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0 Differentiable Manifolds
0.1 (Product Manifold). Let M and N be differentiable manifolds and let

{(Uα, xβ)} , {(Vβ, yβ)} differentiable structures on M and N , respectively.
Consider the cartesian product M ×N and the mapping

zαβ(p, q) = (xα(p), yβ(q)), p ∈ Uα, q ∈ Vβ

a) Prove that (Uα × Vβ, zαβ) is a differentiable structure on M ×N in
which the projections π1 : M ×N → M and π2 : M ×N → N are dif-
ferentiable. With this differentiable structure M ×N is called the
product manifold of M with N .

b) Show that the product manifold S1 × · · · × S1 of n circles S1, where
S1 ⊂ R2 has the usual differentiable structure, is diffeomorphic to the
n−torus T n of example 4.9 a).

Proof. a) Clearly,

zαβ : Uα × Vβ → xα(Uα)× yβ(Vβ) ⊂ M ×N

(p, q) 7→ (xα(p), yβ(q))
1
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is injective. Moreover,⋃
α,β

zαβ(Uα × Vβ) =
⋃
α

xα(Uα)×
⋃
β

yβ(Vβ) = M ×N

and if

zαβ(Uα × Vβ) ∩ zγδ(Uγ × Vδ) = W 6= ∅

then

z−1
γδ ◦ zαβ(p, q) = z−1

γδ (xα(p), yβ(q)) = (x−1
γ ◦ xα(p), y−1

δ ◦ yβ(q))

is differentiable. Thus, by definition, with this differentiable structure,
M ×N is a differentiable manifold.

b) Recall Tn = Rn/Zn. Let

F : S1 × · · · × S1 → Tn

(eiαj)n
j=1 7→

(αj

2π
+ nj

)n

j=1

where αj ∈ [0, 2π), nj ∈ Z
We have

• F is injective, since

αj

2π
+ nj =

βj

2π
+ mj ⇒ αj − βj = 2π(mj − nj) ⇒ eiαj = eiβj

• F is surjective, just note that

αj ∈ [0, 2π) ⇒ αj

2π
∈ [0, 1)

• F and F−1 are differentiable, this is proved by a list of graphs.
Indeed, one ”y−1 ◦ F ◦ x” is of the form

f(t) =
arctan t

π
− 1

4

�

0.9 Let G × M → M be a properly discontinuous action of a group G on a
differentiable manifold M .

a) Prove that the manifold M/G (Example 4.8) is oriented if and only
if there exists an orientation of M that is preserved by all the diffeo-
morphisms of G.

b) Use a) to show that the projective plane P 2(R), the Klein bottle and
the Mobius band are non-orientable.

c) Prove that P 2(R) is orientable if and only if n is odd.

Proof. a) if part: Let (Uα, xα) be an orientation of M that is preserved
by all the diffeomorphisms of G, i.e.

W = Uβ ∩ g(Uα) 6= ∅ ⇒ det(x−1
β ◦ g ◦ xα) > 0
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We claim that (π(Uα), π ◦ xα) is an orientation of M/G. Indeed,

π(Uα) ∩ π(Uβ) 6= ∅ ⇒ det((π ◦ xβ)−1 ◦ (π ◦ xα)) = det(x−1
β ◦ g ◦ xα) > 0

for some g ∈ G.
Only if part: We know the atlas of M/G is induced from M , hence
the conclusion follows from the reverse of the ”if part”.

b) Let G = {Id, A} where A is the antipodal map. Recall that

Projective 2− space P 2(R) = S2/G, where S2 = 2− dim sphere

Klein bottle K = T2/G, where T2 = 2− dim torus

Mobius band M = C/G, where C = 2− dim cylinder

Clearly, S2, T2, C are orientable 2−dim manifols, but A reverse the
orientation of R3, hence S2, T2, C. The conclusion follows from a).

c) We’ve the following equivalence:

P n(R)is orientable ⇔ A preserves the orientation of Sn(by a))

⇔ A preserves the orientation of Rn+1

(The orientation is induced from Rn+1)

⇔ (n + 1) is even

⇔ n is odd

�

1 Riemannian Metrics
1.1 Prove that the antipodal mapping A : Sn → Sn given by A(p) = −p is an

isometry of Sn. Use this fact to introduce a Riemannian metric on the real
projective space P n(R) such that the natural projection π : Sn → P n(R) is
a local isometry.

Proof. a) A is an isometry of Sn.
We first claim that TpS

n = TA(p)S
n.

It is enough to prove TpS
n ⊂ TA(p)S

n, since

TA(p)S
n ⊂⊂ TA◦A(p)S

n = TpS
n

Indeed, for any v ∈ TpS
n,∃c : (−ε, ε) → Sn such that c(0) = p, c′(0) =

v. Thus A◦c : (−ε, ε) → Sn is a curve with A◦c(0) = A(p), (A◦c)′(0) =
dAp(c

′(0)) = −c′(0) = −v. Hence −v ∈ TA(p)S
n and v ∈ TA(p)S

n since
TA(p)S

n is a linear space.
Now the fact A is an isometry of Sn is clear.

< dAp(v), dAp(w) >A(p)=< −v,−w >−p=< v,w >−p=< v,w >p

b) Construction of a metric on P n(R) such that π is a local isometry.
For any p ∈ Sn, π(p) ∈ P n(R), define

< (dπ)p(v), (dπ)p(w) >π(p),< v,w >p

Indeed,
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• Because of surjectivity of π and the construction of atlas on
P n(R), the vector ”on” P n(R) is of the form (dπ)p(v), p ∈ Sn, v ∈
Tp(S

n).
• It is well-defined. Indeed,(dπ)p is surjective, thus injective, hence

the one-to-one correspondence between (dπ)p(v) and v. And if
π(p) = π(q), then q = p or q = A(p). In the latter case,

(dπ)p(v) = (d(π ◦ A))p(v) = (dπ)A(p) ◦ (dA)p(v) = (dπ)A(p)(−v)

(dπ)p(w) = (dπ)A(p)(−w)

< −v,−w >A(p)=< v,w >p

• Since the action of G on M is properly continuous, by definition,
π is a local isometry.

�

1.4 A function g : R → R given by g(t) = yt + x, t, x, y ∈ R, y > 0, is called a
proper affine function. The subset of all such function with respect to the
usual composition law forms a Lie group G. As a differentiable manifold G
is simply the upper half-plane {(x, y) ∈ R2; y > 0} with the differentiable
structure induced from R2. Prove that:

a) The left-invariant Riemannian metric on G which at the neutral ele-
ment e = (0, 1) coincides with Euclidean metric(g11 = 1 = g22, g12 =

0 = g21) is given by g11 =
1

y2
= g22, g12 = 0, (this is the metric of the

non-euclidean geometry of Lobatchevski).
b) Putting (x, y) = z = x + i y, i =

√
−1, the transformation

z 7→ z′ =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

is an isometry of G.

Proof. a) • For any g = (x, y) ∈ G, g−1 =

(
−x

y
,
1

y

)
.

Indeed,

y

(
1

y
t− x

y

)
+ x = t =

1

y
(yt + x)− x

y
, ∀t ∈ R

• Denote by

∂1 =
∂

∂x
, ∂2 =

∂

∂y

then

dLg−1(∂1) =

(
1

y
, 0

)
, dLg−1(∂2) =

(
0,

1

y

)
Since

γ(s) = (x + s, y), s ∈ R
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is a curve in G with γ(0) = g, γ′(0) = ∂1, we get

dLg−1(∂1) =
d

ds
|s=0

[
1

y
(yt + x + s)− x

y

]
=

d

ds
|s=0

(
s

y
, 1

)
=

(
1

y
, 0

)
And dLg−1(∂2) =

(
0,

1

y

)
follows from the same lines.

