RIEMANNIAN GEOMETRY

PRC.ZZJ

> To Professor Zhu For better understanding on Lobatchevski Geometry...
> Problem Set

Riemannian Geometry	Manfredo Perdigão do Carmo
Chapter 0 Differentiable Manifolds	
Chapter 1 Riemannian Metrics	1,(4),5
Chapter 2 Affinece Connections; Riemannian Connections	2,3,(8)
Chapter 3 Geodesics; Convex Neighborhoods	7,9
Chapter 4 Curvature	7,8
Chapter 5 Jacobi Fields	3,4
Chapter 6 Isometric Immersions	3,11
Chapter 7 Complete Manifolds; Hopf-Rinow and Hadamard	heorems 6,7,(10)
Chapter 8 Spaces of Constant Curvature	1,4,(5)
Chapter 9 Variations of Energy	1,(2,3),4,5
Chapter 10 The Rauch Comparison Theorem.	3,5
Chapter 11 The Morse Index Theorem .	(2),(4),5,6
Chapter 12 The Fundamental Group of Manifolds of Negativ	Curvature no ex
Chapter 13 The Sphere Theorem.	
Concluding Remarks	

0 Differentiable Manifolds

0.1 (Product Manifold). Let M and N be differentiable manifolds and let $\left\{\left(U_{\alpha}, x_{\beta}\right)\right\},\left\{\left(V_{\beta}, y_{\beta}\right)\right\}$ differentiable structures on M and N, respectively. Consider the cartesian product $M \times N$ and the mapping

$$
z_{\alpha \beta}(p, q)=\left(x_{\alpha}(p), y_{\beta}(q)\right), p \in U_{\alpha}, q \in V_{\beta}
$$

a) Prove that $\left(U_{\alpha} \times V_{\beta}, z_{\alpha \beta}\right)$ is a differentiable structure on $M \times N$ in which the projections $\pi_{1}: M \times N \rightarrow M$ and $\pi_{2}: M \times N \rightarrow N$ are differentiable. With this differentiable structure $M \times N$ is called the product manifold of M with N.
b) Show that the product manifold $S^{1} \times \cdots \times S^{1}$ of n circles S^{1}, where $S^{1} \subset \mathbb{R}^{2}$ has the usual differentiable structure, is diffeomorphic to the n-torus T^{n} of example $4.9 a$).

Proof. a) Clearly,

$$
\begin{aligned}
& z_{\alpha \beta}: U_{\alpha} \times V_{\beta} \rightarrow x_{\alpha}\left(U_{\alpha}\right) \times y_{\beta}\left(V_{\beta}\right) \subset M \times N \\
&(p, q) \mapsto \\
&\left(x_{\alpha}(p), y_{\beta}(q)\right)
\end{aligned}
$$

is injective. Moreover,

$$
\bigcup_{\alpha, \beta} z_{\alpha \beta}\left(U_{\alpha} \times V_{\beta}\right)=\bigcup_{\alpha} x_{\alpha}\left(U_{\alpha}\right) \times \bigcup_{\beta} y_{\beta}\left(V_{\beta}\right)=M \times N
$$

and if

$$
z_{\alpha \beta}\left(U_{\alpha} \times V_{\beta}\right) \cap z_{\gamma \delta}\left(U_{\gamma} \times V_{\delta}\right)=W \neq \varnothing
$$

then

$$
z_{\gamma \delta}^{-1} \circ z_{\alpha \beta}(p, q)=z_{\gamma \delta}^{-1}\left(x_{\alpha}(p), y_{\beta}(q)\right)=\left(x_{\gamma}^{-1} \circ x_{\alpha}(p), y_{\delta}^{-1} \circ y_{\beta}(q)\right)
$$

is differentiable. Thus, by definition, with this differentiable structure, $M \times N$ is a differentiable manifold.
b) Recall $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$. Let

$$
\begin{aligned}
F: S^{1} \times \cdots \times S^{1} & \rightarrow \mathbb{T}^{n} \\
\left(e^{i \alpha_{j}}\right)_{j=1}^{n} & \mapsto\left(\frac{\alpha_{j}}{2 \pi}+n_{j}\right)_{j=1}^{n}
\end{aligned}
$$

where $\alpha_{j} \in[0,2 \pi), n_{j} \in \mathbb{Z}$
We have

- F is injective, since

$$
\frac{\alpha_{j}}{2 \pi}+n_{j}=\frac{\beta_{j}}{2 \pi}+m_{j} \Rightarrow \alpha_{j}-\beta_{j}=2 \pi\left(m_{j}-n_{j}\right) \Rightarrow e^{i \alpha_{j}}=e^{i \beta_{j}}
$$

