MONOTONICITY METHODS IN PDE

ZUJIN ZHANG

Abstract

In this paper, we renormalize the huts 5.1.3 and 6.1.1 in [1], so as to be more accessible, see more details in [4]. Roughly speaking, monotonicity is the natural substitution of convexity in building solutions of PDE .

Contents

1. Minty-Browder method in $L^{2} 1$
2. Minty-Browder method in $L^{\infty} 2$

Acknowledgements 8
REFERENCES 9

1. Minty-Browder method in L^{2}. In this hut, we introduce the monotonicity method due to Minty and Browder. As as illustrative problem, we consider the following quasi-linear $P D E$:

$$
\left\{\begin{array}{rlr}
-\operatorname{div}(\boldsymbol{E}(D u))=f, & \text { in } U, \tag{1}\\
u=0, & \text { on } \partial U,
\end{array}\right.
$$

where $\boldsymbol{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given.
Observe that (1) can be solved by calculations of variations in case $\boldsymbol{E}=$ $D F$ for some convex $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Key words and phrases. Monotonicity method, weak convergence method.

Our problem is then what natural conditions on \boldsymbol{E} so that (1) may be directly tackled, when \boldsymbol{E} is no longer the gradient of a convex function.

This is the work of Minty and Browder, who give

Definition 1. A vector field \boldsymbol{E} on \mathbb{R}^{n} is called monotone if

$$
\begin{equation*}
(\boldsymbol{E}(p)-\boldsymbol{E}(q)) \cdot(p-q) \geq 0, \forall p, q \in \mathbb{R}^{n}, \tag{2}
\end{equation*}
$$

and show (1) can be tacitly worked out as

Theorem 2. Assume \boldsymbol{E} is monotone and satisfies the growth condition $|\boldsymbol{E}(p)| \leq C(1+|p|), p \in \mathbb{R}^{n}$.

Let $\left\{u_{k}\right\} \in H_{0}^{1}(U)$ be weak solutions of the approximating problems

$$
\left\{\begin{align*}
-\operatorname{div}\left(\boldsymbol{E}\left(D u_{k}\right)\right)=f_{k}, & \text { in } U \tag{3}\\
u_{k}=0, & \text { on } \partial U
\end{align*}\right.
$$

with $f_{k} \rightarrow f$ in $L^{2}(U)$.
Suppose $u_{k} \rightharpoonup u$ in $H_{0}^{1}(U)$. Then u is a weak solution of (1).

Proof. We first write down

$$
\begin{aligned}
0 & \leq \int_{U}\left[\boldsymbol{E}\left(D u_{k}\right)-\boldsymbol{E}(D v)\right]\left[D u_{k}-D v\right] d x \text { (Monotonicity) } \\
& =\int_{U}\left[f_{k} u_{k}-f_{k} v-\boldsymbol{E}(D v)\left(D u_{k}-D v\right)\right] d x, \forall v \in H_{0}^{1}(U)
\end{aligned}
$$

(integration by parts and weak formulation).

Then taking $k \rightarrow \infty$ yields

$$
0 \leq \int_{U}[f(u-v)-\boldsymbol{E}(D v) \cdot(D u-D v)] d x
$$

Choosing $v=u+\lambda w$, with $\lambda \in \mathbb{R}, w \in H_{0}^{1}(U)$ furthermore gives

$$
0 \leq \operatorname{sgn}(\lambda) \int_{U}[\boldsymbol{E}(D u+\lambda D w) \cdot D w-f w] d x
$$

Passing $\lambda \rightarrow 0$ finally, we have as desired

$$
0=\int_{U}[\boldsymbol{E}(D u) \cdot D v-f w] d x, \forall w \in H_{0}^{1}(U)
$$

2. Minty-Browder method in L^{∞}. We consider the strong solutions of PDE , instead of weak solutions in (1). Hence the Minty-Browder method moves from L^{2} to L^{∞}.

To illustrate how it works, let us consider the following fully nonlinear PDE:

$$
\left\{\begin{align*}
F\left(D^{2} u\right)=f, & \text { in } U, \tag{4}\\
u=0, & \text { on } \partial U,
\end{align*}\right.
$$

where $F: S^{n \times n} \rightarrow \mathbb{R}$ is given. Here $S^{n \times n}$ is the space of real, symmetric $n \times n$ matrices.