• The left-invariant Riemannian metric of G is given by

< v,w >g, 〈dLg−1(v), dLg−1(w)〉
e

Hence

g11 =

〈(
1

y
, 0

)
,

(
1

y
, 0

)〉
e

=
1

y2

g22 =

〈(
0,

1

y

)
,

(
0,

1

y

)〉
e

=
1

y2

g12 = g21 =

〈(
0,

1

y

)
,

(
1

y
, 0

)〉
e

= 0

as desired.
b) Since {

z = x + i y

z = x− i y

We get

ds2 =
dx2 + dy2

y2
=
−4dzdz′

(z − z)2

Hence for the transform

z 7→ z′ =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

we’ve

dz′ =
dz

(cz + d)2

Thus
−4dz′dz′

(z′ − z′)2
=
−4dzdz

(z − z)2

as desired.
�

1.5 Prove that the isometries of Sn ⊂ Rn, with the induced metric, are the
restrictions of Sn of the linear orthogonal maps of Rn+1.
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Proof. Denote by Iso(Sn), Iso(Rn+1) the isometries of Sn, Rn+1 respectively.
The orthogonal maps of Rn+1 is O(n + 1).
Clearly,O(n+1) ⊂ Iso(Sn) because the metric on Sn is induced from Rn+1.
While for the converse, let f ∈ Iso(Sn), define F : Rn+1 → Rn+1 by

F (x) =

{
0, if x = 0

f
(

x
||x||

)
||x||, if x 6= 0

then F ∈ O(n + 1) since

F (x) ·y = f

(
x

||x||

)
||x|| ·y = f

(
x

||x||

)
y

||y||
||x||||y|| = x

||x||
f

(
y

||y||

)
||x||||y|| = x ·F (y)

if 0 6= x, y ∈ Rn+1. �

2 Affine Connections; Riemannian Connections
2.2 Let X and Y be differentiable vector fields on a Riemannian manifold M .

Let p ∈ M and let c : I → M be an integral curve of X through p, i.e.

c(t0) = p and
dc

dt
= X(c(t)). Prove that the Riemannian connection of M is

(∇XY )(p) =
d

dt
|t=t0(P

−1
c,t0,t(Y (c(t)))

where Pc,t0,t : Tc(t0)M → Tc(t)M is the parallel transport along c, from t0
to t (this show how the connection can be reobtained from the concept of
parallelism).

Proof. Let (ei)
n
i=1 be an orthonormal basis for TpM, ei(t) = Pc,t0,t, i.e. ∇c′(t)ei(t) =

0, thus (ei(t))
n
i=1 is an orthonormal basis for Tc(t)M . Indeed,

∇c′(t) < ei(t), ej(t) >=< ∇c′(t)ei(t), ej(t) > + < ei(t),∇c′(t)ej(t) >= 0

< ei(t), ej(t) >=< ei, ej >= δj
i

Now, we can write

Y (c(t)) = Y i(t)ei(t)

and the calculation as follows

d

dt
|t=t0(P

−1
c,t0,t(Y (c(t))) =

d

dt
|t=t0(P

−1
c,t0,t(Y

i(t)ei(t)))

=
d

dt
|t=t0(Y

i(t)ei)

=
d

dt
|t=t0(Y

i(t))ei

= (∇c′(t)(Y
i(t))ei(t))|t=t0

= (∇c′(t)(Y
i(t)ei(t))|t=t0

= (∇XY )(p)

�
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2.3 Let f : Mn → M
n+k

be an immersion of a differentiable manifold M into
a Riemannian manifold M . Assume that M has the Riemannian metric
induced by f (c.f. Example 2.5 of Chapter 1). Let p ∈ M and let U ⊂ M be
a neighborhood of p such that f(U) ⊂ M is a submanifold of M . Further,
suppose that X, Y are differentiable vector fileds on f(U) which extend to
differentiable vector fields X, Y on an open set of M . Define (∇XY )(p) =
tangential component of ∇XY (p), where ∇ is the Riemannian connection
of M . Prove that ∇ is the Riemannian connection of M .

Proof. Denote by

∇XY = (∇XY )>

then

• ∇ is compatible with the metric on M . For all p ∈ M, f(p) ∈ f(M).

X < Y, Z > (p) = X < Y ,Z > (p)

= < ∇XY , Z > (p)+ < Y ,∇XZ > (p)

= < ∇XY , Z > (p)+ < Y,∇XZ > (p)

= < ∇XY, Z > (p)+ < Y,∇XZ > (p)

• ∇ is torsion-free. For all p ∈ M, f(p) ∈ f(M).

(∇XY −∇Y X)(p) = (∇XY −∇Y X)>(p) = [X, Y ]>(p) = [X, Y ](p)

For the last equality, we see in local coordinate,

[X, Y ]>(p) =

(
n+k∑
i,j=1

{
X

i ∂Y
j

∂xi
− Y

i ∂X
j

∂xi

}
∂

∂xj

)>

(p)

=

(
n∑

i=1

n+k∑
j=1

{
X i ∂Y

j

∂xi
− Y i ∂X

j

∂xi

}
∂

∂xj

)>

(p)

=

(
n∑

i,j=1

{
X i ∂Y j

∂xi
− Y i ∂Xj

∂xi

}
∂

∂xj

)
(p)

= [X, Y ](p)

The third equality holds because ∇XY (p) depends only on X(p) and
Y (c(t)) where c(t) is an integral curve for X through p.

Thus ∇ is the Riemannian connection of M . �

2.8 Consider the upper half-plane

R2
+ =

{
(x, y) ∈ R2; y > 0

}
with the metric given by g11 =

1

y2
= g22, g12 = 0 = g21 ( metric of Lobatchevski’s

non-euclidean geometry ).
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a) Show that the Christoffel symbols of the Riemannian connection are:

Γ1
11 = Γ2

12 = Γ1
22 = 0, Γ2

11 =
1

y
, Γ1

12 = Γ2
22 = −1

y

b) Let v0 = (0, 1) be a tangent vector at point (0, 1) of R2
+ ( v0 is a unit vector

on the y−axis with origin at (0, 1) ). Let v(t) be the parallel transport of
v0 along the curve x = t, y = 1. Show that v(t) makes an angle t with the
direction of y−axis, measured in the clockwise sense.

Proof. a) We’ve

Γk
ij =

1

2
gkl

(
∂gil

∂xj
+

∂glj

∂xi
− ∂gij

∂xl

)
=

y2

2

(
∂gik

∂xj
+

∂gkj

∂xi
− ∂gij

∂xk

)
=

y2

2
· −2

y3

(
∂x2

∂xj
δik +

∂x2

∂xi
δkj −

∂x2

∂xk
δij

)
Thus 

Γ1
11 = Γ2

12 = Γ1
22 = 0

Γ2
11 = 1

y

Γ1
12 = Γ2

22 = − 1
y

b) Let v(t) = (a(t), b(t)) be the parallel field along the curve x = t, y = 1 with

v(0) = (0, 1), v′(0) = v0 = (0, 1)

Then from the geodesic equations,we’ve{
da
dt

+ Γ1
12b = 0

db
dt

+ Γ2
11a = 0

Taking a = cos θ(t), b = sin θ(t) ( since parallel transport preserves inner
product, we may just assume this. ) then the above equations imply

dθ

dt
= −1

While we know v0 = (0, 1), thus

θ0 =
π

2

Hence

θ =
π

2
− t

as desired.
�

3 Geodesics; Convex Neighborhoods
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3.7 (Geodesic frame). Let M be a Riemannian manifold of dimension n and let
p ∈ M . Show that there exists a neighborhood U ⊂ M of p and n vector
fileds E1, · · · , En ∈ X(U), orthonormal at each point of U , such that, at p,
∇Ei

Ej(p) = 0.
Such a family Ei, i = 1, · · · , n, of vector fields is called a (local) geodesic
frame at p.

Proof. Let U = expp(Bε(0)) be a normal neighborhood of p small enough,
(ei)

n
i=1 be an orthonormal basis of TpM . For any q ∈ U , let γ be the radial

geodesic joining p to q. Using parallel transport, we get

Ei ∈ X(U), i = 1, · · · , n

defined by

Ei(q) = Pγ,p,q(ei)

We have

• Ei orthonormal, since parallel transport preserves the inner product;
• ∇Ei

Ej(p) = 0, since ∇vEi = 0,∀v ∈ TpM .