- F is surjective, just note that

$$
\alpha_{j} \in[0,2 \pi) \Rightarrow \frac{\alpha_{j}}{2 \pi} \in[0,1)
$$

- F and F^{-1} are differentiable, this is proved by a list of graphs. Indeed, one " $y^{-1} \circ F \circ x$ " is of the form

$$
f(t)=\frac{\arctan t}{\pi}-\frac{1}{4}
$$

0.9 Let $G \times M \rightarrow M$ be a properly discontinuous action of a group G on a differentiable manifold M.
a) Prove that the manifold M / G (Example 4.8) is oriented if and only if there exists an orientation of M that is preserved by all the diffeomorphisms of G.
b) Use a) to show that the projective plane $P^{2}(\mathbb{R})$, the Klein bottle and the Mobius band are non-orientable.
c) Prove that $P^{2}(\mathbb{R})$ is orientable if and only if n is odd.

Proof. a) if part: Let $\left(U_{\alpha}, x_{\alpha}\right)$ be an orientation of M that is preserved by all the diffeomorphisms of G, i.e.

$$
W=U_{\beta} \cap g\left(U_{\alpha}\right) \neq \varnothing \Rightarrow \operatorname{det}\left(x_{\beta}^{-1} \circ g \circ x_{\alpha}\right)>0
$$

We claim that $\left(\pi\left(U_{\alpha}\right), \pi \circ x_{\alpha}\right)$ is an orientation of M / G. Indeed,
$\pi\left(U_{\alpha}\right) \cap \pi\left(U_{\beta}\right) \neq \varnothing \Rightarrow \operatorname{det}\left(\left(\pi \circ x_{\beta}\right)^{-1} \circ\left(\pi \circ x_{\alpha}\right)\right)=\operatorname{det}\left(x_{\beta}^{-1} \circ g \circ x_{\alpha}\right)>0$
for some $g \in G$.
Only if part: We know the atlas of M / G is induced from M, hence the conclusion follows from the reverse of the "if part".
b) Let $G=\{I d, A\}$ where A is the antipodal map. Recall that

Projective $2-$ space $P^{2}(\mathbb{R})=S^{2} / G$, where $S^{2}=2-\operatorname{dim}$ sphere
Klein bottle $K=\mathbb{T}^{2} / G$, where $\mathbb{T}^{2}=2-\operatorname{dim}$ torus
Mobius band $M=C / G$, where $C=2-\operatorname{dim}$ cylinder
Clearly, S^{2}, \mathbb{T}^{2}, C are orientable $2-\operatorname{dim}$ manifols, but A reverse the orientation of \mathbb{R}^{3}, hence S^{2}, \mathbb{T}^{2}, C. The conclusion follows from a).
c) We've the following equivalence:

$$
\begin{aligned}
P^{n}(\mathbb{R}) \text { is orientable } & \left.\Leftrightarrow A \text { preserves the orientation of } S^{n}(\text { by } a)\right) \\
& \Leftrightarrow A \text { preserves the orientation of } \mathbb{R}^{n+1} \\
& \quad\left(\text { The orientation is induced from } \mathbb{R}^{n+1}\right) \\
& \Leftrightarrow(n+1) \text { is even } \\
& \Leftrightarrow n \text { is odd }
\end{aligned}
$$

1 Riemannian Metrics

1.1 Prove that the antipodal mapping $A: S^{n} \rightarrow S^{n}$ given by $A(p)=-p$ is an isometry of S^{n}. Use this fact to introduce a Riemannian metric on the real projective space $P^{n}(\mathbb{R})$ such that the natural projection $\pi: S^{n} \rightarrow P^{n}(\mathbb{R})$ is a local isometry.

