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MONOTONICITY METHODS IN PDE
ZUJIN ZHANG

ABSTRACT. In this paper, we renormalize the huts 5.1.3 and 6.1.1 in [1],
so as to be more accessible, see more details in [4]. Roughly speaking,
monotonicity is the natural substitution of convexity in building solutions

of PDE.
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1. Minty-Browder method in L?. In this hut, we introduce the mono-
tonicity method due to Minty and Browder. As as illustrative problem, we

consider the following quasi-linear PDE :

—div (E(Du)) = f, in U,
u=0, ondl,

(1

where E : R" — R" is given.
Observe that (1) can be solved by calculations of variations in case E =

DF for some convex F : R" — R.
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Our problem is then what natural conditions on E so that (1) may be

directly tackled, when E is no longer the gradient of a convex function.

This is the work of Minty and Browder, who give

Definition 1. A vector field E on R" is called monotone if

(E(p)-E@) - (p—q) 20,V p,qgeR’,

and show (1) can be tacitly worked out as

2)

Theorem 2. Assume E is monotone and satisfies the growth condition

|[E(p)l < CA +|pl), peR™

Let {u,} € Hé(U ) be weak solutions of the approximating problems

—div (E(Dw,)) = fi, inU,
u, =0, onoU,

with fi, — fin L*(U).

Suppose u, — uin Hé(U). Then u is a weak solution of (1).

Proof. We first write down

0

IA

f [E(Du;) — E(Dv)] [Du;, — Dv]dx (Monotonicity)
U

f [few = fiv — E(Dv)(Dw, — Dv)] dx, ¥ v € Hy(U)
U

(integration by parts and weak formulation) .
Then taking k — oo yields
0< f [f(u—v)— E(Dv)-(Du— Dv)]dx.
U
Choosingv =u + Aw, with 1 e R, w € Hé(U ) furthermore gives

0< sgn(/l)f [E(Du + ADw) - Dw — fw]dx.
U

3)
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Passing 4 — 0 finally, we have as desired

0= f [E(Du) - Dv — fw]dx, ¥ w € H}(U).
U

2. Minty-Browder method in L*. We consider the strong solutions of
PDE , instead of weak solutions in (1). Hence the Minty-Browder method
moves from L? to L*.

To illustrate how it works, let us consider the following fully nonlinear
PDE:
F(D*u) = f, inU,
u=0, ondl,

4)

where F : §" — R is given. Here S™" is the space of real, symmetric

n X n matrices.

Definition 3. The problem (4) is elliptic, if F is monotone decreasing

with respect to matrix ordering on S"™", and so
F(S)<F(R), ifS >R, S,Re S™". (5)

Remark 4. This very definition of ellipticity, coincides with the classical

ones. In fact, we say PDE
Tr[A:D"]1=f

is elliptic if A is a non-positive definite symmetric matrix. One then readily

verifies
S >R = S — R non-negative definite
= Tr[A:(S-R]<0

= Tr[A:S]<Tr[A:R], S,ReS™".
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Now, suppose f; — f uniformly, and consider the approximating prob-
lems
F(Du) = fr, inU,
u, =0, ondU.

(6)

Assume (6) has a smooth solution u, a priori bounded in W>*(U). Then,

up to a subsequence,
uy — u uniformly, D?uy X Duin LX(U; S™™),

for some u.

Our problem is then: does u satisfies (4)?

If F is uniformly elliptic and convex, then strong estimates are available
and passing to limit is simple, see [3]. The main interest is consequently for
the nonconvex F, as in hut 1.

Recall that in hut 1, the main assumption leading to the existence of a
weak solution is the monotonicity inequality (2). We shall then furnish a
similar monotonicity in this current circumstance, replacing the ellipticity
of F.

For this purpose, we need

Proposition S. Let (X, ||:||) be a Banach space. Then the limit

o lg S - llgl?
L=l 24

(7)

exists forall f,g € X.

Proof. Writing

llg + AfI° = ligll® _ llg+Afl+ gl g + Af1 — llgll
24 2 A ’

llg + Af1 — llgll
1

we need only show that { } is bounded from below and
>0

increasing in A. In fact, we have



MONOTONICITY METHODS IN PDE 5

llg + AfI —llgll _ —allfl _

1 ; > ——— == IIfl;
2. for0 <A< 2,
g + A1 = ligl [l + ]| - ligl
1 A
e+ 2ar] - Al - [lag + aaf]| + Aligll
- A1
|- D] - A-Dligl _
N A1 -

O
Remark 6. In case X is a Hilbert space, | f, g| is simply the inner product.
We now give an useful property of [-, -] as

Proposition 7. The map X X X 3 {f, g} — [ f, g] is upper semicontinous,

that is,

limsup [, .] < [f. 8], ©)

n—oo

forall f,geX, f, > f, g. > ginX.

