver-
age clustering coefficient (ACC), and other topological and dynamical properties.
As pointed out by Buchanan [6] and Watts [4, 5], these results have been called the
new science of networks. As a pioneer in the field of networking as a unified science
and author of “Linked: The New Science of Networks”, Barabasi was awarded a
medal by the Hungarian von Neumann Computer Society for outstanding achieve-
ment in computer-related science and technology (as reported from University of
Notre Dame on August 24, 2006; see http://newsinfo.nd.edu).

One of the significant problems at present is that the majority of research con-
centrates on the BA network and its varieties [3-20], which introduces the random
preferential attachment (RPA) mechanism to mimic un-weighted growing networks.
Many current models are not completely consistent with those ubiquitous properties
in real world networks although they have been useful and successful at reproduc-
ing features to approach real world networks. As pointed out by American scientist,
Wilson [7]: “The greatest challenge today, not just in cell biology and ecology but
in all of science, is the accurate and complete description of complex systems. Sci-
entists have broken down many kinds of systems. They think they know most of
the elements and forces. The next task is to reassemble them. At least in mathe-
matical models that capture the key properties of the entire ensembles.” That is
the motivation for this work.

Indeed, in most of the models either the random factor or the deterministic
factor is ignored. Based on basic observations for a unified world, we cannot ignore
either of them since the interactions in the real world are neither completely reg-
ular nor completely random but lie somewhere between the extremes of order and
randomness. The world should be a harmoniously unified one. To do so, we propose
a harmonious unifying hybrid preferential model (HUHPM) for a certain class of
evolving complex networks, which is controlled only by a hybrid ratio, d/r. Through
numerical simulation and theoretical analysis, we find that the HUHPM has a series
of universal properties, and possesses both the SF and the SW effects, which allows
HUHPM networks to be closer to real-world networks and suitable for any evolving
complex networks, including un-weighted and weighted networks.

The un-weighted network models may reflect the most topological character-
istics and dynamical behavior between network nodes and connectivity, but they
cannot describe the strength of interaction and difference of connected edges. On
the other hand, weighted networks can carefully portray the node connections and
mutual interactions that not only reflect the topology of real networks, but also
reveal physical and dynamic characteristics of real-world networks. Recently, sev-
eral weighted networks have been proposed in the literature [21-25]. Among them,
Barrat, Barthelemy and Vespignani proposed the weighted evolving network model
(the so-called BBV model) [21,22]. The BBV model yields scale-free properties of
the degree, weight and strength distributions, but its weight dynamical evolution is
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triggered only by newly added vertices, resulting in few satisfying interpretations of
collaboration networks and transport networks (e.g. airline systems). Improving on
this, Wang et al. presented the weighted traffic-driven evolution (TDE) model for
technological networks [24]. They considered the dynamics of weight taking place
along the links and introduced two coupled mechanisms: topological growth and
the strengths’ dynamics. Their model is a better one for technological networks.
However, both the BBV model and the TDE model considered only RPA, but did
not consider deterministic preferential attachment (DPA). This is in contradiction
to a fundamental observation in which one can see that both RPA and DPA, or the
deterministic and the random factors, exist extensively in our unified real world.

In short, the many existing models mentioned above belong to the class of gen-
eralized random network models (GRNMs). They are not completely consistent
with the ubiquitous properties in real-world networks although many models have
been useful and successful at reproducing some features that approach real-world
networks. The reason for this is that RPA is only considered in GRNMs and uti-
lized to generate networks with the SF and the SW effects. However, based on the
observations mentioned above, we cannot ignore RPA and DPA, thus both in vari-
ous complex network models should be investigated. Motivated by this and the two
questions mentioned in the abstract in this work, the HUHPM for a certain class of
complex networks is investigated both numerically and analytically. We only define
a hybrid ratio d/r as DPA /RPA, which is a key parameter to control topological and
dynamical properties of evolving complex networks. When applying the HUHPM
method to the BA, BBV and TDE models, they are called the HUHPM-BA network,
the HUHPM-BBYV network and the HUHPM-TDE network, respectively. Through
numerical simulation and theoretical analysis, we find that the HUHPM has a series
of universal topological properties, which include the exponents of the three power
laws (node degree, node strength, and edged weight), that are sensitive to the d/r
or depend on the d/r strongly. A threshold of the exponent exists at d/r = 1/1;
beyond it, the exponent for the HUHPM-BA, HUHPM-BBV and HUHPM-TDE
increases rapidly until it approaches a large value, and may tend to infinity. The
HUHPM models possess both the SF and SW effects. As the hybrid d/r increases,
their APL and assortative coefficient decrease, while their ACC increases. All the
results in this article show that HUHPM networks can give satisfactory answers
to the questions mentioned above, and are suitable for un-weighted and weighted
evolving networks.