Proof. a) A is an isometry of S^{n}.
We first claim that $T_{p} S^{n}=T_{A(p)} S^{n}$.
It is enough to prove $T_{p} S^{n} \subset T_{A(p)} S^{n}$, since

$$
T_{A(p)} S^{n} \subset \subset T_{A \circ A(p)} S^{n}=T_{p} S^{n}
$$

Indeed, for any $v \in T_{p} S^{n}, \exists c:(-\varepsilon, \varepsilon) \rightarrow S^{n}$ such that $c(0)=p, c^{\prime}(0)=$ v. Thus $A \circ c:(-\varepsilon, \varepsilon) \rightarrow S^{n}$ is a curve with $A \circ c(0)=A(p),(A \circ c)^{\prime}(0)=$ $d A_{p}\left(c^{\prime}(0)\right)=-c^{\prime}(0)=-v$. Hence $-v \in T_{A(p)} S^{n}$ and $v \in T_{A(p)} S^{n}$ since $T_{A(p)} S^{n}$ is a linear space.
Now the fact A is an isometry of S^{n} is clear.
$<d A_{p}(v), d A_{p}(w)>_{A(p)}=<-v,-w>_{-p}=<v, w>_{-p}=<v, w>_{p}$
b) Construction of a metric on $P^{n}(\mathbb{R})$ such that π is a local isometry.

For any $p \in S^{n}, \pi(p) \in P^{n}(\mathbb{R})$, define

$$
<(d \pi)_{p}(v),(d \pi)_{p}(w)>_{\pi(p)} \triangleq<v, w>_{p}
$$

Indeed,

- Because of surjectivity of π and the construction of atlas on $P^{n}(\mathbb{R})$, the vector " on" $P^{n}(\mathbb{R})$ is of the form $(d \pi)_{p}(v), p \in S^{n}, v \in$ $T_{p}\left(S^{n}\right)$.
- It is well-defined. Indeed, $(d \pi)_{p}$ is surjective, thus injective, hence the one-to-one correspondence between $(d \pi)_{p}(v)$ and v. And if $\pi(p)=\pi(q)$, then $q=p$ or $q=A(p)$. In the latter case,

$$
\begin{gathered}
(d \pi)_{p}(v)=(d(\pi \circ A))_{p}(v)=(d \pi)_{A(p)} \circ(d A)_{p}(v)=(d \pi)_{A(p)}(-v) \\
(d \pi)_{p}(w)=(d \pi)_{A(p)}(-w) \\
<-v,-w>_{A(p)}=<v, w>_{p}
\end{gathered}
$$

- Since the action of G on M is properly continuous, by definition, π is a local isometry.
1.4 A function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(t)=y t+x, t, x, y \in \mathbb{R}, y>0$, is called a proper affine function. The subset of all such function with respect to the usual composition law forms a Lie group G. As a differentiable manifold G is simply the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}$ with the differentiable structure induced from \mathbb{R}^{2}. Prove that:
a) The left-invariant Riemannian metric on G which at the neutral element $e=(0,1)$ coincides with Euclidean metric $\left(g_{11}=1=g_{22}, g_{12}=\right.$ $0=g_{21}$) is given by $g_{11}=\frac{1}{y^{2}}=g_{22}, g_{12}=0$, (this is the metric of the non-euclidean geometry of Lobatchevski).
b) Putting $(x, y)=z=x+i y, i=\sqrt{-1}$, the transformation

$$
z \mapsto z^{\prime}=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{R}, \quad a d-b c=1
$$

is an isometry of G.
Proof. a) - For any $g=(x, y) \in G, g^{-1}=\left(-\frac{x}{y}, \frac{1}{y}\right)$. Indeed,

$$
y\left(\frac{1}{y} t-\frac{x}{y}\right)+x=t=\frac{1}{y}(y t+x)-\frac{x}{y}, \quad \forall t \in \mathbb{R}
$$

- Denote by

$$
\partial_{1}=\frac{\partial}{\partial x}, \quad \partial_{2}=\frac{\partial}{\partial y}
$$

then
$d L_{g^{-1}}\left(\partial_{1}\right)=\left(\frac{1}{y}, 0\right), d L_{g^{-1}}\left(\partial_{2}\right)=\left(0, \frac{1}{y}\right)$
Since

$$
\gamma(s)=(x+s, y), s \in \mathbb{R}
$$

is a curve in G with $\gamma(0)=g, \gamma^{\prime}(0)=\partial_{1}$, we get

$$
\begin{aligned}
d L_{g^{-1}}\left(\partial_{1}\right) & =\left.\frac{d}{d s}\right|_{s=0}\left[\frac{1}{y}(y t+x+s)-\frac{x}{y}\right] \\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\frac{s}{y}, 1\right) \\
& =\left(\frac{1}{y}, 0\right)
\end{aligned}
$$

And $d L_{g^{-1}}\left(\partial_{2}\right)=\left(0, \frac{1}{y}\right)$ follows from the same lines.