Definition 3. The problem (4) is elliptic, if F is monotone decreasing with respect to matrix ordering on $S^{n \times n}$, and so

$$
\begin{equation*}
F(S) \leq F(R), \text { if } S \geq R, S, R \in S^{n \times n} \tag{5}
\end{equation*}
$$

Remark 4. This very definition of ellipticity, coincides with the classical ones. In fact, we say PDE

$$
\operatorname{Tr}\left[A: D^{u}\right]=f
$$

is elliptic if A is a non-positive definite symmetric matrix. One then readily verifies

$$
\begin{aligned}
S \geq R & \Rightarrow S-R \text { non-negative definite } \\
& \Rightarrow \operatorname{Tr}[A:(S-R)] \leq 0 \\
& \Rightarrow \operatorname{Tr}[A: S] \leq \operatorname{Tr}[A: R], S, R \in S^{n \times n} .
\end{aligned}
$$

Now, suppose $f_{k} \rightarrow f$ uniformly, and consider the approximating problems

$$
\left\{\begin{align*}
F\left(D u_{k}\right)=f_{k}, & \text { in } U, \tag{6}\\
u_{k}=0, & \text { on } \partial U
\end{align*}\right.
$$

Assume (6) has a smooth solution u_{k}, a priori bounded in $W^{2, \infty}(U)$. Then, up to a subsequence,

$$
u_{k} \rightarrow u \text { uniformly, } D^{2} u_{k} \stackrel{*}{\rightharpoonup} D^{2} u \text { in } L^{\infty}\left(U ; S^{n \times n}\right),
$$

for some u.
Our problem is then: does u satisfies (4)?
If F is uniformly elliptic and convex, then strong estimates are available and passing to limit is simple, see [3]. The main interest is consequently for the nonconvex F, as in hut 1 .

Recall that in hut 1 , the main assumption leading to the existence of a weak solution is the monotonicity inequality (2). We shall then furnish a similar monotonicity in this current circumstance, replacing the ellipticity of F.

For this purpose, we need

Proposition 5. Let $(X,\|\cdot\|)$ be a Banach space. Then the limit

$$
\begin{equation*}
[f, g]=\lim _{\lambda \rightarrow 0_{+}} \frac{\|g+\lambda f\|^{2}-\|g\|^{2}}{2 \lambda} \tag{7}
\end{equation*}
$$

exists for all $f, g \in X$.

Proof. Writing

$$
\frac{\|g+\lambda f\|^{2}-\|g\|^{2}}{2 \lambda}=\frac{\|g+\lambda f\|+\|g\|}{2} \cdot \frac{\|g+\lambda f\|-\|g\|}{\lambda}
$$

we need only show that $\left\{\frac{\|g+\lambda f\|-\|g\|}{\lambda}\right\}_{\lambda>0}$ is bounded from below and increasing in λ. In fact, we have

1. $\frac{\|g+\lambda f\|-\|g\|}{\lambda} \geq \frac{-\lambda\|f\|}{\lambda}=-\|f\|$;
2. for $0<\lambda<\tilde{\lambda}$,

$$
\begin{aligned}
& \frac{\|g+\lambda f\|-\|g\|}{\lambda}-\frac{\|g+\tilde{\lambda} f\|-\|g\|}{\tilde{\lambda}} \\
= & \frac{\|\tilde{\lambda} g+\lambda \tilde{\lambda} f\|-\tilde{\lambda}\|g\|-\|\lambda g+\lambda \tilde{\lambda} f\|+\lambda\|g\|}{\lambda \tilde{\lambda}} \\
\leq & \frac{\|(\tilde{\lambda}-\lambda) g\|-(\tilde{\lambda}-\lambda)\|g\|}{\lambda \tilde{\lambda}}=0 .
\end{aligned}
$$

Remark 6. In case X is a Hilbert space, $[f, g]$ is simply the inner product.

We now give an useful property of $[\cdot, \cdot]$ as
Proposition 7. The map $X \times X \ni\{f, g\} \mapsto[f, g]$ is upper semicontinous, that is,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[f_{n}, g_{n}\right] \leq[f, g], \tag{8}
\end{equation*}
$$

for all $f, g \in X, f_{n} \rightarrow f, g_{n} \rightarrow g$ in X.
Proof. Observe that in the proof of (7), we have $\left\{\frac{\|g+\lambda f\|-\|f\|}{\lambda}\right\}_{\lambda>0}$ is increasing in λ, for $f, g \in X$ fixed.