Discoveries of the SW and the SF in complex networks have had potential appli-
cations in many fields, such as the Internet, the WWW, power networks, transport
networks, social networks, and so on. For this work, the following three aspects for
applications may principally be considered. Firstly, because the exponents of the
three power laws for HUHPM networks have high sensitivity to the hybrid ratio
d/r change, this may yield a corresponding encryption method that can be applied
to the cryptology and privacy communication domain. Its basic principles may be
similar to chaotic communication, based on chaotic sensitivity to initial conditions.
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Secondly, due to the fact that the APL and the ACC can be adjusted by the hybrid
ratio d/r, in practice one may design the most required network architecture to sat-
isfy different special requirements. Thirdly, the above discoveries could be helpful
for understanding certain phenomena of complex networks that occur in social and
biological nervous networks.

The paper is organized as follows. In Sec. 2, the basic concept and method
of HUHPM are described. In Sec. 3, sensitivity of the exponent of three power
laws to the hybrid ratio d/r is illustrated through numerical simulations. In Sec. 4,
complex relationships between the power-law exponent and hybrid ratio are ana-
lyzed theoretically for three typical networks and compared with simulation results.
The effects of hybrid ratio on small world properties are shown with a comparison
between theory and simulation in Sec. 5. The second SW effect and comparisons
with others are shown in Sec. 6. Conclusions and a summary are given in the final
section.

2. Basic Concept and Method for HUHPM
The basic concept and method for the HUHPM can be expressed as the following:

— HUHPM }—

Random Deterministic
Attachment (RA) Attachment (DA)

Preferential Preferential
Attachment (PA) Attachment (PA)
RPA DPA

ﬁl _ Time intervals of DPA]
Lr " Timeintervals of RPAJ

This implies that any generalized random preferential models can be changed into
the HUHPM only by adding DPA in it. This implementation combines the random
connection with the determination connection by using the hybrid ratio to request
growth scale size of the networks. Hence, the unified hybrid ratio can be defined as:

d  Time intervals d of deterministic preferential attachment (DPA)

¢_ ()

r Time intervals r of random preferential attachment (RPA)

where d is a number of time intervals (step) for DPA, and r is a number for RPA.
In the process of network evolution, the hybrid ratio must maintain the same value
by combining RPA and DPA. In fact, the rank of RPA and DPA can be flexible.
This means that one can use different orders to make the two hybrids grow the
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network in turn, until the required scale size is achieved. The main mechanism and
principle for implementation of hybrid network growth are as follows:

(i) The growth way. First, use each growing rule of the model to realize the
growth. For example, the un-weighted BA model starts growth from less iso-
lated nodes, my, increasing at each time-interval to reach a new node with m
(< myg) edges, and connects this new node to m different existing nodes. For
the weighted BBV model, new edges can be produced among the old nodes,
while for the TDE model, a new node is grown at each time step. The new node
connects to the old nodes with m new edges, and then the network continues
to grow.

(i) The growth connection way. Each step adopting this kind of connection
mechanism must accord with the hybrid ratio d/r. Keeping down the same
hybrid ratio d/r, there are three kinds of hybrid connection orders:

HPAS-1: First conduct RPA, then arrange the rank of the degree of nodes
from the biggest to the smallest, selecting m biggest degree nodes
to conduct DPA.

HPAS-2: First DPA then RPA.

HPAS-3: RPA or DPA is conducted randomly.

(iii) The DPA way. After each attachment, the rank of the degree of nodes is
reordered again from the biggest to the smallest: k1 > ko > -+ >k, > - >
kn, then m nodes are attached preferentially. This is a general way for DPA,
which is quite natural.

(iv) RPA way. The above ideas and method are applied to some current typical
models, and we follow the above steps to give the rules of the three present
models BA, BBV and TDE, or as mentioned above, the so-called HUHPM-
BA, HUHPM-BBV and HUHPM-TDE network. The concrete constructions
are followed by their respective preferential attachment ways [2, 21,22, 24, 25].

For the HUHPM-BA network, the RPA is firstly connected with the nodes which
have massive connections, the probability of preferential attachment for the new
node n with old node i is proportional to the degree of node k:

k.
P == (2)
DY ik

For the HUHPM-BBYV network, new preferential node n attaches to old node 4

according to the intensity coupling probability:

BBV — Si SnSi (3)

where s; represents the intensity corresponding node (i, j). This model considers
BBV

n—1i

the weight of edges; it is chosen with probability to be connected to n. Thus,
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its connectivity increases by 1, and its strength by 1 4+ §, where strength weight
parameter 6 = const. This means that it allows the production of new connection
edges among the old nodes, at the same time, also considering already existing
transportation flows along that connection edges unceasingly renewing with the
growth of the network.

For the HUHPM-TDE network, we maintain the topological growth rule: at
each time step, the network grows a new node connected to m new edges with the
old nodes, the connective probability coinciding with Eq. (3), namely, preferential
attachment is based on the intensity of nodes. Each weight of the new edge is
assumed to be wy = 1. Among the old nodes, preferential attachment (PA) obeys
the intensity coupling dynamic rule: at each time step, all possible (existing or
not yet existing) connected edges are subject to the probability of preferential
attachment, according to the intensity coupling renewal mechanism:

(4)

w;; + 1, with probability wp;;,
Wij — . e

Wij s with probability 1 — wp;;,

where
SiSj

L 5
Ea<b SaSb ( )
and the intensity coupling arrangement between node ¢ and node j, which deter-
mines the increase of weight w;;. If the node i and node j are not connected, then

w;; = 0. The total weight of the edges in the statistical sense is modified by following
amount:

Dij =

<Z Awij> = w. (6)
1<j

This model simply assumes that w is a constant, which is used approximately to
reflect the growth speed for the total transportation load in the entire network.
w > 1 is taken as in Ref. 24. However, we will take w < 1 in this paper since it is
more suitable for practical situations.