- The left-invariant Riemannian metric of G is given by

$$
<v, w>_{g} \triangleq\left\langle d L_{g^{-1}}(v), d L_{g^{-1}}(w)\right\rangle_{e}
$$

Hence

$$
\begin{gathered}
g_{11}=\left\langle\left(\frac{1}{y}, 0\right),\left(\frac{1}{y}, 0\right)\right\rangle_{e}=\frac{1}{y^{2}} \\
g_{22}=\left\langle\left(0, \frac{1}{y}\right),\left(0, \frac{1}{y}\right)\right\rangle_{e}=\frac{1}{y^{2}} \\
g_{12}=g_{21}=\left\langle\left(0, \frac{1}{y}\right),\left(\frac{1}{y}, 0\right)\right\rangle_{e}=0
\end{gathered}
$$

as desired.
b) Since

$$
\left\{\begin{array}{l}
z=x+i y \\
\bar{z}=x-i y
\end{array}\right.
$$

We get

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}=\frac{-4 d z d z^{\prime}}{(z-\bar{z})^{2}}
$$

Hence for the transform

$$
z \mapsto z^{\prime}=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{R}, \quad a d-b c=1
$$

we've

$$
d z^{\prime}=\frac{d z}{(c z+d)^{2}}
$$

Thus

$$
\frac{-4 d z^{\prime} d \overline{z^{\prime}}}{\left(z^{\prime}-\overline{z^{\prime}}\right)^{2}}=\frac{-4 d z d \bar{z}}{(z-\bar{z})^{2}}
$$

as desired.
1.5 Prove that the isometries of $S^{n} \subset \mathbb{R}^{n}$, with the induced metric, are the restrictions of S^{n} of the linear orthogonal maps of \mathbb{R}^{n+1}.

Proof. Denote by $\operatorname{Iso}\left(S^{n}\right)$, $\operatorname{Iso}\left(\mathbb{R}^{n+1}\right)$ the isometries of S^{n}, \mathbb{R}^{n+1} respectively. The orthogonal maps of \mathbb{R}^{n+1} is $O(n+1)$.
Clearly, $O(n+1) \subset \operatorname{Iso}\left(S^{n}\right)$ because the metric on S^{n} is induced from \mathbb{R}^{n+1}. While for the converse, let $f \in I \operatorname{so}\left(S^{n}\right)$, define $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ by

$$
F(x)= \begin{cases}0, & \text { if } x=0 \\ f\left(\frac{x}{\|x\|}\right)\|x\|, & \text { if } x \neq 0\end{cases}
$$

then $F \in O(n+1)$ since

$$
\begin{aligned}
& F(x) \cdot y=f\left(\frac{x}{\|x\|}\right)\|x\| \cdot y=f\left(\frac{x}{\|x\|}\right) \frac{y}{\|y\|}\|x\|\| \| y\left\|=\frac{x}{\|x\|} f\left(\frac{y}{\|y\|}\right)\right\| x\| \|\|y\|=x \cdot F(y) \\
& \quad \text { if } 0 \neq x, y \in \mathbb{R}^{n+1} .
\end{aligned}
$$

2 Affine Connections; Riemannian Connections

2.2 Let X and Y be differentiable vector fields on a Riemannian manifold M. Let $p \in M$ and let $c: I \rightarrow M$ be an integral curve of X through p, i.e. $c\left(t_{0}\right)=p$ and $\frac{d c}{d t}=X(c(t))$. Prove that the Riemannian connection of M is

$$
\left(\nabla_{X} Y\right)(p)=\left.\frac{d}{d t}\right|_{t=t_{0}}\left(P_{c, t_{0}, t}^{-1}(Y(c(t)))\right.
$$

where $P_{c, t_{0}, t}: T_{c\left(t_{0}\right)} M \rightarrow T_{c(t)} M$ is the parallel transport along c, from t_{0} to t (this show how the connection can be reobtained from the concept of parallelism).

