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Abstract—In this paper, we develop a new effective multiple kernel learning

algorithm. First, we map the input data into m different feature spaces by

m empirical kernels, where each generated feature space is taken as one view of

the input space. Then, through borrowing the motivating argument from Canonical

Correlation Analysis (CCA) that can maximally correlate the m views in the

transformed coordinates, we introduce a special term called Inter-Function

Similarity Loss RIFSL into the existing regularization framework so as to guarantee

the agreement of multiview outputs. In implementation, we select the Modification

of Ho-Kashyap algorithm with Squared approximation of the misclassification

errors (MHKS) as the incorporated paradigm and the experimental results on

benchmark data sets demonstrate the feasibility and effectiveness of the proposed

algorithm named MultiK-MHKS.

Index Terms—Multiple kernel learning, canonical correlation analysis,

regularization learning, modified Ho-Kashyap algorithm, single learning process,

pattern recognition.

Ç

1 INTRODUCTION

KERNEL-BASED learning algorithms [22], [26], [30] work through
mapping the input data X into a feature space F , � : X ! F , where
the mapping � is represented by introducing a kernel. In practice,
the types and the parameters of the kernels must be selected. In the
literature, such a selection is often considered as the open problem of
“model selection.” For a given application, there may be multiple
kernels as the candidates which can possess different types and
parameters. The kernel selected from the candidates can yield a
model with good performance. Such a selection, equivalently to
model selection, can usually be achieved by some methods of
optimizing kernels such as Cross Validation (CV) or Leave-One-Out
(LOO) [4], [21]. However, these methods are computationally
expensive when dealing with a large number of kernel types or
parameters. Even the kernel selected by these optimization methods
also can not be guaranteed optimal in some cases. Further, since the
selected kernel is single and fixed, it can only characterize the
geometrical structure of some aspects for the input data and, thus,
not always be fit for the applications which involve multiple,
heterogeneous data sources [27].

Recently, a so-called Multiple Kernel Learning (MKL) method
[3], [7], [10], [14], [15], [23] have shown the necessity to consider
multiple kernels or the combination of kernels rather than a single
fixed kernel. Generally, MKL tries to form an ensemble of kernels so
as to be fit for a certain application. It has been proven that MKL can
offer some needed flexibility and well manipulate the case that
involves multiple, heterogeneous data sources [1], [27], [2]. Since
MKL considers multiple kernels, it can be effectively employed for
the heterogeneous data sources under the common framework of
kernel learning. To a certain extent, MKL also relaxes the model
selection about kernels. Lanckriet et al. [15] constructed a convex

Quadratically Constrained Quadratic Program (QCQP) by the conic
combinations of multiple kernels K ¼

P
i �iKi from a library of

candidate kernels Ki, and showed that their method can combine
multiple possible heterogeneous data sources and moreover
emphasize those most useful sources in a given application, such
as the genomic data fusion [14]. Then, in order to extend Lanckriet
et al.’s method to large-scale problems, Bach et al. [1] took the dual
formulation of QCQP as a Second-Order Cone Programming
(SOCP) problem, and Sonnenburg et al. [27], [28] reconstructed
QCQP as a semi-infinite linear program that recycles the standard
Support Vector Machine (SVM) implementations [30]. On the other
hand, Bennett et al. [2] and Bi et al. [3], respectively, utilized a
boosting approach to achieve the combinations of kernels, and
showed that such a combination can incorporate and potentially
extract domain knowledge from the heterogeneous sources.
Further, de Diego et al. [7], [8], [20] built a kernel matrix from a
collection of kernels through quantifying the difference of informa-
tion among the kernels and their methods have been successfully
evaluated for classification.

In this paper, we continue the study on MKL. Different from the
existing MKL algorithms which mainly consider the convex
combination of multiple kernels, we borrow an argument from
Canonical Correlation Analysis (CCA) to develop a new MKL
method, whose underlying motivations and contributions are:

. With m kernels, a given input data can be mapped into
m feature spaces, where each feature space can be taken as
one view of the original input data. Each view is expected to
exhibit some geometrical structures of the original data
from its own perspective such that all the m views can
complement for the subsequent learning task. How to
embed such a complementarity into one learning process
becomes our aim.