�

3.9 Let M be a Riemannian manifold. Define an operator 4 : D(M) →
D(M)(the Laplacian of M) by

4f = div ∇f, f ∈ D(M)

a) Let Ei be a geodesic frame at p ∈ M, i = 1, · · · , n =dimM(see Exercise
7). Prove that

4f(p) =
∑

i

Ei(Ei(f))(p)

Conclude that if M = Rn, 4 coincides with the usual Laplacian,

namely, 4f =
∑

i

∂2f

∂x2
.

b) Show that

4(f · g) = f4g + g4f + 2 < ∇f,∇g >

Proof. a) Firstly, ∇f(p) =
∑

i Ei(f)Ei(p)

< ∇f, Ei > (p) = dfp(Ei) = Ei(p)f = (Eif)(p)

Secondly, 4f(p) =
∑

i Ei(Ei(f))(p)

4f(p) = (div∇f)(p) = (div(
∑

i

(Eif)Ei))(p) =
∑

i

(∇Ei
(Eif))(p) =

∑
i

Ei(Ei(f))(p)
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Lastly, if M = Rn, since

(
∂

∂xi

)n

i=1

is an orthonormal basis for TpRn,∀p ∈

Rn, we get

4f =
∑

i

∂2f

∂x2
i

b) For p ∈ M , let (Ei)
n
i=1 be a geodesic frame at p ∈ M , then

4(f · g)(p) =
∑

i

Ei(Ei(f · g))(p)

=
∑

i

Ei(g · Eif + f · Eig)(p)

=
∑

i

(Eif · Eig + g · Ei(Eif) + Eif · Eig + f · Ei(Eig))(p)

= (f4g + g4f + 2 < ∇f,∇g >)(p)

The last equality follows from

< ∇f,∇g > (p) =<
∑

i

Ei(f)Ei,
∑

j

Ej(g)Ej > (p) =
∑
i,j

(Eif · Ejg)δij =
∑

i

Eif · Eig

�

4 Curvature
4.7 Prove the 2nd Bianchi Identity:

∇R(X,Y, Z, W, T ) +∇R(X,Y, W, T, Z) +∇R(X,Y, T, Z, W ) = 0

for all X, Y, Z, W, T ∈ X(M).

Proof. Since the objects involved are all tensors, it suffices to prove the
equality at a point p ∈ M . If we choose a geodesic frame (Ei)

n
i=1 at p.

We’ve

∇Ei
Ej(p) = 0, [Ei, Ej](p) = (∇Ei

Ej −∇Ej
Ei)(p) = 0, ∀i, j ∈ {1, · · · , n}

And it suffices to prove in case

X = Ei, Y = Ej, Z = Ek, W = El, T = Em
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also.Hence

∇R(Ei, Ej, Ek, El, Em)(p) = (∇EmR)(Ei, Ej, Ek, El)(p)

(definition)

= ∇Em(R(Ei, Ej, Ek, El))(p)

(Leibniz formula and geodesic frame)

= ∇Em(R(Ek, El, Ei, Ej))(p)

(Riemann connection)

= ∇Em < −∇Ek
∇El

Ei +∇El
∇Ek

Ei +∇[Ek,El]Ei, Ej > (p)

(definition)

= < −∇Em∇Ek
∇El

+∇Em∇El
∇Ek

Ei +∇Em∇[Ek,El]Ei, Ej > (p)

(metric and geodesic frame)

and

R(Ei, Ej, Ek, El, Em)(p) + R(Ei, Ej, El, Em, Ek)(p) + R(Ei, Ej, Em, Ek, El)(p)

= < −∇Em∇Ek
∇El

Ei +∇Em∇El
∇Ek

Ei +∇Em∇[Ek,El]Ei, Ej > (p)

+ < −∇Ek
∇El

∇EmEi +∇Ek
∇Em∇El

Ei +∇Ek
∇[El,Em]Ei, Ej > (p)

+ < −∇El
∇Em∇Ek

Ei +∇El
∇Ek

∇EmEi +∇El
∇[Em,Ek]Ei, Ej > (p)

= < (−∇Em∇Ek
+∇Ek

∇Em +∇[Em,Ek])(∇El
Ei), Ej > (p)

+ < (−∇[Em,Ek]∇El
+∇El

∇[Em,Ek] +∇[[Em,Ek],El])Ei, Ej > (p)

− < ∇[[Em,Ek],El]Ei, Ej > (p)

+ < (−∇El
∇Em +∇Em∇El

+∇[El,Em])(∇Ek
Ei), Ej > (p)

+ < (−∇[El,Em]∇Ek
+∇Ek

∇[El,Em] +∇[[El,Em],Ek])Ei, Ej > (p)

− < ∇[[El,Em],Ek]Ei, Ej > (p)

+ < (−∇Ek
∇El

+∇El
∇Ek

+∇[Ek,El])(∇EmEi), Ej > (p)

+ < (−∇[Ek,El]∇Em +∇Em∇[Ek,El] +∇[[Ek,El],Em])Ei, Ej > (p)

− < ∇[[Ek,El],Em]Ei, Ej > (p)

= R(Em, Ek,∇El
Ei, Ej)(p) + R([Em, Ek], El, Ei, Ej)(p)

+R(El, Em,∇Ek
Ei, Ej)(p) + R([El, Em], Ek, Ei, Ej)(p)

+R(Ek, El,∇EmEi, Ej)(p) + R([Ek, El], Em, Ei, Ej)(p)

− < ∇[[Em,Ek],El]+[[El,Em],Ek]+[[Ek,El],Em]Ei, Ej > (p)(definition)

= 0(geodesic and Jacobi identity)

�

4.8 (Schur’s Theorem). Let Mn be a connected Riemannian manifold with
n ≥ 3.Suppose that M is isotropic, that is, for each p ∈ M , the sectional
curvature K(p, σ) does not depend on σ ⊂ TpM . Prove that M has constant
sectional curvature, that is, K(p, σ) also does not depend on p.
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Proof. For any p ∈ M , choose a geodesic frame (Ei)
n
i=1 at p, i.e. (Ei)

n
i=1

orthonormal in a neighborhood of p and ∇Ei
Ej(p) = 0. Denote by

Rijkl = R(Ei, Ej, Ek, El)(p)

∇mRijkl = (∇EmR)(Ei, Ej, Ek, El)(p) = ∇Em(R(Ei, Ej, Ek, El))(p)

Since the sectional curvature uniquely determines the Riemann curvature,
we’ve:
if K(p, σ) = f(p), then

• Rijkl = f(p)(δikδjl − δilδjk)

• Ricij =
∑

k

Rikjk = f(p)
∑

k

(δij − δikδkj) = (n− 1)f(p)δij

• R =
∑

i

Rii = n(n− 1)f(p)

From the 2nd Bianchi identity,

∇iRijkj +∇kRijji +∇jRijik = 0

Summing over i, j over {1, · · · , n}, one gets∑
i

∇iRik −∇kR +
∑

j

∇jRjk = 0

2
∑

i

∇iRik −∇kR = 0

2(n− 1)∇kf(p)− n(n− 1)∇kf(p) = 0

(n− 2)(n− 1)∇kf(p) = 0

Thus

∇kf(p) = 0, ∀k
since n ≥ 3. Finally,

K(p, σ) = f ≡ Const

since M is connected. �

5 Jacobi Fields
5.3 Let M be a Riemannian manifold with non-positive sectional curvature.

Prove that, for all p, the conjugate locus C(p) is empty.

Proof. For any p ∈ M , if C(p) 6=, i.e. ∃q ∈ C(p), then

∃

{
geodesic γ : [0, a] → M

Jacobi filed J 6= 0
s.t.