Proof. Let $\left(e_{i}\right)_{i=1}^{n}$ be an orthonormal basis for $T_{p} M, e_{i}(t)=P_{c, t_{0}, t}$, i.e. $\nabla_{c^{\prime}(t)} e_{i}(t)=$ 0 , thus $\left(e_{i}(t)\right)_{i=1}^{n}$ is an orthonormal basis for $T_{c(t)} M$. Indeed,

$$
\begin{aligned}
\nabla_{c^{\prime}(t)}<e_{i}(t), e_{j}(t)> & =<\nabla_{c^{\prime}(t)} e_{i}(t), e_{j}(t)>+<e_{i}(t), \nabla_{c^{\prime}(t)} e_{j}(t)>=0 \\
& <e_{i}(t), e_{j}(t)>=<e_{i}, e_{j}>=\delta_{i}^{j}
\end{aligned}
$$

Now, we can write

$$
Y(c(t))=Y^{i}(t) e_{i}(t)
$$

and the calculation as follows

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=t_{0}}\left(P_{c, t_{0}, t}^{-1}(Y(c(t)))\right. & =\left.\frac{d}{d t}\right|_{t=t_{0}}\left(P_{c, t_{0}, t}^{-1}\left(Y^{i}(t) e_{i}(t)\right)\right) \\
& =\left.\frac{d}{d t}\right|_{t=t_{0}}\left(Y^{i}(t) e_{i}\right) \\
& =\left.\frac{d}{d t}\right|_{t=t_{0}}\left(Y^{i}(t)\right) e_{i} \\
& =\left.\left(\nabla_{c^{\prime}(t)}\left(Y^{i}(t)\right) e_{i}(t)\right)\right|_{t=t_{0}} \\
& =\left(\left.\nabla_{c^{\prime}(t)}\left(Y^{i}(t) e_{i}(t)\right)\right|_{t=t_{0}}\right. \\
& =\left(\nabla_{X} Y\right)(p)
\end{aligned}
$$

2.3 Let $f: M^{n} \rightarrow \bar{M}^{n+k}$ be an immersion of a differentiable manifold M into a Riemannian manifold \bar{M}. Assume that M has the Riemannian metric induced by f (c.f. Example 2.5 of Chapter 1). Let $p \in M$ and let $U \subset M$ be a neighborhood of p such that $f(U) \subset \bar{M}$ is a submanifold of \bar{M}. Further, suppose that X, Y are differentiable vector fileds on $f(U)$ which extend to differentiable vector fields \bar{X}, \bar{Y} on an open set of \bar{M}. Define $\left(\nabla_{X} Y\right)(p)=$ tangential component of $\bar{\nabla}_{\bar{X}} \bar{Y}(p)$, where $\bar{\nabla}$ is the Riemannian connection of \bar{M}. Prove that ∇ is the Riemannian connection of M.

Proof. Denote by

$$
\nabla_{X} Y=\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)^{\top}
$$

then

- ∇ is compatible with the metric on M. For all $p \in M, f(p) \in f(M)$.

$$
\begin{aligned}
X<Y, Z>(p) & =\bar{X}<\bar{Y}, \bar{Z}>(p) \\
& =<\bar{\nabla}_{\bar{X}} \bar{Y}, \bar{Z}>(p)+<\bar{Y}, \bar{\nabla}_{\bar{X}} \bar{Z}>(p) \\
& =<\bar{\nabla}_{\bar{X}} \bar{Y}, Z>(p)+<Y, \bar{\nabla}_{\bar{X}} \bar{Z}>(p) \\
& =<\nabla_{X} Y, Z>(p)+<Y, \nabla_{X} Z>(p)
\end{aligned}
$$

- ∇ is torsion-free. For all $p \in M, f(p) \in f(M)$.

$$
\left(\nabla_{X} Y-\nabla_{Y} X\right)(p)=\left(\bar{\nabla}_{\bar{X}} \bar{Y}-\bar{\nabla}_{\bar{Y}} \bar{X}\right)^{\top}(p)=[\bar{X}, \bar{Y}]^{\top}(p)=[X, Y](p)
$$

For the last equality, we see in local coordinate,

$$
\begin{aligned}
{[\bar{X}, \bar{Y}]^{\top}(p) } & =\left(\sum_{i, j=1}^{n+k}\left\{\bar{X}^{i} \frac{\partial \bar{Y}^{j}}{\partial x^{i}}-\bar{Y}^{i} \frac{\partial \bar{X}^{j}}{\partial x^{i}}\right\} \frac{\partial}{\partial x^{j}}\right)^{\top}(p) \\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{n+k}\left\{X^{i} \frac{\partial \bar{Y}^{j}}{\partial x^{i}}-Y^{i} \frac{\partial \bar{X}^{j}}{\partial x^{i}}\right\} \frac{\partial}{\partial x^{j}}\right)^{\top}(p) \\
& =\left(\sum_{i, j=1}^{n}\left\{X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right\} \frac{\partial}{\partial x^{j}}\right)(p) \\
& =[X, Y](p)
\end{aligned}
$$

The third equality holds because $\nabla_{X} Y(p)$ depends only on $X(p)$ and $Y(c(t))$ where $c(t)$ is an integral curve for X through p.