CCA [12] is generally adopted to evaluate the linear
correlations between two sets of multidimensional vari-
ables. It works by finding two basis vectors for two sets of
variables such that the correlation between the projections of
the variables onto their corresponding basis vectors is
mutually maximized. For a given application that involves
two views which both contain the common information, but
individually represent in different and specific sets of
features, CCA is expected to denoise the individual views
and give the common relevant information [9], which is why
CCA as a preprocessing step can improve the performance of
the subsequent classification algorithm [17]. Thus, consider-
ing the characteristic of CCA, we try to exploit CCA so as to
embed the complementarity provided by them views of the
input data into one single learning process. However, CCA
[12] itself is only fit for two sets of variables and them here is
more than two. Moreover, the generalization of CCA [11] for
more than two sets of variables usually leads to a relatively
high complexity in seeking its solution since it employs the
way by maximizing all the correlations between the
projections of the pairwise views or, equivalently, minimiz-
ing the objective function

Pm
k;l¼1;k6¼lkSðkÞW ðkÞ�SðlÞW ðlÞk2

F
1
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1. The input data fxigNi¼1 � IRd can be explicitly mapped into m feature

spaces withm kernels (see Section 2.2). Then, define the mapped data in each

view as f�e
l ðxiÞg

N
i¼1 � IRnl , l ¼ 1 . . .m, where nl is the dimensionality of each

feature space. By SðlÞ ¼ ½�eT
l ðx1Þ; . . . ; �eT

l ðxN Þ� 2 IRN�nl , l ¼ 1 . . .m, we can

get the m views of the input data fxigNi¼1 in matrix form fSð1Þ; . . . ; SðmÞg. The

transformation matrices W ðlÞ 2 Rnl�q , l ¼ 1 . . .m are wanted such that the

correlations between all the pairwise views SðkÞ and SðlÞ are mutually

maximized, i.e., maximizing
Pm

k;l¼1;k6¼l TrðW ðkÞT SðkÞT SðlÞW ðlÞÞ, where q is the

dimensionality of each view after transformation. Further, maximizingPm
k;l¼1;k 6¼l T rðW ðkÞT SðkÞT SðlÞW ðlÞÞ can be transformed into a distance mini-

mization problem min
Pm

k;l¼1;k6¼l kSðkÞW ðkÞ � SðlÞW ðlÞk2
F . If unfolding the latter

objective, both the optimization are equivalent and can be solved by singular

value decomposition [11].
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that contains mðm�1Þ
2 terms. It is a complexity that urges us to

simplify the formulation so as to form a new CCA called
NmCCA. NmCCA makes the projection of each view onto
their corresponding basis vectors maximally close to the
average projection of all the views, i.e., minimizing the
objective function

Pm
k¼1 kSðkÞW ðkÞ� 1

m

Pm
l¼1 S

ðlÞW ðlÞk2
F that

not only reduces the number of the terms in the objective
function from mðm�1Þ

2 [11] to m but also satisfies the
inequality2

Xm
k¼1

kSðkÞW ðkÞ � 1

m

Xm
l¼1

SðlÞW ðlÞk2
F

�
Xm

k;l¼1;k6¼l
kSðkÞW ðkÞ � SðlÞW ðlÞk2

F :

. In practice, instead of the general Implicit Kernel Mapping

(IKM) [22], [26] in kernel-based methods, we adopt

Empirical Kernel Mapping (EKM) [25], [31] that explicitly

maps the input data into m different feature spaces (also

called m views) by the given m kernels and then exploit

NmCCA to embed the complementarity provided by the

m views into a new regularization learning that is expected

to effectively improve the generalization of classifiers. The

classical regularization framework as an effective and

popular method for boosting generalization [5], [16], [30]

attempts to obtain the classifier f by minimizing the

following function:

RðfÞ ¼ RempðfÞ þ cRregðfÞ; ð1Þ

where RempðfÞ is the empirical risk term, RregðfÞ represents
the regularization term that penalizes the roughness or
smoothness of f [5], and c � 0 is a regularization parameter
that controls the trade-off between RempðfÞ and RregðfÞ.
Then, with NmCCA that makes the projection of each view
onto their corresponding basis vectors maximally close
to the average projection of all the views, i.e., minimizingPm

k¼1 kSðkÞW ðkÞ � 1
m

Pm
l¼1 S

ðlÞW ðlÞk2
F , as a result, we con-

struct a new term called Inter-Function Similarity Loss
RIFSL and introduce it into RðfÞ with the purpose to make
all the givenm classifiers fl corresponding to them views of
the common labels achieve as much agreement on their
outputs as possible. Consequently, we obtain the final
decision function F defined as F ¼ 1

m

Pm
l¼1 fl by minimizing

the objective function added the new term as follows:

RðF Þ ¼
Xm
l¼1

½RempðflÞ þ clRregðflÞ� þ �RIFSLðF Þ; ð2Þ

where RIFSLðF Þ ¼
Pm

l¼1ðfl � 1
m

Pm
j¼1 fjÞ

2 plays a role of the
agreement penalization on the outputs of multiple fl and
� � 0 is a factor controlling the trade-off between RIFSLðF Þ
and RðflÞ.

. The base classifier fl of (2) in fact can be any one coincidental
to the learning framework (1). In learning, we focus on the
Modification of Ho-Kashyap algorithm with Squared
approximation of the misclassification errors (MHKS)
proposed by £eski [16] as the base paradigm fl mainly due
to: 1) MHKS falls into the regularization framework (1),
2) MHKS employs a modification of the gradient descent
with a heuristic update-rule and, thus, it is relatively simple
for obtaining the minimizer to the objective function (2), and
3) the experiments in Section 3 have validated that the
proposed MKL algorithm MultiK-MHKS in the framework

(2) can achieve the convergence within a few training
iterations.

. Finally, we should state that from the angle of RIFSLðF Þ, it

seems not directly to relate NmCCA. Though RIFSLðF Þ
itself indeed can make the outputs of multiple fl achieve as

much agreement as possible so as to reduce the output

variance of the model, in fact, RIFSLðF Þ is exactly induced

through borrowing a motivating argument from NmCCA.

NmCCA not only guarantees to correlate among multiple

views, but also is an interesting byproduct with a relatively

simpler formulation than CCA [11]. Thus, NmCCA

deserves a separate extended study in future.

The rest of this paper is organized as follows: In Section 2, we
give the description of the implemental algorithm named MultiK-
MHKS in the proposed learning framework (2). In Section 3, the
experimental results on some benchmark data sets have shown the
feasibility and effectiveness of MultiK-MHKS. Finally, both conclu-
sion and future work are given in Section 4.

2 FUSION OF NMCCA INTO REGULARIZATION

LEARNING

This section discusses how to introduce the spirit of NmCCA into
the regularization learning framework (1) with m kernels. In order
to theoretically demonstrate the feasibility of our idea, we select the
Modification of Ho-Kashyap algorithm with Squared approxima-
tion of the misclassification errors (MHKS) [16] as the learning
incorporated paradigm, and then develop a new MKL algorithm
named MultiK-MHKS.

2.1 MHKS Algorithm

Suppose that there are N labeled training samples fðxi; ’iÞgNi¼1

available, where xi 2 IRd and its corresponding class label
’i 2 fþ1;�1g. In MHKS [16], the decision function

gðxiÞ ¼ ~!Txi þ !0; ð3Þ

is obtained by optimizing the criterion

min
!2IRdþ1

;bN�1�0

I ¼ ðY !� 1N�1 � bN�1ÞT ðY !� 1N�1

� bN�1Þ þ c~!T ~!;

ð4Þ

where ~! 2 IRd, !0 2 IR in (3) are the weight vector and the
bias, respectively, the augmented weight vector ! ¼ ½~!T ; !0�

T
,

the matrix Y is defined as Y ¼ ½’1ðx1
T ; 1Þ; . . . ;’N ðxNT ; 1Þ�, 1N�1

represents the vector of N dimension with all entries equal to 1 and
bN�1 represents the vector with all entries equal to nonnegative
values, the scalar c � 0 2 IR. In (4), the terms ðY !� 1N�1 �
bN�1ÞT ðY !� 1N�1 � bN�1Þ and ~!T ~! correspond to RempðfÞ and
RregðfÞ of (1), respectively, and the c is the regularization parameter.
The elaborate description about MHKS can be found in [16].