Thus

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left[f_{n}, g_{n}\right] & =\limsup _{n \rightarrow \infty} \lim _{\lambda \rightarrow 0_{+}} \frac{\left\|g_{n}+\lambda f_{n}\right\|^{2}-\left\|g_{n}\right\|^{2}}{2 \lambda} \\
& =\limsup _{n \rightarrow \infty}\left\{\lim _{\lambda \rightarrow 0_{+}}\left[\frac{\left\|g_{n}+\lambda f_{n}\right\|+\left\|g_{n}\right\|}{2} \cdot \frac{\left\|g_{n}+\lambda f_{n}\right\|-\left\|g_{n}\right\|}{\lambda}\right]\right\} \\
& =\limsup _{n \rightarrow \infty}\left[\left\|g_{n}\right\| \cdot \lim _{\lambda \rightarrow 0_{+}} \frac{\left\|g_{n}+\lambda f_{n}\right\|-\left\|g_{n}\right\|}{\lambda}\right] \\
& \leq\|g\| \cdot \limsup _{n \rightarrow \infty} \frac{\left\|g_{n}+\lambda f_{n}\right\|-\left\|g_{n}\right\|}{\lambda} \\
& \leq\|g\| \cdot \frac{\|g+\lambda f\|-\|g\|}{\lambda}, \forall \lambda>0
\end{aligned}
$$

Taking $\lambda \rightarrow 0_{+}$, we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left[f_{n}, g_{n}\right] & =\|g\| \cdot \lim _{\lambda \rightarrow 0_{+}} \frac{\|g+\lambda f\|-\|g\|}{\lambda} \\
& =\lim _{\lambda \rightarrow 0_{+}} \frac{\|g+\lambda f\|^{2}-\|g\|^{2}}{2 \lambda} \\
& =[f, g] .
\end{aligned}
$$

Then an explicit formula in case $X=C(\bar{U})$ as

Proposition 8. Let $X=C(\bar{U})$, then

$$
\begin{equation*}
[f, g]=\max \left\{f\left(x_{0}\right) g\left(x_{0}\right) ; x_{0} \in \bar{U},\left|g\left(x_{0}\right)\right|=\|g\|_{C(\bar{U})}\right\}, f, g \in C(\bar{U}) \tag{9}
\end{equation*}
$$

Proof. Denote by

$$
M_{h}=\{x \in \bar{U} ;|h(x)|=\|h\|\}, h \in C(\bar{U}) .
$$

Then

1. due to
$\frac{\|g+\lambda f\|^{2}-\|g\|^{2}}{2 \lambda} \geq \frac{\left(g\left(x_{0}\right)+\lambda f\left(x_{0}\right)\right)^{2}-g\left(x_{0}\right)^{2}}{2 \lambda}=g\left(x_{0}\right) f\left(x_{0}\right), \forall x_{0} \in M_{g}$,
we have

$$
[f, g] \geq R H S \text { of (9). }
$$

2. for any sequence $\left\{\lambda_{n}\right\} \searrow 0, x_{n} \in M_{g+\lambda_{n} f}$,

$$
\begin{align*}
\frac{\left\|g+\lambda_{n} f\right\|^{2}-\|g\|^{2}}{2 \lambda_{n}} & \leq \frac{\left(g\left(x_{n}\right)+\lambda_{n} f\left(x_{n}\right)\right)^{2}-g\left(x_{n}\right)^{2}}{2 \lambda_{n}} \\
& =f\left(x_{n}\right) g\left(x_{n}\right)+\frac{\lambda_{n}}{2} f\left(x_{n}\right)^{2} \\
& \rightarrow f\left(x_{\infty}\right) g\left(x_{\infty}\right), \text { as } n \rightarrow \infty, \tag{10}
\end{align*}
$$

for some $\bar{U} \ni x_{\infty} \leftarrow x_{n}$.

Meanwhile, taking $n \rightarrow \infty$ in

$$
\left|g\left(x_{n}\right)+\lambda_{n} f\left(x_{n}\right)\right|=\left\|g+\lambda_{n} f\right\|
$$

gives

$$
\left|g\left(x_{\infty}\right)\right|=\|g\|
$$

This together with (10) shows that

$$
[f, g] \leq R H S \text { of }(9)
$$

The proof is then completed.
With this explicit formula for $[f, g]$, we show that monotonicity is a consequence of ellipticity as

Proposition 9. If F is convex, then the operator $A[u] \equiv F\left(D^{2} u\right)$ satisfies

$$
\begin{equation*}
0 \leq[A[u]-A[v], u-v], \forall u, v \in C_{0}^{2}(\bar{U}) \tag{11}
\end{equation*}
$$

Here $C_{0}^{2}(\bar{U})$ is the subspace of $C^{2}(\bar{U})$, with vanishing boundary data.