Thus ∇ is the Riemannian connection of M.
2.8 Consider the upper half-plane

$$
\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}
$$

with the metric given by $g_{11}=\frac{1}{y^{2}}=g_{22}, g_{12}=0=g_{21}$ (metric of Lobatchevski's non-euclidean geometry).
a) Show that the Christoffel symbols of the Riemannian connection are:

$$
\Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0, \Gamma_{11}^{2}=\frac{1}{y}, \Gamma_{12}^{1}=\Gamma_{22}^{2}=-\frac{1}{y}
$$

b) Let $v_{0}=(0,1)$ be a tangent vector at point $(0,1)$ of $\mathbb{R}_{+}^{2}\left(v_{0}\right.$ is a unit vector on the y-axis with origin at $(0,1))$. Let $v(t)$ be the parallel transport of v_{0} along the curve $x=t, y=1$. Show that $v(t)$ makes an angle t with the direction of y-axis, measured in the clockwise sense.

Proof. a) We've

$$
\begin{aligned}
\Gamma_{i j}^{k} & =\frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial x^{j}}+\frac{\partial g_{l j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right) \\
& =\frac{y^{2}}{2}\left(\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{k j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{k}}\right) \\
& =\frac{y^{2}}{2} \cdot \frac{-2}{y^{3}}\left(\frac{\partial x^{2}}{\partial x^{j}} \delta_{i k}+\frac{\partial x^{2}}{\partial x^{i}} \delta_{k j}-\frac{\partial x^{2}}{\partial x^{k}} \delta_{i j}\right)
\end{aligned}
$$

Thus

$$
\left\{\begin{array}{l}
\Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0 \\
\Gamma_{11}^{2}=\frac{1}{y} \\
\Gamma_{12}^{1}=\Gamma_{22}^{2}=-\frac{1}{y}
\end{array}\right.
$$

b) Let $v(t)=(a(t), b(t))$ be the parallel field along the curve $x=t, y=1$ with

$$
v(0)=(0,1), \quad v^{\prime}(0)=v_{0}=(0,1)
$$

Then from the geodesic equations, we've

$$
\left\{\begin{array}{l}
\frac{d a}{d t}+\Gamma_{12}^{1} b=0 \\
\frac{d b}{d t}+\Gamma_{11}^{2} a=0
\end{array}\right.
$$

Taking $a=\cos \theta(t), b=\sin \theta(t)$ (since parallel transport preserves inner product, we may just assume this.) then the above equations imply

$$
\frac{d \theta}{d t}=-1
$$

While we know $v_{0}=(0,1)$, thus

$$
\theta_{0}=\frac{\pi}{2}
$$

Hence

$$
\theta=\frac{\pi}{2}-t
$$

as desired.

3 Geodesics; Convex Neighborhoods

3.7 (Geodesic frame). Let M be a Riemannian manifold of dimension n and let $p \in M$. Show that there exists a neighborhood $U \subset M$ of p and n vector fileds $E_{1}, \cdots, E_{n} \in \mathfrak{X}(U)$, orthonormal at each point of U, such that, at p, $\nabla_{E_{i}} E_{j}(p)=0$.
Such a family $E_{i}, i=1, \cdots, n$, of vector fields is called a (local) geodesic frame at p.

Proof. Let $U=\exp _{p}\left(B_{\epsilon}(0)\right)$ be a normal neighborhood of p small enough, $\left(e_{i}\right)_{i=1}^{n}$ be an orthonormal basis of $T_{p} M$. For any $q \in U$, let γ be the radial geodesic joining p to q. Using parallel transport, we get

$$
E_{i} \in \mathfrak{X}(U), i=1, \cdots, n
$$

defined by

$$
E_{i}(q)=P_{\gamma, p, q}\left(e_{i}\right)
$$

We have

- E_{i} orthonormal, since parallel transport preserves the inner product;
- $\nabla_{E_{i}} E_{j}(p)=0$, since $\nabla_{v} E_{i}=0, \forall v \in T_{p} M$.
3.9 Let M be a Riemannian manifold. Define an operator $\triangle: \mathfrak{D}(M) \rightarrow$ $\mathfrak{D}(M)$ (the Laplacian of M) by

$$
\triangle f=\operatorname{div} \nabla f, f \in \mathfrak{D}(M)
$$

a) Let E_{i} be a geodesic frame at $p \in M, i=1, \cdots, n=\operatorname{dim} M$ (see Exercise 7). Prove that