After the procedures above for each model, the rank of the node degrees is
then rearranged from the largest to the smallest as k; > ko -+ > k,. The DPA is
conducted for d time steps for the HUHPM network according to the new rank of
the vertex degrees above when choosing the nodes connected to the new node. This
procedure creates a network with N = r 4+ d + mg nodes.

Then, steps (i) and (iv) of the HUHPM algorithm are repeated again. In this
HUHPM algorithm, two kinds of preferential attachments are applied in turn under
a certain hybrid ratio d/r but may be different HPAS ways, until the desired size
of network is reached.

Figure 1 illustrates the evolution of HUHPM growing networks with N = 14
and m = mo = 3 under different hybrid ratios d/r = 1/6, 1/1 and 6/1.

We use the solid line to express deterministic connection in Fig. 1, while the
dashed line expresses random connection; the numbers in circles represent the order
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Fig. 1. Evolution of HUHPM growing networks with N = 14 and m = mg = 3: (a) d/r = 1/6,
(b) d/r = 1/1 and (c¢) d/r = 6/1. The solid line denotes a deterministic preferential link; the
dashed line is a random preferential link. m = mgo = is the number of initial nodes; m is the
number of nodes to be added at each step.

of newly joined nodes. Figure 1(a) for d/r = 1/6 corresponds to the RPA dominat-
ing; the network topology is similar to a random network. Moreover, d/r is smaller,
and 7 is bigger. The network should be more similar to the completely random
network. Figure 1(b) for d/r = 1/1 demonstrates the clustering effect brought by
DPA. Figure 1(c) for d/r = 6/1 belongs to the case where the DPA plays the lead-
ing role. Therefore, the network appears to have high clustering nodes. Moreover,
they will increase while d/r increases until condensation occurs on certain nodes,
where the condensation degree only depends on the hybrid ratio d/r. In addition,
for the same hybrid ratio d/r, the three different HPAS orders of the connected
network show no differences [see Fig. 2(a)]. The simulation below further confirms
that their evolution is indeed independent of the order of the connections.

3. Sensitivity of the Exponent to the Hybrid Ratio d/r

In fact, the most important topological characteristic for the BA model and its
varieties of generalized random network is that their degree distribution obeys the
negative exponent of power law. Some real networks also have a similar property,
but some power-law curves often show deviation from the heavy tail in the end
or top part of the curves, and only the middle part shows the proper logarithm
linearity. This phenomenon has various explanations: for the GRNM, the negative
power law distribution is the result of the RPA mechanism; the heavy tail is also
created by the random connection. Besides this, the statistical data are not sufficient
and the rather little rigor of the theory does not coincide with real networks, which
can also cost this deviation.

Figure 2 shows the negative power exponent of = verses the logarithm of
the hybrid ratio, log(d/r), for the HUHPM with three typical models, where the
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Fig. 2.
node degree, strength and edge weight, respectively. Here k is the node degree, s denotes the node
strength, w is the weight of edges. Here N = 6,000 and m = mo = 3. (a) HUHPM-BA with three
orders of connections (HPAS-1, HPAS-2, HPAS-3). (b) and (c¢) HUHPM-BBV and HUHPM-TDE
for the node strength. (d) and (¢) HUHPM-BBV and HUHPM-TDE for the edge weight.

The exponent « of power law versus log(d/r). The insets are power-law distributions for
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insets are power-law distributions for the node degree, strength and weight, respec-
tively: (a) HUHPM-BA, comparing three orders of connections (HPAS-1, HPAS-
2, HPAS-3); (b) and (c) HUHPM-BBV and HUHPM-TDE for the node strength;
(d) and (¢) HUHPM-BBYV and HUHPM-TDE for the edge weight, where N = 6,000
and m = mg = 3.

From Fig. 2(a), one can see that the three different PHAS orders of connected
networks show no difference in their power-law distributions. For the three link
cases, there is a common universal power law, and when the determinism holds to
a certain degree, all the heavy tails are restricted or eliminated. When determinism
dominates, the degree distribution is convergent to some highly clustering nodes.
Furthermore, the power-law exponents are very sensitive to the change of hybrid
ratio d/r, as a new topological characteristic. Here, d/r = 1/1 is a threshold value.
If d/r < 1, v < 3, this is consistent with the RPA playing the leading role. If
d/r >1/1, in the HUHPM-BA and HUHPM-BBV models, « increases as log(d/r)
increases, although ¢ is different. For the HUHPM-TDE model, when w < 1, which
is reasonable in the actual situation (because actual relative disturbances generally
cannot be bigger than 1), v increases as log(d/r) increases, until a large number
is approached. Even if w > 1, + still depends on d/r. Once RPA approaches zero
(r = 0, d/r), v is very large or even approaches infinity. The power law then
vanishes, and often concentrates on several highly clustering nodes.