Proof. Suppose $(u-v)\left(x_{0}\right)=\|u-v\|_{C(\bar{U})}, x_{0} \in U$, then

$$
\begin{aligned}
& D^{2}(u-v)\left(x_{0}\right) \leq 0 \\
\Rightarrow & F\left(D^{2} u\right)\left(x_{0}\right) \geq F\left(D^{2} v\right)\left(x_{0}\right)(\text { by ellipticity }) \\
\Rightarrow & {[A[u]-A[v], u-v]=\left(F\left(D^{2} u\right)-F\left(D^{2} v\right)\right)\left(x_{0}\right) \cdot(u-v)\left(x_{0}\right) \geq 0 }
\end{aligned}
$$

by invoking (9).
The case $(v-u)\left(x_{0}\right)=\|u-v\|_{C(\bar{U})}, x_{0} \in U$ is similarly treated.
With all the above preparations above, we now state and prove our main result in this hut.

Theorem 10. Consider problem (4) and its approximating problems (6). If $A[u] \equiv F\left(D^{2} u\right)$ satisfies the monotonicity inequality:

$$
\begin{equation*}
0 \leq[A[u]-A[v], u-v], \forall u, v \in C_{0}^{2}(\bar{U}) . \tag{12}
\end{equation*}
$$

Then u solves (4) a.e..

Proof. 1. For the approximating solution $\left\{u_{k}\right\}$, we have

$$
\begin{aligned}
0 & \leq\left[A\left[u_{k}\right]-A[v], u_{k}-v\right] \\
& \leq\left[f_{k}-A[v], u_{k}-v\right], \forall v \in C_{0}^{2}(\bar{U}) .
\end{aligned}
$$

Taking $k \rightarrow \infty$ upon a subsequence, we obtain by invoking (8) that

$$
\begin{equation*}
0 \leq[f-A[v], u-v], \forall v \in C_{0}^{2}(\bar{U}) . \tag{13}
\end{equation*}
$$

2. Our strategy to prove u solves (4) is then to choose appropriate v in (13).

In fact, since $u \in W^{2, \infty}(U)$, Rademacher's theorem (see [2, 5]) implies then u is C^{2} a.e.. Fix any $x_{0} \in U$ where $D^{2} u\left(x_{0}\right)$ exists. We handcraft a C^{2} function v having the form

$$
v(x) \begin{cases}\quad=u\left(x_{0}\right)+D u\left(x_{0}\right)\left(x-x_{0}\right) & \tag{14}\\ +\frac{1}{2} D^{2} u\left(x_{0}\right)\left(x-x_{0}, x-x_{0}\right)+\varepsilon\left|x-x_{0}\right|^{2}-1, & x \text { near } x_{0} ; \\ =0, & x \in \partial U ; \\ \in\left(u(x)-\frac{1}{2}, u(x)+\frac{1}{2}\right), & \text { otherwise }\end{cases}
$$

(The $\varepsilon>0$ is chosen so that $u-v$ looks like a parabola for x near x_{0}.) Then $|u-v|$ attains its maximum over \bar{U} only at x_{0}. But then (13) and (9) say $(f-A[u])\left(x_{0}\right) \geq 0$, that is,

$$
f\left(x_{0}\right) \geq F\left(D^{2} u\left(x_{0}\right)+2 \varepsilon I\right) .
$$

Sending $\varepsilon \rightarrow 0_{+}$, we find

$$
f\left(x_{0}\right) \geq F\left(D^{2} u\left(x_{0}\right)\right) .
$$

The opposite inequality follows by replacing $\varepsilon\left|x-x_{0}\right|^{2}-1$ by $-\varepsilon\left|x-x_{0}\right|^{2}+$ 1 in (13). Consequently, we have

$$
F\left(D^{2} u\left(x_{0}\right)\right)=f\left(x_{0}\right), \text { a.e. } x_{0} \in U .
$$

Acknowledgements. Thanks are due to the discussion group of Professor Yin at Sun Yat-sen University, in particular Dr. Liu's lectures on the monotone property of $\left\{\frac{\|g+\lambda f\|-\|g\|}{\lambda}\right\}_{\lambda>0}$ in the proof of (7), setting forth the simple observation of the proof of (8) by the author through suffering two misleading applications of L' Hospital's law in calculus.

REFERENCES

[1] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, 74. American Mathematical Society, 1990.
[2] H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York, 1969.
[3] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[4] J.L. Lions, Quelques mthodes de ré solution des problmes aux limites non linaires. Gauthier-Villars, Paris, 1969.
[5] L. Simon, Lectures on geometric measure theory. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China
E-mail address: uia.china@gmail.com