$$
\triangle f(p)=\sum_{i} E_{i}\left(E_{i}(f)\right)(p)
$$

Conclude that if $M=\mathbb{R}^{n}, \triangle$ coincides with the usual Laplacian, namely, $\triangle f=\sum_{i} \frac{\partial^{2} f}{\partial x^{2}}$.
b) Show that

$$
\triangle(f \cdot g)=f \triangle g+g \triangle f+2<\nabla f, \nabla g>
$$

Proof. a) Firstly, $\nabla f(p)=\sum_{i} E_{i}(f) E_{i}(p)$

$$
<\nabla f, E_{i}>(p)=d f_{p}\left(E_{i}\right)=E_{i}(p) f=\left(E_{i} f\right)(p)
$$

Secondly, $\triangle f(p)=\sum_{i} E_{i}\left(E_{i}(f)\right)(p)$

$$
\triangle f(p)=(\operatorname{div} \nabla f)(p)=\left(\operatorname{div}\left(\sum_{i}\left(E_{i} f\right) E_{i}\right)\right)(p)=\sum_{i}\left(\nabla_{E_{i}}\left(E_{i} f\right)\right)(p)=\sum_{i} E_{i}\left(E_{i}(f)\right)(p)
$$

Lastly, if $M=\mathbb{R}^{n}$, since $\left(\frac{\partial}{\partial x_{i}}\right)_{i=1}^{n}$ is an orthonormal basis for $T_{p} \mathbb{R}^{n}, \forall p \in$ \mathbb{R}^{n}, we get

$$
\triangle f=\sum_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}
$$

b) For $p \in M$, let $\left(E_{i}\right)_{i=1}^{n}$ be a geodesic frame at $p \in M$, then

$$
\begin{aligned}
\Delta(f \cdot g)(p) & =\sum_{i} E_{i}\left(E_{i}(f \cdot g)\right)(p) \\
& =\sum_{i} E_{i}\left(g \cdot E_{i} f+f \cdot E_{i} g\right)(p) \\
& =\sum_{i}\left(E_{i} f \cdot E_{i} g+g \cdot E_{i}\left(E_{i} f\right)+E_{i} f \cdot E_{i} g+f \cdot E_{i}\left(E_{i} g\right)\right)(p) \\
& =(f \triangle g+g \triangle f+2<\nabla f, \nabla g>)(p)
\end{aligned}
$$

The last equality follows from
$<\nabla f, \nabla g>(p)=<\sum_{i} E_{i}(f) E_{i}, \sum_{j} E_{j}(g) E_{j}>(p)=\sum_{i, j}\left(E_{i} f \cdot E_{j} g\right) \delta_{i j}=\sum_{i} E_{i} f \cdot E_{i} g$

4 Curvature

4.7 Prove the 2nd Bianchi Identity:

$$
\nabla R(X, Y, Z, W, T)+\nabla R(X, Y, W, T, Z)+\nabla R(X, Y, T, Z, W)=0
$$

$$
\text { for all } X, Y, Z, W, T \in \mathfrak{X}(M) \text {. }
$$

Proof. Since the objects involved are all tensors, it suffices to prove the equality at a point $p \in M$. If we choose a geodesic frame $\left(E_{i}\right)_{i=1}^{n}$ at p. We've

$$
\nabla_{E_{i}} E_{j}(p)=0,\left[E_{i}, E_{j}\right](p)=\left(\nabla_{E_{i}} E_{j}-\nabla_{E_{j}} E_{i}\right)(p)=0, \forall i, j \in\{1, \cdots, n\}
$$

And it suffices to prove in case

$$
X=E_{i}, Y=E_{j}, Z=E_{k}, W=E_{l}, T=E_{m}
$$

also.Hence

$$
\begin{aligned}
\nabla R\left(E_{i}, E_{j}, E_{k}, E_{l}, E_{m}\right)(p)= & \left(\nabla_{E_{m}} R\right)\left(E_{i}, E_{j}, E_{k}, E_{l}\right)(p) \\
& (\text { definition }) \\
= & \nabla_{E_{m}}\left(R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)\right)(p) \\
& (\text { Leibniz formula and geodesic frame }) \\
= & \nabla_{E_{m}}\left(R\left(E_{k}, E_{l}, E_{i}, E_{j}\right)\right)(p) \\
& (\text { Riemann connection }) \\
= & \nabla_{E_{m}}<-\nabla_{E_{k}} \nabla_{E_{l}} E_{i}+\nabla_{E_{l}} \nabla_{E_{k}} E_{i}+\nabla_{\left[E_{k}, E_{l}\right]} E_{i}, E_{j}>(p) \\
& (\text { definition }) \\
= & <-\nabla_{E_{m}} \nabla_{E_{k}} \nabla_{E_{l}}+\nabla_{E_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}+\nabla_{E_{m}} \nabla_{\left[E_{k}, E_{l}\right]} E_{i}, E_{j}>(p) \\
& \text { (metric and geodesic frame) }
\end{aligned}
$$