As shown in Figs. 2(b)—(e), it is noted that the original power law of node
strength and edge weight in the BBV and TDE still exist in the corresponding
HUHPM-BBV and HUHPM-TDE networks. Moreover, their node strength and
edge weight have similar characteristics, i.e. power-law sensitivity to the hybrid ratio
d/r. For Fig. 2(b), HUHPM-BBV at ¢ > 1 and Fig. 2(c), HUHPM-TDE at w < 1,
both node strength power exponents v of P(s) are still very sensitive to the d/r
change in the range 1/1 < d/r < 10/1, beyond which the ~ tend to linearly increase
with log(d/r). For Fig. 2(d), HUHPM-BBV at ¢ > 1, and Fig. 2(e), HUHPM-TDE
at w < 1, both edge weight v of P(w) are also sensitive to the d/r and increase
linearly with log(d/r) after d/r > 100/1. These results reveal that the HUHPM
networks have some important new common characteristics and differences, which
are worth paying attention to.

4. Theoretical Analysis for the Relation of v and d/r

In this section, we theoretically analyze the HUHPM-BA, HUHPM-BBYV and the
HUHPM-TDE network models. According to Ref. 12, a degree rate equation for
k(t) can be given by

ok ki Bk
or SN T )

j=1 Rj
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since Z;\;l kj = %t may affirm that, under HUHPM, parameter § must be a
kind of function of d/r, which only has different parameters for different models.
Through preliminary analysis and careful observation, we obtain that [ is a kind

of exponential function combination:

5 = ) (8)

where Aq, As, A3, A4 are relevant parameters. Keeping k; proportion to § with
increasing ¢, substituting Eq. (8) in Eq. (7), and considering the initial condition

[12], we obtain
B
ki —m (ti) . )

Thus, from the degree distribution of the network P(k):
P(k) o 2m3k~(5+1), (10)

For the HUHPM-BA network, we get the function relationship of power index =
with d/r as:

1 A
HHUHPM _ 3 fl=—o"" —+ Ay (formulal). (11)

Adjusting relevant parameters, one can make 5 another function of d/r:

1
B = a d (12)
_ _r _ _r
Yo+ A1 | 1 —exp 5 + A3 | 1—exp "y

Then, from Eqgs. (9)—(12) we can get another function of v and d/r:

d
VEXHPM =7 + A1 * |1 —exp _AL +Asx [1—exp |- (formula 2),
2

d
T
Ay

(13)
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where 79 = 3. The parameters for Egs. (11) and (13) (formulas 1 and 2) are listed
in Appendix A (see Table 1). As shown in Fig. 3(a), the theoretical results coincide
well with the numerical curves for corresponding different parameters.

In the same way, we can get the v and d/r relation for HUHPM-BBV and
HUHPM-TDE by considering the change of § and w, respectively. The power expo-
nent v of the HUHPM-BBV model is given by

Ay

—————T +4
(%)

46 +

exp

HUHPM __
¥ =

BBV %51 (formula 3), (14)

and another is

e (1o (L)) e o ()

BBV 25 + 1

formula 4),
(15)

where parameters for different ¢ are also given in Appendix 1 (see Table 1); while
the HUHPM-TDE # is given by

Ay m
roe L =1+x{ [T+ W+(A4_2) S0 tm (formula 5),
exp || =
p A,
(16)
and
g -

(formula 6), (17)

where the strength of node s kX and y = 1 for HUHPM-BBYV and y is related
to w for HUHPM-TDE [24]. Relevant parameters Ay, Aa, A3, A4 are also given in
Appendix A (Table 1).

Figure 3 shows the power-law exponent 7 versus the log(d/r) by comparing the
numerical simulation result with the theoretical results of Eqs. (11), (13) and (16).
We see that for two typical networks, (a) HUHPM-BBV and (b) HUHPM-TDE,
under different parameters (see Table 1), the simulation results are consistent with
the theoretical results. Moreover, for all three HUHPM models, their power-law
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exponent has quite a complicated relation with the hybrid ratio d/r, which is beyond
the simple relations in the corresponding original models. This reflects either mutual
competition or the harmonious unification between DPA and RPA. Furthermore,
the HUHPM-BBV and HUHPM-TDE models are related to § or w, respectively,
which is closely connected to the architecture producing the network. This makes

the relationship more complicated.

The power-law exponent « versus the log(d/r), comparing simulation results with theoret-

ical results: (a) the HUHPM-BBYV and (b) the HUHPM-TDE, where N = 6,000 and m = mg = 3.
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5. Small World Effect for HUHPM — Short APL

The SW effect discovered by Watts and Strogatz [1,4, 5] has both short APL and
large ACC. In fact, this SW phenomenon is similar to a famous poem of the Tang
dynasty in ancient China: “It is as neighbor as his hand and as remote as a star”,
which might demonstrate a wonderful and surprising prediction regarding the SW
phenomenon in society and philosophy. It is very interesting that the previously
proposed HUHPM network also merits these two SW characteristics, very short
APL and very big ACC, except that their power exponent distributions are sensitive
to the hybrid ratio. Below, we discuss these two characteristics using the computed
results and comparison with other models.