{
γ(0) = p, γ(a) = q

J(0) = 0 = J(a)

From the Jacobi equation,

J ′′ + R(γ′, J)γ′ = 0
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We know

< J ′, J >′ = < J ′′, J > + < J ′, J ′ >

= − < R(γ′, J)γ′, J > + < J ′, J ′ >

= −KM(γ′, J)||γ′ ∧ J ||2+ < J ′, J ′ >

≥ 0

Since M is of non-positive sectional curvature. Thus

0 =< J ′(0), J(0) > ≤ < J ′, J > ≤ < J ′(a), J(a) >= 0

< J ′, J >= 0

< J, J >′= 2 < J ′, J >= 0

||J ||2 = ||J(0)|| = 0

A contradiction. �

5.4 Let b < 0 and let M be a manifold with constant negative sectional curvature
equal to b. Let γ : [0, l] → M be a normalized geodesic, and let v ∈ Tγ(l)M
such that < v, γ′(l) >= 0 and let |v| = 1. Since M has negative curvature,
γ(l) is not conjugate to γ(0)(See Exercise 3). Show that the Jacobi field J
along γ determined by J(0) = 0, J(l) = v is given by

J(t) =
sinh(t

√
−b

sinh(l
√
−b)

w(t)

where w(t) is the parallel transport along γ of the vector

w(0) =
u0

|u0|
, u0 = (dexpp)

−1
lγ′(0)(v)

and where u0 is considered as a vector Tγ(0)M by the identification Tγ(0)M ≈
Tlγ′(0)(Tγ(0)M)

Proof. • The Jacobi field J̃ along γ with J̃(0) = 0, J̃ ′(0) = w(0) ∈ Tγ(0)M is
of the form

J̃(t) =
sinh(t

√
−b)√

−b
w(t)

where w(t) is the parallel transport of w(0) along γ.
Indeed, let (Ei)

n
i=1 be an orthonormal basis for Tγ(0)M ,(Ei(t))

n
i=1 be parallel

transport of Ei along γ. Then if we write

J̃(t) =
∑

i

J̃i(t)Ei(t) ∈ Tγ(t)M

w(0) =
∑

i

wiEi ∈ Tγ(0)M
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One gets from the Jacobi equation that
J̃ ′′i (t) + bJ̃i(t) = 0

J̃i(0) = 0

J̃ ′i(0) = wi

Hence

J̃(t) =
sinh(t

√
−b)√

−b
wi

J̃(t) =
∑

i

Ji(t)Ei(t) =
sinh(t

√
−b)√

−b

∑
i

wiEi(t) =
sinh(t

√
−b)√

−b
w(t)

• One can write J̃(t) = (dexpp)tγ′(0)(tw(0))
This is just another saying that Jacobi filed is the variational field of geo-
desic.

• Since

J(l) = v = (dexpp)lγ′(0)(u0) = (dexpp)lγ′(0)

(
l

u0

|u0|
· |u0|

l

)
=
|u0|
l

J̃(l)

We have

J(t) =
u0

l
J̃(t) =

u0

l

sinh(t
√
−b)√

−b
w(t)

Indeed,

M is of negative sectional curvature

⇒ C(γ(0)) = ∅
⇒ Jacobi fieldJ along γ is uniquely determined by J(0), J(l)

• Since

1 = |v| = |J(l)| = |u0|
l

sinh(l
√
−b)√

−b
We have

|u0|
l

=

√
−b

sinh(l
√
−b)

and finally

J(t) =
sinh(t

√
−b)

sinh(l
√
−b)

w(t)

�

6 Isometric Immersions
6.3 Let M be a Riemannian manifold and let N ⊂ K ⊂ M be a submanifolds of

M. Suppose that N is totally geodesic in K and that K is totally geodesic
in M . Prove that N is totally geodesic M .

Proof. From the hypothesis,we know, every geodesic in N is a geodesic in
K, thus a geodesic in M , hence the assertion. �
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6.11 Let f : M
n+1 → R be a differentiable function. Define the Hessian, Hessf

of f at p ∈ M as the linear operator

Hessf : TpM → TpM

(Hessf)Y = ∇Y∇f, Y ∈ TpM

where ∇ is the Riemannian connection of M . Let a be a regular value of

f and let Mn ⊂ M
n+1

be the hypersurface in M defined by M = {p ∈
M ; f(p) = a}. Prove that

a) The Laplacian 4f is given by

4f = trac Hessf

b) If X, Y ∈ X(M), then

< (Hessf)Y,X >=< Y, (Hessf)X >

Conclude that Hessf is self-adjoint, hence determines a symmetric
bilinear form on TpM, p ∈ M , is given by

(Hessf)(X, Y ) =< (Hessf)X, Y >,X, Y ∈ TpM

c) The mean curvature H of M ⊂ M is given by

nH = −div

(
∇f

|∇f |

)
d) Observe that every embedded hypersurface Mn ⊂ M

n+1
is locally the

inverse image of a regular value. Conclude from c) that the mean
curvature H of such a hypersurface is given by

H = − 1

n
divN

where N is an appropriate local extension of the unit normal vector

field on Mn ⊂ M
n+1

.

Proof. a) For any p ∈ M , let (Ei)
n+1
i=1 be othonormal basis for TpM , then

4f = divM∇f

=
n+1∑
i=1

< ∇Ei
∇f, Ei >

=
n+1∑
i=1

< (Hessf)Ei, Ei >

= trace Hessf
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b)

< (Hessf)Y, X > = < ∇Y∇f, X > (definition)

= Y < ∇f, X > − < ∇f,∇Y , X > (metric)

= Y Xf − (∇Y X)f(definition)

= XY f − (∇Y X)f(definition and torsion-free property)

= < Y, (Hessf)X >

c) Take an orthonormal frame E1, · · · , En, En+1 =
∇f

|∇f |
= η in a neigh-

borhood of p ∈ M in M ,then

nH = trace Sη

=
n∑

i=1

< Sη(Ei), Ei >

= −
n∑

i=1

< ∇Ei
η, Ei > − < ∇ηη, η >

= −
n+1∑
i=1

< ∇Ei
η, Ei >

= −divMη

= −div

(
∇f

|∇f |

)
d) As a simple consequence of implicit function theorem, for any p ∈ M ,

there is a coordinate neighborhood (U, x) in M of p such that

M ∩ U = x{xn+1 = 0}
[See S.S.Chern: Lectures on Differential Geometry, for example.]
If we take f : M → R defined locally by

f ◦ x = xn+1

then

∇f ∈ (TqM)⊥, ∀q ∈ M ∩ U

Indeed,

< ∇f,
∂

∂xi

>=
∂

∂xi

f = dx

(
∂

∂xi

)
f =

∂

∂xi

(f ◦ x) =
∂

∂xi

xn+1 = 0, ∀1 ≤ i ≤ n

Thus from c),

H = − 1

n
div

(
∇f

|∇f |

)
= − 1

n
div N

�
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7 Complete Manifolds; Hopf-Rinow and Hadamard Theorems
7.6 A geodesic γ : [0, +∞) → M in a Riemannian manifold M is called a ray

starting from γ(0) if it minimizes the distance between γ(0) and γ(s), for
any s ∈ (0,∞). Assume that M is complete, non-compact, and let p ∈ M .
Show that M contains a ray starting from P .

Proof. Argue by contradiction.

M contains no ray starting from p

⇔ for any γ : [0,∞) → M with γ(0) = p, ∃s ∈ (0,∞), s.t. γ|[0,s]

does not minimizes the distance between p and γ(s)

⇔ for any v ∈ TpM with |v| = 1,∃s ∈ (0,∞), s.t. expp(tv), t ∈ [0, s]

does not minimizes the distance between p and expp(sv)

Define

c : TpM → R+

v 7→ c(v) = inf s < ∞

where the inf is taken over all s such that expp(tv), t ∈ [0, s] does not mini-
mizes the distance between p and expp(sv). Clearly,

• c(v) = inf s = min s;
• c is a continuous function of v.

This is done by careful analysis, see Chapter 13 for example.
Since {v ∈ TpM ; |v| = 1} is a compact set, we know c is bounded, i.e.
max c < ∞, thus

M = B(p, max c + 1)

Hence M is compact by Hopf-Rinow Theorem, a contradiction. �

7.7 Let M and M be Riemannian manifolds and let f : M → M be a diffeomor-
phism. Assume that M is complete and that there exists a constant c > 0
such that

|v| ≥ c|dfp(v)|

for all p ∈ M and all v ∈ TpM . Prove that M is complete.