2.2 Proposed MultiK-MHKS Algorithm

In our method, given N training samples fðxi; ’iÞgNi¼1 with

m kernels, we can map each sample xi, i.e., �l : X ! F nl
l , l ¼

1 . . .m by different kernels from the input space into the

m corresponding feature spaces fFnl
l g

m
l¼1, each of which has

nl dimension. The aim of our method is to work by fully considering

all the m feature spaces.
Traditionally, the mapping � is implicitly represented by

specifying a kernel function as the inner product between each
pair of samples in the feature space [22], [26]. For the sample set
fxigNi¼1, X denotes the N � d sample matrix where each row is the
vector xTi , and K ¼ ½kerij�N�N denotes the N �N kernel matrix
where kerij ¼ �ðxiÞ � �ðxjÞ ¼ kerðxi; xjÞ. K is a symmetrical posi-
tive-semidefinite matrix. Conversely, the mapping � in this paper,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008 349

2. The inequality can be easily proven by the algebra that the objective

function
Pm

i¼1 sikxi � ak
2 with the variable a has a unique minimizer

a ¼
Pm

i¼1
sixiPm

i¼1
si

. In this case, si ¼ 1.
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is given in an explicit form as describe in [31]. If the rank of K is r,
the kernel matrix K can be decomposed as

KN�N ¼ QN�r�r�rQ
T
r�N; ð5Þ

where � is a diagonal matrix consisting of the r positive
eigenvalues of K and Q consists of the corresponding orthonormal
eigenvectors. Thus, the explicit mapping also called the Empirical
Kernel Mapping (EKM) in [25], [31], is given as �e : X ! F r

x! ��1=2QT ½kerðx; x1Þ; . . . ; kerðx; xN Þ�T : ð6Þ

Let B ¼ KQ��1=2, and then the dot product matrix of f�eðxiÞgNi¼1

generated by EKM can be calculated as

BBT ¼ KQ��1=2��1=2QTK ¼ K: ð7Þ

That is exactly equal to the kernel matrix in the Implicit Kernel
Mapping (IKM), and, thus, the mapped samples generated by
EKM and IKM, respectively, have the same geometrical structure.
In [25], [31], it is shown that comparing EKM with IKM, the former
is easier to access and easier to study the adaptability of a kernel to
the input space than the latter. That is why we select EKM here.

In the MKL problem here, the set of samples fxigNi¼1 is explicitly
mapped into the set fð�e

1ðxiÞ; . . . ;�e
l ðxiÞ; . . . ;�e

mðxiÞÞg
N
i¼1, where

each �e
l , also called one view of the original input space,

corresponds to one kernel. Then, through borrowing the motivating
argument from NmCCA that makes the projection of each view

maximally close to the average projection of all the views, we give
the fusion of NmCCA with MHKS in the framework (2). Concretely,

MHKS is carried out in each view and meanwhile all the MHKSs are

fused into one single process by the spirit of NmCCA. Thus, we can
get the following optimization problem:

min
!l2IR

nlþ1

l¼1...m;bl�0;

L ¼
Xm
l¼1

�
ðYl!l � 1N�1 � blÞT ðYl!l � 1N�1 � blÞ

þ cl ~!Tl ~!l

�
þ �

Xm
l¼1

�
Yl!l �

1

m

Xm
j¼1

Yj!j

�T�
Yl!l �

1

m

Xm
j¼1

Yj!j

�
;

ð8Þ

where Yl, !l, ~!l, bl correspond to one MHKS in one view that is
determined by the corresponding fð�e

l ðxiÞ; ’iÞg
N
i¼1. In the right-

hand side of (8), the first term corresponds to the principle of

MHKSs in m views. Minimizing the second term characterizes that
the outputs of each view fð�e

l ðxiÞ; ’iÞg
N
i¼1 onto their corresponding

weight vector !l are constrained to be maximally close to the
average outputs of all the views, which is induced from NmCCA.

In the framework (2), we have given the final decision function

F defined as F ¼ 1
m

Pm
l¼1 fl. Here, the !l, l ¼ 1 . . .m need to be

solved by minimizing the objective function (8). It can be found

that the optimization problem (8) with respect to the single !l is

convex [6] while !j, j 6¼ l is fixed. Thus, we solve !l in a sequence
l ¼ 1 . . .m and employ a modification of the gradient descent with
a heuristic update-rule for each !l. Now, making the gradient of L
with respect to !l be zero, we can obtain

!l¼
��

1þ�m� 1

m

�
Y T
l Ylþcl ~I

��1

Y T
l

�
bl þ 1N�1þ�

1

m

Xm
j¼1;j6¼l

Yj!j

�
;

ð9Þ

where ~I is a diagonal matrix with full 1s except the last element set
to zero.