5.1. The relation of APL with the hybrid ratio d/r

Figure 4(a) shows the relation between the shortest APL, L, and the hybrid
ratio d/r for the three kinds of different preferential attachment orders (HPAS-
1 ~ 3). One can see that L is not influenced by the orders. For the HUHPM-
BA model, the change of L with the ratio d/r has three stages: for the first
stage, d/r < 1/100, randomness dominates: L slowly drops, and is almost invari-
able near 3.7. In the second stage, 1/100 < d/r < 1/1, the value of L rapidly
drops from 3.7 to 2.3, randomness gradually approaches the same proportion as
that of determination, and d/r approaches the threshold value of d/r = 1/1.
Therefore, the shortest APL change is extreme. This is the very natural ten-
dency. In the third stage, 1/1 < d/r < oo, determination starts to dominate. The
L value drops extremely slowly: from 2.3 it drops to 2 until it becomes invari-
able and arrives at the shortest APL, which is the shortest distance between
the two most closely connected neighbor nodes. The SW effect is prominently
evident.

For the HUHPM networks, by numerical simulation, the relation between L and
d/r is obtained from

Iy =1l
d (e8]
(%)

a
where [y = 3.79754, [ = 1.99859, a = 0.21263, o = 1.07902 for HUHPM-BA.
Equation (18) shows that the shortest APL basically decreases with the power
function of the hybrid ratio d/r and comes close to 2 after d/r > 10/1. This
demonstrates that in the complete determination connection, the shortest APL

L=1+ (18)

is two nodes apart.

Figures 4(b) and (c), respectively, show for the HUHPM-BBV model (for 6 > 0)
and the HUHPM-TDE model (for w < 1) the relation between L and d/r, where
each network size is N = 6,000 and m = mg = 3. From Figs. 4(b) and (c), one
can see that the HUHPM-BBV and HUHPM-TDE networks have similar relations
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under three different HPAS orders, (b) the HUHPM-BBV model (6 > 1), and (c) the HUHPM-
TDE model (w < 1), where N = 6,000 and m = mg = 3.
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Fig. 5. The relation between L and ~ for HUHPM-TDE by comparing of the numerical curve
with Eq. (19).

between L and d/r to the HUHPM-BA network. When 6 = 0 and w = 0, they
are both reduced to HUHPM-BA model completely. However, they also show some
new characteristics. For the HUHPM-BBV model, when § > 1, the curve appears
as the small V glyph, which means that the existing minimum L, corresponding to
d/r nearly at 10, is when 0 is bigger, and L is smaller. For the HUHPM-TDE model
w < 1, when d/r increases; w becomes bigger, and L becomes smaller. This fully
explains why HUHPM-TDE has the SW effect and demonstrates that HUHPM-
TDE is closer to the actual network than the original TDE model.

5.2. The relation of APL with N

Here, we study numerically the relation of the APL with the network scale size IV
in detail. Theoretically, we get the interesting conclusion that L decreases as « (or
d/r) increases. This is because the present shortest L is a function of ~, and ~ is
also the function of d/r; therefore, L depends on d/r. If v rises as d/r increases,
then L drops along as v increases. In fact, from the common random graph APL
formula [26], considering the determination factor possibly having the influence, if
we choose N = 6,000 and m = 3 for the HUHPM-TDE, we have

9
1 _ - —— +8.6192
HUHM n[(’y_g’)} 9(7_1)+ 1
lrpg - (7) = 1733 + 5 (19)

This is represented by Fig. 5, which shows the relationship between L and ~ for
the HUHPM-TDE network. The result is quite consistent with the numerical curve.
For HUHPM-BA and HUHPM-BBYV, similar results are obtained.
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In addition, we get some fit unification formulas representing the relations of
note strength and edged weight with weight parameters for the HUHPM-BBV and
HUHPM-TDE networks, respectively, as follows:

HUHPM _ Ay — A JHUHPM _ Ay — A

1+t —————
) + ﬂ w w + d_/T‘ w
Az As
where Ay, As, A3, Ay are some constants (see Appendix C; Table 3). These formulas
imply again that the power laws of the node strength and edged weight distributions

strongly depend on the hybrid ratio and there is quite a complex relation between
the hybrid ratio and their weight parameters.

~

6. The Second SW Effect and Comparisons with Others

The second SW effect is the big average clustering coefficient (ACC) C. This
describes a local organized topological quantity for complex networks [1,4, 5]. The
big ACC means that the local network partial group degree is higher. In the
HUHPM models, the ACC depends not only on the network architecture parame-
ter, but also on the hybrid ratio. Theoretically, for the HUHPM models, we find a
ACC formula:

C=cat (e —c)/{L+[(d/r)/c3)]?}, (20)

where the parameters ¢y, ca, ¢, q for three typical networks, HUHPM-BA, HUHPM-
BBV and HUHPM-TDE, are given in Appendix B (see Table 2), respectively.