Proof. • p, q ∈ M ⇒ dM(p, q) ≥ c · dM(f(p), f(q))
Indeed, for any piecewise differentiable curve γ joining p to q, f ◦ γ is
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such one joining f(p) to f(q), thus

l(γ) =

∫ b

a

|γ′(t)|dt

≥ c

∫ b

a

|df(γ′(t))|dt

= c

∫ b

a

|(f ◦ γ)′(t)|dt

≥ c · dM(f(p), f(q))

Taking inf over all such curves, one gets

dM(p, q) ≥ c · dM(f(p), f(q))

• M is complete as a metric space
For any Cauchy sequence (pn)∞n=1 ⊂ M , we’ve, from

dM(pn, pm) ≥ c · dM(f(pn), f(pm))

that (f(pn))∞n=1 ⊂ M a Cauchy sequence, hence converges to some
point, q ∈ M , say. Then

pn = f−1(f(pn)) → f−1(q) ∈ M as n →∞
�

7.10 Prove that the upper half-plane R2
+ with the Lobatchevski metric:

g11 =
1

y2
= g22, g12 = 0 = g21

is complete.

Proof. We write H2 = (R2, g).
• Lemma Let f : (M, g) → (M, g) be an isometry between two Riemannian
manifolds, then

df (∇XY ) = ∇df(X)df(Y ), ∀X,Y ∈ X(M)

where ∇,∇ are Riemann connections of M, M respectively.
In other words, isometries preserve Riemann connections.
Proof of the Lemma We simply use Koszul formula as follows.

2g (df(∇XY ), df(Z))) ◦ f

= 2g(∇XY, Z) (isometry)

= Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]) (Koszulformula)

= X (g(df(Y ), df(Z)) ◦ f)− · · · − g (df(X), df([X, Y ])) ◦ f + · · ·
= (df(X)g (df(Y ), df(Z))) ◦ f − · · · − g (df(X), [df(Y ), df(Z)]) ◦ f

= 2g
(
∇df(X)df(Y ), df(Z)

)
◦ f
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• Claim

γ(t) = (0, et) = iet, t ∈ [0,∞)

is the geodesic with data (e = (0, 1) = i, dy = (0, 1) = i).
Method 1 we’ve only to show each portion of γ minimize curve length. To
this end,for c : [a, b] → H2 with c(a) = a ≥ 1, c(b) = b ≥ 1,

l(c) =

∫ b

a

∣∣∣∣dc

dt

∣∣∣∣ dt

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2
dt

y

≥
∫ b

a

∣∣∣∣dy

dt

∣∣∣∣ dt

y

≥
∫ b

a

dy

y

=

∫ ln b

ln a

dt

= l
(
γ|[ln a,ln b]

)
Method 2 We just see γ satisfies the geodesic equation. Indeed, since the
Christoffel symbols are

Γ1
11 = Γ2

12 = Γ1
22 = 0

Γ2
11 = 1

y

Γ1
12 = Γ2

22 = − 1
y

Thus
d2

dt2
et + Γ2

22 · et · et = et − 1

et
· e2t = 0

• Claim

γθ(t) =
cos θ

2
· iet − sin θ

2

sin θ
2
· iet + cos θ

2

, t ∈ [0,∞)

is the geodesic in H2 with data (e, v = (sin θ, cos θ)), where θ ∈ [0, 2π).Hence
by Hopf-Rinow theorem, H2 is complete.
Proof of the Claim

X γθ, as the image of γ0 = γ under the isometry of H2:

z 7→
cos θ

2
· z − sin θ

2

sin θ
2
· z + cos θ

2

is geodesic;
X γθ(0) = i = (0, 1) = e;
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X

γ′θ(0) =
1(

sin θ
2
· iet + cos θ

2

)2 · iet|t=0

= i

(
cos

θ

2
− i sin

θ

2

)2

= i(cos θ − i sin θ)

= sin θ + i sin θ

= v.

�

Remark In the proof we construct all geodesics starting from e = (0, 1).
• If v = (0, 1), the geodesic being (0, et);
• If v = (0,−1), the geodesic being 0, e−t);
• If v = (sin θ, cos θ), θ 6= kπ, k ∈ Z, we’ve the geodesic γθ satisfies

|γθ(t)− cot θ| = | csc θ|

Indeed,

|γθ(t)|2 − 2<(γθ(t) · cot θ)

=
sin2 θ

2
+ e2t cos2 θ

2

cos2 θ
2

+ e2t sin2 θ
2

− 2<

(
cos θ

2
· iet − sin θ

2

sin θ
2
· iet + cos θ

2

)
·
1− tan2 θ

2

2 tan θ
2

=
tan2 θ

2
+ e2t

1 + e2t tan2 θ
2

− 2
(e2t − 1) tan θ

2

1 + e2t tan2 θ
2

·
1− tan2 θ

2

2 tan θ
2

=
1 + e2t tan2 θ

2

1 + e2t tan2 θ
2

= 1

Finally,since H2 is a Lie group, all geodesics in H2 is known.
8 Spaces of Constant Curvature

8.1 Consider, on a neighborhood in Rn, n > 2 the metric

gij =
δij

F 2

where F 6= 0 is a function of (x1, · · · , xn) ∈ Rn. Denote by Fi =
∂F

∂xi

, Fij =
∂2F

∂xi∂xj

,etc.

a) Show that a necessary and sufficient condition for the metric to have
constant curvature K is

(∗)

{
Fij = 0, i 6= j;

F (Fjj + Fii) = K +
∑n

i=1(Fi)
2.
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b) Use (∗) to prove that the metric gij has constant curvature K if and
only if

F =
n∑

i=1

Gi(xi)

where

Gi(xi) = ax2
i + bixi + ci

and
n∑

i=1

(4cia− b2
i ) = K

c) Put a =
a

4
, bi = 0, ci =

1

n
and obtain the formula of Riemann

(∗∗) gij =
δij(

1 + K
4

∑
x2

i

)2
for a metric gij of constant curvature K. If K < 0 the metric gij is

defined in a ball of radius

√
4

−K
.

d) If K > 0, the metric (∗∗) is defined on all of Rn. Show that such a
metric on Rn is not complete.

Proof. a) The metric and its inverse are

gij =
δij

F 2
, gij = F 2δij

Thus the Christoffel symbols

Γk
ij =

1

2
gkl (∂jgil + ∂iglj − ∂lgij)

=
1

2
F 2 (∂jgik + ∂igkj − ∂kgij)

=
1

2
F 2 · −2

F 3
(δikFj + δkjFi − δijFk)

= −δikfj − δkjfi + δijfk

where

f = log F

Write down precisely,
Γk

ij = 0, if i 6= j, j 6= k, k 6= i

Γj
ii = fj, Γi

ij = −fj, if i 6= j

Γi
ii = −fi
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Hence the Riemannian curvature (i 6= j)

Rijij = 〈−∇i∇ji +∇j∇ii, j〉
=

〈
−∇i

(
Γk

ijk
)

+∇j

(
Γk

iik
)
, j
〉

=
〈
−∂iΓ

k
ijk − Γk

ijΓ
l
ikl + ∂jΓ

k
iik + Γk

iiΓ
l
jkl, j

〉
= −∂iΓ

k
ijgkj + ∂jΓ

k
iigkj − Γk

ijΓ
l
ikglj + Γk

iiΓ
l
jkglj

=
1

F 2

(
−∂iΓ

j
ij + ∂jΓ

j
ii − Γk

ijΓ
j
ik + Γk

iiΓ
j
jk

)
=

1

F 2

[
fii + fjj + (f 2

j − f 2
i ) +

(
f 2

i − f 2
j −

∑
k 6=i,j

f 2
k

)]

=
1

F 2

(
fii + fjj −

∑
k

f 2
k + f 2

i + f 2
j

)
Finally, the sectional curvature

K(i, j) =
Rijij

< i, i >< j, j > − < i, j >2

= F 2(fii + fjj −
n∑

k=1

f 2
k + f 2

i + f 2
j )

= FFii − F 2
i + FFjj − F 2

j −
∑

k

F 2
k + F 2

i + F 2
j

= F (Fii + Fjj)−
∑

k

F 2
k

Now we prove a). The sufficiency is obvious. For the necessity, we
need only to show

Fij = 0, ∀i 6= j

Indeed, since K(i, j) = K = Const,

Fii = c, ∀i
Thus

K = 2Fc−
∑

k

F 2
k

Differentiating w.r.t. l twice, we obtain

0 = 2Fl −
∑

k

2FkFkl∑
k 6=l

FkFkl = 0∑
k 6=l

(Fkl)
2 =

∑
k 6=l

(Fkl)
2 + FkFkll = 0

Fkl = 0 ∀k 6= l
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Remark For simplicity and type convenience, we use i for ∂i =
∂

∂xi

.