In the lth view, it can be noted that !l depends on bl from (9).
Then, by differentiating L with respect to bl and setting the result
equal to zero, we can get

el ¼ Yl!l � bl � 1N�1 ¼ 0: ð10Þ

From (10), the components of bl determine the distance from
samples to the separating hyperplane, and thus play a similar role to
the relaxation variables in SVM [30]. In order to guarantee that the
samples are correctly classified in the lth view, the components of bl
need to be nonnegative. Thus, we employ the iterative algorithm for
determining !l and bl analogously to [16]. First, with bkl represent-
ing the vector bl at the kth iteration, we initialize b1

l � 0, then keep
bkl � 0 at each iteration k and, thus, obtain

b1
l � 0

bkþ1
l ¼ bkl þ �lðekl þ jekl jÞ;

(
ð11Þ

where at the kth iteration, the error vector of the lth view ekl is
defined as ekl ¼ Yl!kl � bkl � 1N�1 and the learning rate of the
lth view �l > 0. Then, !kþ1

l can be given by (9). In practice, the
termination criterion can be designed as kLkþ1�Lkk2 � �. The
designed procedure is termed as MultiK-MHKS and summarized
in Table 1.

Using the obtained weight vector !l, l ¼ 1 . . .m, we can give the
decision function of MultiK-MHKS for the input patten z with its
corresponding mapped patterns f�e

l ðzÞg
m
l¼1:

F ðzÞ ¼ 1

m

Xm
l¼1

!Tl ½�eT
l ðzÞ; 1�

T > 0; then z 2 classþ 1
< 0; then z 2 class� 1:

�
ð12Þ

Further, it can be found that in Algorithm MultiK-MHKS, the
update of !kþ1

l is determined by !kj , j ¼ 1 . . .m, j 6¼ l as shown in
(9), which reflects that these views cooperate each other. Moreover,
if m ¼ 1, � ¼ 0 of (8), MultiK-MHKS is degenerated to MHKS and
so MHKS is the special instance of MultiK-MHKS. Finally, it
should be stated that compared with IKM, EKM loses the sparsity
[22] and, thus, our method also inherits the nonsparsity induced
from EKM. We plan to address it completely in future work.
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TABLE 1
Algorithm MultiK-MHKS

Authorized licensed use limited to: SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS. Downloaded on March 09,2010 at 03:15:15 EST from IEEE Xplore.  Restrictions apply. 

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
矩形



3 EXPERIMENTS

In our experiments, the candidate kernels are linear kernel

kerðxi; xjÞ ¼ xTi xj, RBF kernel kerðxi; xjÞ ¼ expð� kxi�xjk
2
2

2�2 Þ where �

is set to the average value of all the l2-norm distances kxi � xjk2, i,

j ¼ 1 . . .N as used in [29], and polynomial kernel kerðxi; xjÞ ¼
ðxTi xj þ 1Þd where d is set to 2, respectively. Thus, the number of the

generated views m is set to 3 in all the experiments. For MultiK-

MHKS, the margin vector bl is initialized to 10�6, the � in the

termination criterions is fixed to 10�3, the parameter � is set to 0.99,

and the !l, l ¼ 2 . . .m are initialized to one unit vector, respectively.

For MHKS, the b, �, � are initialized by the same setting as MultiK-

MHKS. Both the regularization parameter c and � in MHKS and

MultiK-MHKS are selected from the set f2�4; 2�3; . . . ; 23; 24g.
Benchmark data sets used here are Soybean (35 Attributes/

4 Classes/47 Samples), Balance (4/3/625), Water (38/2/116), Sonar

(60/2/208), Wdbc (30/2/569), Diabetes (8/2/768), Iris (4/3/150),

Wine (12/3/178), Letters (16/26/20000), and Segmentation (19/7/

2310, denoted as “Segment.” for short on Tables 2 and 3),

respectively, which are obtained from http://www.ics.uci.edu/

~mlearn/MLRepository.html. Meanwhile, ORL face database

(28� 23=40=400) available at http://www.cam-orl.co.uk is also

used. The one-against-one classification strategy [13] is adopted for

multiclass problems.