6.1. The relation between C and d/r

Figure 6 shows the relationship between ACC and d/r for the three types of
HUHPM network. From Fig. 6, one can see that three stages for the three cases
coexist. Interestingly, they are opposite to the previous curve of L and d/r, and
show a mirror image relation, which is the anti-symmetric curve. For Fig. 6(a),
the HUHPM-BA model, the first stage is at d/r < 1/10, corresponding to ran-
domness dominating; then C' < 0.1 is a very small constant. For the second stage,
1/10 < d/r < 10/1, C rapidly rises from 0.2 to 0.9, and d/r = 1/1; C arrives at 0.5.
For 10/1 < d/r < 100/1, C rises to 0.98. During this period, determination plays a
leading role. In the third stage, 100/1 < d/r < oo, C' approaches 1 from 0.98 and
remains constant.

For Fig. 6(b), the behavior of the HUHPM-BBV model is like the HUHPM-BA
model: with increasing J, C' approaches 0.16 and then has the same behavior in
the next two stages as HUHPM-BA. For Fig. 6(c), the HUHPM-TDE model, the
behavior is similar to the HUHPM-BBYV model, except when w > 1 increases, C' is
bigger than HUHPM-BBYV, about C' > 0.4. But in the third stage, C'is smaller than
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Fig. 6. The relation of ACC with d/r and compared simulation results with theoretical results.
(a) the HUHPM-BA network, (b) the HUHPM-BBV network, (¢) the HUHPM-TDE network for
w < 1.
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the HUHPM-BA and HUHPM-BBYV models, about 0.8, and continuously decreases
as w increases.

6.2. Comparing the small-world effects of the HUHPM
with other models

By comparing the APL with network size N for the three kinds of models (the
HUHPM, the original BA model and the random graph model) Fig. 7(a) shows the
APL of HUHPM to be the shortest. The block is the result for the random graph
model; its L value is the biggest. The dot is the result for the original BA model;
its L value is the second biggest. The asterisk is the result for Eq. (60) in Ref. 12,
whose L value is the middle. The triangle is the HUHPM-BA result; the L value
is the smallest. This explains once more that HUHPM can reduce the APL for the
same size N, achieving the smallest APL compared with other networks.

10 B Random graph

® BA model

g} * Ea(60)inRef[9]
4« HUHPM-BA

6
=
: |
2 2 3 4 5 6
10 10 10 10 10
N
(a)
101
10—2.
10° @B model
et —a B Random graph
1077 % HUHPM-BA
1g° L : :
102 103 1014 10°
N

(b)

Fig. 7. Comparing small-world effects of the HUHPM with other models. (a) illustrates that
when d/r =1 and (k) = 4, using the HUHPM-BA method to obtain APL is shortest. The brown
(triangle number) is the HUHPM-BA result; the asterisk is the result of Eq. (60) in Ref. 12; the
circle is the result of the original BA model; the block is the result of random graph. (b) is a
similar comparison between ACC and N for the HUHPM-BA, random graph and original BA
models.
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Figure 7(b) compares the ACC with the network size N for the three kinds
of models (HUHPM, the original BA model and the random graph model). One
can see that the ACC of HUHPM-BA network is biggest. The block is the result
for the random graph model; its C' value is the smallest. The dot is the result
for the original BA model; its C' value is the second biggest. The asterisk is the
result of HUHPM-BA, whose C' value is the biggest. This explains once more that
the HUHPM can really enhance the ACC for the same level size N, achieving the
biggest ACC compared with other networks.

7. Effect of Hybrid Ratio on Entropy Characteristics of HUHPM

Entropy is another important characteristic quantity for statistical mechanics.
What role does entropy play in complex networks? What is the effect of the hybrid
ratio on the entropy characteristics of HUHPM? We will use the entropy concept
proposed by Boltzmann and Gibbs: the entropy of a system is defined by the so-
called Boltzmann-Gibbs entropy (BGS):

oo
BGS = —k Y _ P(i)In P(i) (21)
i=1
with the normalization condition >_;, P(i) = 1, where P(i) is the probability of the
system being in the ith microstate, and k is the Boltzmann constant. Without loss of
generality, one can also arbitrarily assume k& = 1. We can use the BGS to measure
the relationship between entropy and d/r, as well as the power exponent . We
will study the effects of hybrid entropy on un-weighted HUHPM-BA and weighted
HUHPM-BBYV, respectively.

7.1. For the HUHPM-BA

To compute the entropy, based on Egs. (10) and (11), we consider the approximation
Pk) = 2m3 L~ (3+1). (22)

Using formulas (21), (11) and (22), we have the theoretical curves of BGS versus

d/r and BGS versus 7, as shown in Figs. 8(a) and (b). The corresponding results

from numerical simulation are shown in Figs. 8(c) and (d). Comparing the results
implies that the theoretical results are consistent with the simulation results.