And there is no confusion between ∇i and Fi.
b) Claim From (∗),{

Fij = 0, ∀i 6= j

Fii = 2a = Const, ∀i

We have

F =
n∑

i=1

Gi(xi)

where

Gi(xi) = ax2
i + bixi + c

Indeed, Fii = 2a implies

Fi = 2axi + g(x1, · · · , xi−1, xi+1, · · · , xn)

while Fij = 0,∀j 6= i implies

0 = Fij = ∂jg, ∀j 6= i

g = bi = Const

Fi = 2axi + bi

Hence

F = ax2
i + bixi + hi(x1, · · · , xi−1, xi+1, · · · , xn)

Thus

ax2
i + bixi + hi = ax2

j + bjxj + hj, ∀j 6= i

hi − (ax2
j + bjxj) = hj − (ax2

i + bixi)

Since the r.h.s. of the equality above doesn’t have the xj−term, we
have

hi =
∑
j 6=i

(ax2
j + bjxj) + c

Hence the claim.
Now,

K = F (Fii + Fjj)−
∑

k

(Fk)
2

= 4a
∑

k

(ax2
i + bixi + ci)−

∑
k

(2axi + bi)
2

=
∑

k

(4cia− b2
i )
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c) Put a =
K

4
, bi = 0, ci =

1

n
, we obtain the formula of Riemann

gij =
δij[∑

i

(
K

4
x2

i +
1

n

)]2 =
δij(

1 +
K

4

∑
i

x2
i

)2

If K < 0, we should have∑
i

x2
i ≤

(√
4

−K

)2

i.e. gij are defined in a ball of radius

√
4

−K
.

d) If K > 0, the metric (∗∗) is defined on all of Rn. We shall show
(Rn, gij) is not complete.

Indeed, for any p = (x1, · · · , xn) ∈ Rn,

dg(0, p) ≤ |0p|g

=

∫ 1

0

√√√√√√
∑

i

x2
i[

1 +
K

4

∑
k

(txk)
2

]2dt

=

∫ 1

0

D

1 + K
4
Dt2

dt

D =

√∑
i

x2
i


=

2

K
arctan

√
K

2

≤ 2

K
· π

2

=
π√
K

< ∞
Hence (Rn, gij) is bounded, also, it is closed as a whole space, but
we know Rn is non-compact ( Note that compactness is a topological
property. ). Thus, (Rn, gij) is not complete by Hopt-Rinow Theorem.

�

8.4 Identity R4 with C2 by letting (x1, x2, x3, x4) correspond to (x1+ix2, x3+ix4).
Let

S3 =
{
(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1

}
and let h : S3 → S3 be given by

h(z1, z2) =
(
e

2πi
q z1, e

2πir
q z2

)
, (z1, z2) ∈ S3



RIEMANNIAN GEOMETRY 25

where q and r are relatively prime integers, q > 2.
a) Show that G = {id, h, · · · , hq−1}is a group of isometries of the sphere

S3, with the usual metric, which operates in a totally discontinuous
manner. The manifold S3/G is called a lens space.

b) Consider S3/G with metric induced by the projection p : S3 → S3/G.
Show that all the geodesics of S3/G is closed but can have different
lengths.

Proof. a) Claim 1 Each hk is an isometry of S3.

Indeed, denote by

α =
2π

q
, β =

2πr

q

then

hk(z1, z2) =
(
eikαz1, e

ikβz2

)
dhk

(z1,z2) =
(
ekαidz1, e

kβidz2

)
For any p ∈ S3, u = (u1, u2), v = (v1, v2) ∈ TpS

3, where

uj = uj1 + iuj2, vj = vj1 + ivj2, j = 1, 2

We have〈
dhk(u)dhk(v)

〉
hk(p)

=

〈(
eikαu1

eikβu2

)
,
(

eikαv1, e
ikβv2

)〉
=

〈(
u11 cos kα− u12 sin kα

+i (u11 sin kα + u12 cos kα)

)
,

(
v11 cos kα− v12 sin kα

+i (v11 sin kα + v12 cos kα)

)〉
= (u11 cos kα− u12 sin kα) (v11 cos kα− v12 sin kα)

+ (u11 sin kα + u12 cos kα) (v11 sin kα + v12 cos kα)

+ (u11 cos kα− u12 sin kα) (v11 cos kβ − v12 sin kβ)

+ (u11 sin kβ + u12 cos kβ) (v11 sin kβ + v12 cos kβ)

= 〈(u1, u2), (v1, v2)〉
= 〈u, v〉p

Claim 2 G operates on S3 in a properly discontinuous manner.

Just note that for any (z1, z2) ∈ S3,

hk(z1, z2) =
(
eikαz1, e

ikβz2

)
, k ∈ {1, · · · , q − 1}

are continuous, and 6= (z1, z2), Hence

∃U 3 x, s.t. hkU ∩ U 6= ∅,∀k ∈ {1, · · · , q − 1}

Indeed,
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♠ hk(z1, z2) 6= (z1, z2)
Since q and r are relatively prime,

∃ s, t, s.t. sq + tr = 1

if some k ∈ {1, · · · , q − 1} satisfies

eikα = 1 or eikβ = 1

then we have k = mq, a contradiction; or kr = mq for some
m ∈ Z, a contradiction again since

k = skq + tkr = skq + tmq = (sk + tm)q

♠ The existence of such U .
Set p = (z1, z2), qk = hk(p), then by Hausdorff property,

∃U 3 p, Vk 3 q, s.t. U ∩ Vk = ∅

Since h is continuous, we may retract U such that

hk(U) ⊂ Vk, ∀k ∈ {1, · · · , q − 1}

This U verifies.

b) Since G is a group of isometry, we can introduce the metric on S3/G
such that p : S3 → S3/G is a local isometry. Thus the geodesics are
preserved. Now the geodesics on S3 are all closed, the geodesics of
S3/G are close also, but they may have different length. Consider, for
example, {

γ1 = (eiθ, 0)

γ2 = (0, eiθ)
θ ∈ [0, 2π]

the geodesics on S3, but we have{
l(p(γ1)) = α

l(p(γ2)) = β

when α 6= β,i.e. r 6= 1, these two are different.
�

8.5 (Connections of conformal metrics) Let M be a differentiable manifold. Two
Riemannian metrics g and g on M are conformal if there exists a positive
function µ : M → R such that g(X, Y ) = µg(X, Y ), for all X, Y ∈ X(M).
Let ∇ and ∇ be the Riemannian connections of g and g, respectively. Prove
that

∇XY = ∇XY + S(X, Y )

where

S(X, Y ) =
1

2µ
{(Xµ)Y + (Y µ)X − g(X, Y )∇µ}
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and ∇µ is calculated in the metric g, that is,

X(µ) = g(X,∇µ)

Proof. By Koszul Formula,

µg(∇XY, Z) = g(∇XY, Z)

=
1

2

{
Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ])

}
=

1

2
{(Xµg(Y, Z) + Y g(Z,X)− Zg(X, Y )}

+
µ

2

{
Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ])

}
=

1

2
{g ((Xµ)Y + (Y µ)X − g(X,Y )∇µ, Z)}+ µg(∇XY, Z)

= µg(S(X, Y ) +∇XY, Z)

�

9 Variations of Energy
9.1 Let M be a complete Riemannian manifold, and let N ⊂ M be a closed

submanifold of M . Let p0 ∈ M, p0 /∈ N , and let d(p0, N) be the distance from
p0 to N . Show that there exists a point q0 ∈ N such that d(p0, q0) = d(p0, N)
and that a minimizing geodesic which joins p0 to q0 is orthogonal to N at
q0.

Proof. • Existence of such q0 ∈ N .
Let {qi} ⊂ N, s.t. d(p0, qi) → d(p0, N), then {qi} is bounded, and by
Hopf-Rinow therorem,

∃ {j} ⊂ {i}, s.t. qj → q0

for some q0 ∈ M . But N is closed, we have q0 ∈ N and d(p0, q0) =
d(p0, N).