3.1 Influence of Parameter � on MultiK-MHKS’s
Performance

Compared with MHKS on the single kernel, MultiK-MHKS
introduces one additional parameter � as shown in (8). In order
to show the influence of � on classification, we give the cross-
validation (10-fold) accuracies on the validation set as a function of
� on Wine, Diabetes, Sonar, Water, and Soybean as shown in Fig. 1.
From the figure, it can be found that the choice of � plays an
important role in terms of the accuracy. The similar phenomenon
can also be obtained on the other data sets used. Consequently, in
the following experiments, we give the classification performance
based on the optimal � by the Cross Validation.

3.2 Classification Performance Comparison

In order to demonstrate the effectiveness of the proposed algorithm,
the MHKS algorithm based on the single kernel and two kinds of
combination (denoted as CCAþMHKS1 and CCAþMHKS2,
respectively) are carried out, where all the candidate kernels (linear,
RBF, and polynomial) are used. CCAþMHKS1 shown in Fig. 2a
means that the m transformed feature vectors will be concatenated
into one ensemble vector, and then MHKS will be implemented with
such an ensemble vector. CCAþMHKS2 shown in Fig. 2b means
thatmMHKS algorithms are separately carried out in them feature
spaces, respectively, and then combined by the majority voting
technique. In addition, the other two MKL algorithms denoted as
MKL [27] and SVM-2K [9], respectively, are both compared with our
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TABLE 2
Classification Performance (Percent) and the t-test Comparison between MultiK-MHKS, CCA+MHKS, MHKS, MKL [27], SVM-2K [9], SVM1 on the

Single Kernel and SVM2 on the Long Feature-Vector Obtained from Concatenating All Single Feature-Space Representations

(Note: In “AðBÞ,” “A” denotes the classification accuracy and “B” assesses whether the classification performance of the corresponding algorithm is statistically different
from that of MultiK-MHKS. “B	” represents that the difference between the two algorithms is not significant at 5 percent significance level, i.e., B	 < 1:7341. For different
algorithms, the best, second best, third best results are boldface, italic, and underlined, respectively.)

TABLE 3
Training Time (in Seconds) Comparison between MultiK-MHKS, CCA+MHKS, MHKS, MKL [27], SVM-2K [9], SVM1 on the Single Kernel and SVM2

on the Long Feature-Vector Obtained from Concatenating All Single Feature-Space Representations
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method. Since SVM-2K only can deal with two kernels in one
learning process, we give the best accuracy corresponding to the
optimal combination from the three candidate kernels for all the
data sets. Finally, we also give the best performance of the state-of-
the-art SVM on the single kernel ðSVM1Þ and the long feature-vector
obtained from concatenating all the single feature-space representa-
tions ðSVM2Þ similar to CCAþMHKS1. Each of all the used data sets
is divided into the two no-overlapping parts with the one for
training and the other one for testing. Then, for each such
classification problem, 10 independent runs are performed and
their classification accuracies on the test sets are averaged and
reported in Table 2, where for the different algorithms, the best,
second best, and third best results are boldface, italic, and under-
lined, respectively. From Table 2, it can be found that there is a clear
improvement in the classification performance of MultiK-MHKS
over MHKS based on the single kernel and the two kinds of
CCA+MHKS. Compared with MKL [27] and SVM-2K [9], MultiK-
MHKS also has a comparable or superior performance here. On the
whole, on all the used data sets only except Diabetes, MultiK-MHKS
gets the first or second place. Even on the Diabetes, MultiK-MHKS
also has the comparable performance to the best method SVM1 (only
less by 0.06 percent).

For further finding out whether the proposed MultiK-MHKS is
significantly better than the other compared algorithms in Table 2,
we implement t-test [19] on the classification results of the 10 runs
to calculate the statistical significance of MultiK-MHKS. The null
hypothesis H0 demonstrates that there is no significant difference
between the mean number of samples correctly classified by
MultiK-MHKS and the other compared algorithms here. The t-test
values are also listed in Table 2, from which we can clearly find
that the hypothesis H0 is rejected at the 5 percent significance level,
i.e., the t-test value � 1:7341 on MHKS, CCAþMHKS1 and

CCAþMHKS2 in almost all the used data sets. That means that
the proposed fusion of CCA with MHKS in one single learning
process possesses significantly superior classification performance
to the combinations (CCAþMHKS1 and CCAþMHKS2) and
MHKS, which exactly validates the effectiveness of our method.
Meanwhile, compared with the other MKL algorithms (MKL [27]
and SVM-2K [9]) and SVM, MultiK-MHKS also shows a compar-
able or superior performance in statistics.