7.2. For the weighted HUHPM-BBV

Similarly, for the weighted HUHPM-BBYV model, to compute the entropy, we have
the approximation
1

m'F ﬂkH% .
Using formulas (21), (16) and (23), we obtain the curves for BGS versus d/r, and
BGS versus v, as shown in Figs. 9(a) and (b). The corresponding results from

P(k) = (23)

numerical simulation are shown in Figs. 9(c) and (d).
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Fig. 8. BGS versus d/r and v with network size N = 2,000, m = 1, 3,5. (a) and (b) Theoretical
results for BGS. (¢) and (d) Numerical simulation results.

It is found from Figs. 8 and 9 that BGS decreases as d/r increases and the
current of the BGS along with hybrid ratio d/r or exponent v of the power-law
is consistent. These results can provide a better understanding of the evolution
characteristics in growing HUHPM complex networks.

8. Assortativity Coefficient and Synchronizability

The effects of hybrid ratio on assortative mixing and synchronizability in complex
networks are also interesting problems [25-29]. The amount of assortative mixing
can be quantified by the assortativity coefficient r,., which measures the tendency
of nodes to be connected to other nodes. Our numerical simulations were shown
in Ref. 30, where there were three stages in the HUHPM, which is similar to the
APL versus d/r, but the values of r,. are negative. For the same value of d/r,
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Fig. 9. BGS versus d/r and v with N = 2,000, m = 5. (a) and (b) Theoretical results for BGS.
(c) and (d) Numerical simulation results.

the r,. decreases with the increase of the value of the strength parameter ¢ for the
HUHPM-BBYV networks. However, for HUHPM-TDE, r,. decreases as the weight
parameter w increases for d/r < 1/1, and r4. increases as w increases for d/r > 1/1.
Theoretically, we obtain the following complex relationship between r,. and d/r:

et on () o () s o ()

(24)

For HUHPM-BA, the parameters are 1o = —0.9977, A;; = 0.06264, Ao =
51.53277, As; = 0.23651, Ass = 0.56142, A3y = 0.62374, A3z = 0.99036. Sim-
ilar relationships for the HUHPM-BBV and the HUHPM-TDE models are also
obtained with different parameter values. Our study demonstrates that the the-
oretical results are quite consistent with numerical simulation results. The above
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three types of HUHPM network have a bigger assortativity coefficient, which is
strongly affected by the hybrid ratio d/r.

We have also investigated the effect of the hybrid ratio d/r on dynamical syn-
chronizability for the HUHPM networks [30]. The main conclusion is that the syn-
chronizability of the HUHP-BBYV network is enhanced if the hybrid ratio increases
and the HUHPM network satisfies the so-called type-I synchronization condition,
while the synchronizability of the HUHP-BBV network is weakened if it satis-
fies the type-II synchronization condition. Therefore, the synchronizability of the
HUHPM networks is affected by the hybrid ratio and the synchronization condition.
The results above are useful for comprehensively understanding the relationship
between the topology properties and the dynamical synchronization behaviors for
un-weighted and weighted complex networks.

9. Conclusions

The above analysis and simulation results have shown that the proposed HUHPM
is suitable for many types of un-weighted and weighted networks, and theoretical
results are in good agreement with numerical results. We have discovered some uni-
versal laws, such as: the SF power exponents have high sensitivity to or dependence
on the hybrid ratio d/r; the HUHPM models have the shortest APL; and the prop-
erties of the biggest ACC and the bigger negative r,.. The APL, ACC and r,. are
also greatly affected by the hybrid ratio d/r. One may also adjust APL and ACC
by changing d/r. This situation is easily understood since when the hybrid ratio
d/r > 1, the determinism in the network dominates, which results in more orders
to grow the evolution network.

We have shown that all the characteristics of HUHPM models are much closer
to those of real networks. The results demonstrate that, although the RPA is the
main mechanism to produce the distributed power law function, the DPA also
plays a vital role that can suppress and eliminate the heavy tail. The decrease
of BGS entropy of the HUHPM models as the hybrid ratio increases enhances
the self-organization of the HUHPM networks. The HUHPM models can cause
randomness and determinism to arrive at harmonious unification, which shows that
they are general and succinct models. We believe that HUHPM networks reveal
more essential mechanisms for producing both the SF and SW properties in many
actual networks. Hence, further applications for more widespread types of network
are possible as mentioned in introduction.

Theoretical analysis of the HUHPM networks is still an open problem, and there
are some extremely challenging problems for further study.
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Appendix B

Table 2. The parameters in three models ACC calculation, Eq. (20).