+ Afll -
Proof. Observe that in the proof of (7), we have {w} 1S
>0

A
increasing in A, for f, g € X fixed.

Thus
nt A n ? - n 2
limsup[f,,g,] = limsup /llir(r)l lg f2lll g, |
_ g { | llgn + ASull +1Igull llgn + Afall = IIgnII]}
= limsup{ lim .
Nn—s00 A1-0, 2 A

o . Ign + ASull = ligall
= 111:1 sup [Ilgnll 1153 p

nt A nll — n
< el timsup 18 AR =gl

n—oo A
+ Af]| -

< llell- llg + A1l IIgII, VA 0.

A
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Taking 1 — 0,, we obtain

llg + Af1 = llgll
A

2 o2
_ lim llg + Af1" = llgll
A—04 Z/l

= [f.gl.

limsup [f,,8.] = llgll- lim

n—oo

Then an explicit formula in case X = C(U) as
Proposition 8. Let X = C(U), then

(£ 8] = max{f(x0)g(x0): Xo € T.Ig(x0)| = llglleay ) - £+ € C(D).
Proof. Denote by

My = {x € Us 1h(0l = [} h e C(D).
Then

1. due to

2 2 2 2
s + VTNl (00 2 O8O _ ), v €

we have

[f,g] = RHS of (9).

2. for any sequence {4,} \, 0, x, € Mgy, ¢,

llg + . f1° = ligll® o (gl + . f (n)” = g(x)’
24, - 24,

An
= f(xn)g(xn) + ?f(xn)z

9)

= f(Xe0)8(Xe), as n — oo, (10)

for some U 3 xo « X,.
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Meanwhile, taking n — oo in

lg(xn) + A f (x| = llg + Au Sl
gives
lg(xea)l = llgll-
This together with (10) shows that
[f,g] < RHS of (9).
The proof is then completed. O

With this explicit formula for [ f, g], we show that monotonicity is a con-

sequence of ellipticity as
Proposition 9. If F is convex, then the operator Alu] = F(D*u) satisfies
0 < [Alu] = A[v],u—v], Y u,v e CyU). (11)
Here C}(U) is the subspace of C*(U), with vanishing boundary data.
Proof. Suppose (1 —v) (xo) = |lu = Vllcg), Xo € U, then

D*(u—v)(x9) <0
= F(D*u)(xy) > F(D*)(xo) (by ellipticity)
= [Alu] - Alv],u—v] = (F(D*u) - F(D*)) (x0) - (u = v) (x0) 2 0,

by invoking (9).

The case (v — u) (xo) = |lu — Vll¢(g), Xo € U is similarly treated. O

With all the above preparations above, we now state and prove our main

result in this hut.
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Theorem 10. Consider problem (4) and its approximating problems (6).

If Alu] = F(D?u) satisfies the monotonicity inequality:
0 < [Alu] = A[v],u—v], Y u,v € C5(D). (12)
Then u solves (4) a.e..

Proof. 1. For the approximating solution {u;}, we have

0

IA

[Alue] = A[v], e = V]

IA

[fi — AV], we — v], ¥ v € C3(DO).

Taking k — co upon a subsequence, we obtain by invoking (8) that

0<[f-ADllLu—-v], YveCiO). (13)
2. Our strategy to prove u solves (4) is then to choose appropriate v in
(13).

In fact, since u € W>*(U), Rademacher’s theorem (see [2, 5]) im-
plies then u is C? a.e.. Fix any x, € U where D*u(x) exists. We
handcraft a C? function v having the form

= u(xo) + Du(xo)(x — xo) .
- , ., Xnear Xo;
+3D%u(xp)(x — X9, X — Xo) + &|x — xo” — 1
i xeou; (9
€ (u(x) - %, u(x) + %) , otherwise.

(The & > 0 is chosen so that u — v looks like a parabola for x near x;.)
Then |u — V| attains its maximum over U only at x,. But then (13) and

(9) say (f — A[u]) (xo) = 0, that is,
f(x0) 2 F (D*u(xo) + 2¢l).
Sending € — 0., we find

f(xo0) = F(D*u(xp)).
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The opposite inequality follows by replacing € |x — xo[*—1 by —g|x — xo*+

1 in (13). Consequently, we have
F(D?u(xy)) = f(x0), a.e.xy € U.
O
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Yin at Sun Yat-sen University, in particular Dr. Liu’s lectures on the mono-

llg + Af1 — llgll
A

} in the proof of (7), setting forth the
>0
simple observation of the proof of (8) by the author through suffering two

tone property of {

misleading applications of L’ Hospital’s law in calculus.
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