• Orthogonality.
Let γ : [0, l] → M be a minimizing geodesic joining p0 to q0. We shall
show γ′(l) ⊥ N , i.e. γ′(0) ⊥ N, ∀v ∈ Tq0N .
Indeed, for v ∈ Tq0N , let ζ : (−ε, ε) → M be a geodesic with data
q0, v(i.e. ζ(0) = q0, ζ

′(0) = v) and consider the variation f : (−ε, ε)×
[0, l] → M such that f(s, 0) = p0, f(s, l) = ζ(s). If we denote by

V (s) =
∂f

∂s
|s=0, then from the formula for the first variation of energy,

0 =
1

2
E ′(0)

= −
∫ l

0

〈V (t), γ′′(t)〉 dt− 〈V (0), γ′(0)〉+ 〈V (l), γ′(l)〉

= 〈v, γ′(l)〉
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�

9.2 Introduce a complete Riemannian metric on R2. Prove that

lim
r→∞

(
inf

x2+y2≥r2
K(x, y)

)
≤ 0

where (x, y) ∈ R2 and K(x, y) is the Gauss curvature of the given metric at
(x, y).

Proof. Argue by contradiction. Denote the complete metric on R2 by g and
suppose

lim
r→∞

(
inf

x2+y2≥r2
K(x, y)

)
> 0

Then

∃

{
c > 0

r > 0
s.t. inf

x2+y2≥r2
K(x, y) ≥ c > 0

Hence by Bonnet-Myers Theorem,({
(x, y); x2 + y2 ≥ r2

}
, g
)

(⊂ R2, complete) is compact. Thus

R2 =
{
(x, y); x2 + y2 ≤ r2

}
∪
{
(x, y); x2 + y2 ≥ r2

}
as the union of two compact sets, is compact. A contradiction! �

9.3 Prove the following generalization of the Theorem of Bonnet-Myers: Let Mn

be a complete Riemannian manifold. Suppose that there exists constants
a > 0 and c ≥ 0 such that for all pairs of points in Mn and for all minimizing
geodesics γ(s), parametrized by arc length s, joining these points, we have

Ric(γ′(s)) ≥ a +
df

ds
, along γ

where f is a function of s, satisfying |f(s)| ≤ c along γ. Then Mn is compact.

Proof. We claim that

diam(M) ≤ π2

√
c2 + π2a− c

, L

Thus by Hopf-Rinow Theorem, M is compact.
Indeed, if not, then

∃

{
p, q ∈ M

minimizing geodesic γ : [0, l] → M
s.t. γ joing p to q with l(γ) = l > L

Now choose a parallel orthonormal field

e1(s), · · · , en−1(s), en(s) = γ′(s)

along γ, and consider the proper variations Vj defined by

Vj(s) = sin
πs

l
, j = 1, · · · , n− 1
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Then from the formula for the second variation of energy,

1

2
E ′′(Vj)(0) =

∫ l

0

〈
Vj, V

′′
j + R(γ′, Vj)γ

′〉 ds

=

∫ l

0

sin2 πs

l

[
π2

l2
−Kγ(s)(γ

′, ej)

]
ds

Summing j over {1, · · · , n− 1}, we get

1

2

n−1∑
j=1

E ′′(Vj)(0) =

∫ l

0

sin2 πs

l

[
(n− 1)π2

l
− (n− 1)Ric(γ′)

]
ds

≤ (n− 1)

∫ l

0

sin2 πs

l

[
π2

l
− a− df

ds

]
ds

= (n− 1)

[(
π2

l
− a

)
l

2
+

∫ l

0

sin
2πs

l
· π

l
· f ds

]
≤ (n− 1)

[
π2

2l
− al

2
+

cπ

l
· 2l

π

]
= −n− 1

2l

[
al2 − 2cl − π2

]
< 0

As a result,

∃ j, s.t. E ′′(Vj)(0) < 0

which contradicts the fact that γ is minimizing. �

Remark The theorem above has application to Relativity, see G.J.Galloway,
”A generalization of Myer’s Theorem and an application to relativistic cosmol-
ogy”, J.Diff. Geometry, 14(1979), 105-116

9.4 Let M be an orientable Riemannian manifold with positive (sectional) cur-
vature and even dimension. Let γ be a closed geodesic in M , that is, γ is an
immersion of the circle S1 in M that is geodesic at all of its points. Prove
that γ is homotopic to a closed curve whose length is strictly less than that
of γ.

Proof. We have only to show ∃ a variation field V along γ such that E ′′
V (0) <

0( the second variation of energy concerning V ).
Indeed, since M is orientable, if we denote by Pγ the parallel transport along
γ, then

• Pγ is an isometry ⇒ det Pγ = ±1;
• Pγ preserves orientation ⇒ det Pγ = 1;
• Pγ(γ

′(0)) = γ′(2π) = γ′(0) ⇒ Pγ leaves some v(⊥ γ′(0)) invariant!
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Thus, we may choose variation field V (t) = Pγ(v), and by the formula for
the second variation of energy,

1

2
E ′′

V (0) = −
∫ 2π

0

〈V, V ′′ + R(γ′, V )γ′〉 dt

= −|v|2| · γ′(0)|2 ·
∫ 2π

0

Kγ(t)(v(t), γ′(t))dt

< 0

as asserted. �

Remark Note that in this settting, in the formula for the second variation of
energy, the last four terms offset! Just because we consider closed geodesic...

9.5 Let N1 and N2 be two close disjoint submanifolds of a compact Riemannnian
manifold M .

a) Show that the distance between N1 and N2 is assumed by a geodesic
γ perpendicular to both N1 and N2.

b) Show that, for any orthogonal variation h(t, s) of γ, with h(0, s) ∈ N1

and h(l, s) ∈ N2, we have the following expression for the formula for
the second variation

1

2
E ′′(0) = Il(V, V ) +

〈
V (l), S

(2)
γ′(l)(V (l))

〉
−
〈
V (0), S

(1)
γ′(0)(V (0))

〉
where V is the variational vector and S

(i)
γ′ is the linear map associated

to the second fundamental form of Ni in the direction γ′, i = 1, 2.

Proof. a) Let {pi} ⊂ N1, {qi} ⊂ N2 be such that d(pi, qi) → d(N1, N2).
Since M is compact, we can find (common) {j} ⊂ {i}, s.t.

pj → p ∈ N1, qj → q ∈ N2

then

d(p, q) = d(N1, N2)

Since d is continuous.
b) Now let γ : [0, l] → M be a minimizing geodesic joining p to q, then

γ′(0) ⊥ TpN1, γ′(l) ⊥ TqN2

from the result of Exercise 1.
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b)

1

2
E ′′(0) = Il(V, V )−

〈
D

ds

∂f

∂s
,
dγ

dt

〉
(0, 0) +

〈
D

ds

∂f

∂s
,
dγ

dt

〉
(0, a)

−
〈

V (0),
DV

dt
(0)

〉
+

〈
V (a),

DV

dt
(a)

〉
= Il(V, V )−

〈
B

(
∂f

∂s
,
∂f

∂s

)
,
dγ

dt

〉
(0, 0) +

〈
B

(
∂f

∂s
,
∂f

∂s

)
,
dγ

dt

〉
(0, a)

( by a) and orthogonality of h)

= Il(V, V )−
〈
Sγ′(0)(V (0)), V (0))

〉
+
〈
Sγ′(l)(V (l)), V (l))

〉
�

10 The Rauch Comparison Theorem
10.3 Let M be a complete Riemannian manifold with non-positive sectional cur-

vature. Prove that

|(d expp)v(w)| ≥ |w|

for all p ∈ M , all v ∈ TpM and all w ∈ Tv(TpM).

Proof. Let M̃ = (TpM = Rn, δij) and

• γ̃(t) = tv, γ(t) = expp(tv);

• J̃(t) = tw, J(t) = (d expp)tv(tw).