3.3 Running Time Comparison

In this section, the training time of MultiK-MHKS and the compared
algorithms (CCAþMHKS1, CCAþMHKS2, MHKS, MKL [27],
SVM-2K [9], SVM1, and SVM2) with their optimal parameters in
10 runs is reported in Table 3. All the computations are performed
on Pentium IV 2.80 GHz processor running Windows 2000 Terminal
and MATLAB environment. From Table 3, although MultiK-MHKS
has a longer running time than MHKS on most of the data sets due to
multiple kernels used, our method has a shorter running time with
respect to the separate processes: CCAþMHKS1 and CCAþ
MHKS2 on most cases, especially on Letters. Further, compared
with the other algorithms except MKL [27], it can also be noted that
MultiK-MHKS has the competitive efficiency in computation.

3.4 Convergence Analysis

In this section, we give a discussion on the convergence of the
proposed MultiK-MHKS. The previous section has stated that the
optimization problem (8) with respect to a single !l is convex. But,
the designed algorithm shown in Table 1 employs a modification
of the gradient descent for each !l, l ¼ 1 . . .m. Thus, it supposes
that the sequential !l differs slightly near the optimum solution
[16]. Here, due to some theoretical difficulties in proving
convergence, we adopt an empirical justification as used in [32]
to demonstrate that MultiK-MHKS can converge in the limited
iterations. Fig. 3 shows the natural logarithm value of the objective
function (8) changes with the iteration number of MultiK-MHKS,
respectively, on the binary-class data sets: Diabetes, Sonar, the
second versus third classes of Iris, Water, and Wdbc. From the
figure, it can be found that the optimization target (8) on these data
sets can obviously converge to stable values, where less than
10 iterations are usually enough to achieve convergence.

4 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel MKL algorithm. Different from
the existing MKL algorithms which mainly work by the convex
combination of multiple kernels, the new algorithm adopts the
spirit of CCA to fuse multiple views generated by multiple kernels
into one single learning process such that one given algorithm in
all the views can agree as much as possible on the outputs. In
practice, by borrowing the motivating argument from NmCCA
that is a new formulation for CCA in multiview case, we introduce
an additional term called Inter-Function Similarity Loss RIFSL into
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Fig. 1. Cross-validation (10-fold) accuracies on Wine, Diabetes, Sonar, Water, and

Soybean as a function of parameter � for MultiK-MHKS.

Fig. 2. (a) CCAþMHKS1 combined in the feature level. (b) CCAþMHKS2 combined in the decision level.
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the regularization learning. Then, with the fusion of RIFSL and the
original MHKS algorithm, a new MKL algorithm named MultiK-
MHKS is developed. The experiments here illustrate that MultiK-
MHKS is feasible and effective.

Motivated by the fact that the kernelization of CCA as a

preprocessing step can improve the subsequent classification

performance, Farquhar et al. [9] proposed the SVM-2K algorithm

that combines the two stage learning (KCCA followed by SVM) into

one single optimization. The main differences between our method

and SVM-2K lie in: 1) that our method adopts EKM and SVM-2K

employs IKM. It has been proven that EKM in the current

presentation (6) has the same geometrical structure as IKM. But,

our method is more general because EKM defined as (6) can naturally

be replaced with a general proximity relation mapping [24], which

need neither be Mercer kernels nor be limited to only one feature

space, 2) given the data withm views, SVM-2K can only manipulate

two views, but our method can deal with more than two views. Thus,

SVM-2K can be regarded as a special case of our method if SVM is

selected as the base paradigm instead of MHKS in (2), and 3) MultiK-

MHKS has a comparable or superior classification performance to

SVM-2K as validated in the experiments. However, due to EKM

used here, our method also inherits the nonsparsity induced from

EKM, which results in a bad scale with the size of data sets.
In future, we plan to: 1) make a separate study of the byproduct

NmCCA derived here, 2) choose a subset of the full training data to

define an approximate EKM in (6) for reducing the computation

analogous to the work [18], and 3) generalize RIFSL into SVM in

the proposed framework (2) for a deeper study.
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Fig. 3. Convergence of MultiK-MHKS on the natural logarithm value of the

objective function (8).
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