Control variable and parameters Parameters
Model d/r & w c1 c2 c3 Q

HUHPM-BA Yes 0.00543  0.99482  0.94419  1.11489

HUHPM-BBV  Yes 1 0.12267  0.99959  0.46742  0.92043
Yes 2 0.25161  0.99115  0.40904 1.07934
Yes 4 0.39859  0.99497  0.29878  1.0556
Yes 5 0.43949  0.99567 0.27692  1.07346

HUHPM-TDE  Yes 0.05 0.07608  0.96411 0.66542  0.9254
Yes 0.3 0.11867  0.963 0.56915  0.94334
Yes 0.7 0.2102 0.97282  0.54682  0.96281
Yes 0.9 0.25726  0.97951  0.55727  0.95256

Appendix C

Table 3. A list of parameters for calculating the following unification formulas for rela-
tion of note strength and edged weight with weight parameters for the HUHPM-BBV and
HUHPM-TDE networks: 7HJHPM = Ay + —2224L and AJIUHPM = 4, 4 —A2-d1

4 4 4
(%) v (%)

Note strength ) w Ay Ao As Ay
HUHPM-BBV 1 3.3907 2.46797 10.26797 1.26369
2 3.40326 1.56594 5.71113 1.20425
4 3.40545 —0.24169 3.26233 1.27381
5 3.41523 —1.18226 2.38293 1.16523
HUHPM-TDE 0.05 5.47342 5.3528 311.78088 0.69321
0.3 4.63495 4.14145 15.59356 0.69766
0.5 4.28291 3.65149 5.16327 0.90909
0.7 4.07814 3.28238 6.29068 0.69083
Edged weight ) w A1 Ao As Ay
HUHPM-BBV 1 3.54233 2.96284 1.22954 0.61649
2 3.58692 2.55352 0.63613 0.56226
4 3.67373 1.46053 0.25329 0.48664
5 3.79415 0.67369 0.09348 0.32562
HUHPM-TDE 0.5 5.34441 4.4737 4.7959 0.51529
0.7 5.29593 3.80841 14.4665 0.621

0.9 5.08979 3.24461 14.08361 0.42047




Toward a Harmonious Unifying Hybrid Model for Any Evolving Complex Networks 141

References

1
2
3

=~

]
]
]
]

S

TE R R R R R e
00, N S O O N O O 00

DN =

NSNS

w

Watts, D. J. and Strogatz, S. H., Nature (London) 393 (1998) 440.

Barabdsi, A.-L. and Albert, R., Science 286 (1999) 509.

Barabési, A.-L., Albert, R. and Jeong, H., Physica A 272 (1999) 173.

Watts, D. J., Small Worlds: The Dynamics of Networks between Order and Random-
ness (Princeton University, Princeton, NJ, 1999).

Watts, D. J., Siz Degrees: The Science of a Connected Age (Norton, New York, 2003).
Buchanan, M., Nexus: Small Worlds and the Groundbreaking Science of Networks
(Norton, New York, 2002), p. 235.

Wilson, E. O., Consilience (New York, Knopf, 1998), p. 48.

Newman, M. E. J. and Watts, D. J., Phys. Lett. A 263 (1999) 341-346.

Albert, R., Jeong, H. and Barabdsi, A.-L., Nature (London) 401 (1999) 130.
Albert, R., Jeong, H. and Barabdsi, A.-L., Nature (London) 406 (2000) 378.
Albert, R., Jeong, H. and Barabdsi, A.-L., Nature (London) 409 (E 2001) 542.
Albert, R. and Barabdsi, A. L., Rev. Mod. Phys. 74 (2002) 47.

Newman, M. E. J., Moore, C. and Watts, D. J., Phys. Rev. Lett. 84, (2000) 3201.
Newman, M. E. J., Phys. Rev. E 64 (2001) 016132.

Strogatz, S. H., Nature (London) 410 (2001) 268.

Albert, R. and Barabési, A. L., Phys. Rev. Lett. 85 (2000) 5234.

Newman, E. J., Strogatz, S. H. and Watts, D. J., Phys. Rev. E 64 (2001) 026118.
Dorogovtsev, S. N. and Mendes, J. F. F., Evolution of Networks (Oxford University
Press, 2003).

Dorogovtsev, S. N. et al., Phys. Rev. Lett. 85 (2000) 5234.

Barabdsi, A. L., Dezso, Z. and Bonabeau, E., Sci. Am. 288 (2003) 60.

Barrat, A., Barthelemy, M. and Vespignani, A., Phys. Rev. Lett. 92 (2004) 228701.
Barrat, A. Barthelemy, M. and Vespignani, A., Phys. Rev. E 70 (2004) 066149.
Almaas, E., Kovacs, B., Viscek, T., Oltval, Z. N. and Barabasi, A. L., Nature (London)
427 (2004) 839.

Wang, W. X. et al., Phys. Rev. Lett. 94 (2005) 188702.

Chavez, M., Hwang, D.-U. Amann, A. Hentschel, H. G. E. and Boccaletti, S., Phys.
Rev. Lett. 94 (2005) 218701.

Motter, A. E., Zhou, C. and Kurths, J., Phys. Rev. E, 71 (2005) 016116.

Newman, M. E. J., Phys. Rev. Lett. 89 (2002) 208701.

Newman, M. E. J., Phys. Rev. E 70 (2004) 056131.

Yao, X. Zhang, C.-S., Chen, J-W. and Li, Y.-D., Physica A 353 (2005) 661.

Lu, X. B., Wang, X. F. and Fang, J. Q., Physica A 371 (2006) 841-850.