Then by Rauch Comparison Theorem, using KM ≤ 0, that

|d(expp)v(w)| ≥ |w|

�

10.5 (The Sturm Comparison Theorem). In this exercise we present a direct
proof of Rauch’s Theorem in dimension two, without using material from
the present chapter. We will indicate a proof of the Theorem of Sturm
mentioned in the Introduction to the chapter. Let{

f ′′(t) + K(t)f(t) = 0, f(0) = 0, t ∈ [0, l];

f̃ ′′(t) + K̃(t)f̃(t) = 0, f̃(0) = 0, t ∈ [0, l].

be two ordinary differential equations. Suppose that K̃(t) ≥ K(t) for t ∈
[0, l], and that f ′(0) = f̃ ′(0) = 1.

a) Show that for all t ∈ [0, l],

(1) 0 =

∫ t

0

{f̃(f ′′ + Kf)− f(f̃ ′′ + K̃f̃)}dt = [f̃f ′ − ff̃ ′]t0 +

∫ t

0

(K − K̃)ff̃dt

Conclude from this that the first zero of f does not occur before the
first zero of f̃ .
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b) Suppose that f̃(t) > 0 on (0, l]. Use (1) and the fact that f(t) > 0

on (0, l] to show that f(t) ≥ f̃(t), t ∈ [0, l], and that the equality is
verified for t = t1 ∈ (0, l] if and only if K(t) = K̃(t), t ∈ [0, t1].
Verify that this is the Theorem of Rauch in dimension two.

Proof. a) First, integration by parts gives (1). Second, we prove that the

first zero of f does not occur before the first zero of f̃ . Indeed, if
t ∈ (0, l] is such that

f̃(t) > 0 on (0, t0), f̃(t0) = 0

and if f(t1) = 0 for some t1 ∈ (0, t0), then

f̃(t1) > 0, f ′(t1) < 0

contradicting (1) with t replaced by t1.
b) We know from (1) that

f̃f ′ − ff̃ ′ ≥ 0

i.e.
f ′

f
≥ f̃ ′

f̃

(ln f)′ ≥ (ln f̃)′

Integrating from t0 to t (0 < t0 < t ≤ l), we obtain

ln f(t)− ln f(t0) ≥ ln f̃(t)− ln f̃(t0)

ln
f(t)

f̃(t)
≥ ln

f(t0)

f̃(t0)

f(t)

f̃(t)
≥ f(t0)

f̃(t0)

But

lim
t0→0

f(t0)

f̃(t0)
= lim

t0→0

f ′(t0)

f̃ ′(t0)
= 1

we’ve
f(t) ≥ f̃(t)

as required.
And if the equality is valid for some t = t1 ∈ (0, l],then

f(t) = f̃(t), ∀t ∈ [0, t1]

(Otherwise, ∃ t∗ ∈ (0, t1) satisfies f(t∗) > f̃(t∗), then

1 =
f(t1)

f̃(t1)
≥ f(t∗)

f̃(t∗)
> 1

A contradiction!)
Thus

f ′(t1) = 0 = f̃ ′(t1)
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Hence by (1),

0 =

∫ t1

0

(K − K̃)f 2dt

K = K̃, ∀t ∈ [0, t1]

(f > 0,∀t ∈ (0, l] and continuity of the K’s).
�

11 The Morse Index Theorem
11.2 Prove the following inequality on real functions (Wirtinger’s inequality). Let

f : [0, π] → R be a real function of class C2 such that f(0) = 0 = f(π).
Then ∫ π

0

f 2dt ≤
∫ π

0

(f ′)2dt

and equality occurs if and only if f(t) = c sin t, where c is a constant.

Proof. Let γ : [0, π] → S2 be a normalized geodesic joining γ(0) = p to
γ(π) = −p, and let v be a parallel field along γ with < v, γ′ >= 0, |v| = 1.
Set V = fv, then

0 ≤ Iπ(V, V ) (Morse Index Theorem)

=

∫ π

0

{
|f ′|2 − |f |2

}
dt (KS2 = 1)

as required. And

equality occurs ⇔ V is a Jacobi field. (f(0) = 0 = f(π), n = 2)

⇔ f ′′ + f = 0 (KS2 = 1)

⇔ f = c sin t (f(0) = 0 = f(π))

�

11.4 Let a : R → R be a differentiable function with a(t) ≥ 0, t ∈ R, and a(0) > 0.
Prove that the solution to the differential equation

d2ϕ

dt2
+ aϕ = 0

with initial conditions ϕ(0) = 1, ϕ′(0) = 0, has at least one positive zero and
one negative zero.

Proof. We need only to prove ϕ has at least one positive zero, the other
assertion being similar. Argue by contradiction, if

t ∈ (0,∞) ⇒ ϕ(t) > 0

then
ϕ′′ = −aϕ ≤ 0

i.e.
ϕ′ is non-increasing
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But now, a(0) > 0, ϕ(0) = 1,

ϕ′′(0) = −a(0)ϕ(0) < 0

∃ε > 0, s.t. t ∈ (0, ε] ⇒ ϕ′′(t) < 0 ⇒ ϕ′(t) < ϕ′(0) = 0

Thus

ϕ(T ) = ϕ(0) +

∫ T

0

ϕ′(t)dt

= 1 +

∫ ε

0

ϕ′(t)dt +

∫ T

ε

ϕ′(t)dt

< 1 +

∫ T

ε

ϕ′(t)dt

≤ 1 + ϕ′(ε)(T − ε)

< 0

if T is large enough. A contradiction! �

11.5 Suppose Mn is complete Riemannian manifold with sectional curvature
strictly positive and let γ : (−∞,∞) → M be a normalized geodesic in
M . Show that there exists t0 ∈ R such that the segment γ([−t0, t0]) has
index greater or equal to n− 1.

Proof. Let Y be a parallel field along γ with < Y, γ′ >= 0, |Y | = 1. Set

ϕY = 〈R(γ′, Y )γ′, Y 〉

K(t) = inf
Y

ϕY (t) > 0

and let a : R → R be a differentiable function such that

0 ≤ a(t) ≤ K(t), 0 < a(0) < K(0), t ∈ R

Let ϕ be the solution of the system{
ϕ′′ + aϕ = 0

ϕ(0) = 1, ϕ′(0) = 0
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and let −t1, t2 be the two zeros of this system. If we denote by X = ϕY ,
then

I[−t1,t2](X, X)

=

∫ t2

−t1

{〈X ′, X ′〉 − 〈R(γ′, X)γ′, X〉} dt

= −
∫ t2

−t1

〈X ′′ + R(γ′, X)γ′, X〉 dt (ϕ(−t1) = 0 = ϕ(t2))

= −
∫ t2

−t1

[ϕ′′ϕ + ϕ2ϕY ]dt

≤ −
(∫ −ε

−t1

+

∫ ε

−ε

+

∫ t2

−ε

)
[ϕ′′ϕ + ϕ2K]dt

< −
(∫ −ε

−t1

+

∫ ε

−ε

+

∫ t2

−ε

)
[ϕ′′ϕ + ϕ2a] (K(0) > a(0), K(t) ≥ a(t))

= −
∫ t2

−t1

[ϕ′′ + aϕ]ϕdt

= 0

Thus if t0 = max{t1, t2}, then

Index
(
γ|[−t0,t0]

)
≥ Index

(
γ|[−t1,t2]

)
≥ n− 1 (t0 = t1 or t2)

�

11.6 A line in a complete Riemannian manifold is a geodesic

γ : (−∞,∞) → M

which minimizes the arc length between any two of its points. Show that
if the sectional curvature K of M is strictly positive, M does not have any
lines. By an example show that the theorem is false if K ≥ 0.

Proof. Of course, we take n ≥ 2. By Exercise 5,

∃ t0 ∈ R, ∃ X ∈ V(−t0, t0), s.t. I[−t0,t0](X, X) < 0

Then by the formula for the second variation of energy,

γ|[−t0,t0] is not minimizing

Thus M does not have any rays.
If K ≥ 0, the theorem is false, because any ”line” is Euclidean flat space
(Rn, δij) is indeed a line! �
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Concluding Remarks—Lobatchevski Geometry

• 1.4
As a Lie group, endowed with left-invariant metric, the isometry of which...

• 2.8
The Christoffel symbols, a beautiful parallel field...

• 7.10
As a complete manifold, all the geodesics are calculated...

• 8.1
Some extensions...