and

$$
\begin{aligned}
& R\left(E_{i}, E_{j}, E_{k}, E_{l}, E_{m}\right)(p)+R\left(E_{i}, E_{j}, E_{l}, E_{m}, E_{k}\right)(p)+R\left(E_{i}, E_{j}, E_{m}, E_{k}, E_{l}\right)(p) \\
= & <-\nabla_{E_{m}} \nabla_{E_{k}} \nabla_{E_{l}} E_{i}+\nabla_{E_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}+\nabla_{E_{m}} \nabla_{\left[E_{k}, E_{l}\right]} E_{i}, E_{j}>(p) \\
& +<-\nabla_{E_{k}} \nabla_{E_{l}} \nabla_{E_{m}} E_{i}+\nabla_{E_{k}} \nabla_{E_{m}} \nabla_{E_{l}} E_{i}+\nabla_{E_{k}} \nabla_{\left[E_{l}, E_{m}\right]} E_{i}, E_{j}>(p) \\
& +<-\nabla_{E_{l}} \nabla_{E_{m}} \nabla_{E_{k}} E_{i}+\nabla_{E_{l}} \nabla_{E_{k}} \nabla_{E_{m}} E_{i}+\nabla_{E_{l}} \nabla_{\left[E_{m}, E_{k}\right]} E_{i}, E_{j}>(p) \\
= & <\left(-\nabla_{E_{m}} \nabla_{E_{k}}+\nabla_{E_{k}} \nabla_{E_{m}}+\nabla_{\left[E_{m}, E_{k}\right]}\right)\left(\nabla_{E_{l}} E_{i}\right), E_{j}>(p) \\
& +<\left(-\nabla_{\left[E_{m}, E_{k}\right]} \nabla_{E_{l}}+\nabla_{E_{l}} \nabla_{\left[E_{m}, E_{k}\right]}+\nabla_{\left[\left[E_{m}, E_{k}\right], E_{l}\right]}\right) E_{i}, E_{j}>(p) \\
& -<\nabla_{\left[\left[E_{m}, E_{k}\right], E_{l}\right]} E_{i}, E_{j}>(p) \\
& +<\left(-\nabla_{E_{l}} \nabla_{E_{m}}+\nabla_{E_{m}} \nabla_{E_{l}}+\nabla_{\left[E_{l}, E_{m}\right]}\right)\left(\nabla_{E_{k}} E_{i}\right), E_{j}>(p) \\
& +<\left(-\nabla_{\left[E_{l}, E_{m}\right]} \nabla_{E_{k}}+\nabla_{E_{k}} \nabla_{\left[E_{l}, E_{m}\right]}+\nabla_{\left[\left[E_{l}, E_{m}\right], E_{k}\right]}\right) E_{i}, E_{j}>(p) \\
& -<\nabla_{\left[\left[E_{l}, E_{m}\right], E_{k}\right]} E_{i}, E_{j}>(p) \\
& +<\left(-\nabla_{E_{k}} \nabla_{E_{l}}+\nabla_{E_{l}} \nabla_{E_{k}}+\nabla_{\left[E_{k}, E_{l}\right]}\right)\left(\nabla_{E_{m}} E_{i}\right), E_{j}>(p) \\
& +<\left(-\nabla_{\left[E_{k}, E_{l}\right]} \nabla_{E_{m}}+\nabla_{E_{m}} \nabla_{\left[E_{k}, E_{l}\right]}+\nabla_{\left[\left[E_{k}, E_{l}\right], E_{m}\right]}\right) E_{i}, E_{j}>(p) \\
& -<\nabla_{\left[\left[E_{k}, E_{l}\right], E_{m}\right]} E_{i}, E_{j}>(p) \\
= & R\left(E_{m}, E_{k}, \nabla_{E_{l}} E_{i}, E_{j}\right)(p)+R\left(\left[E_{m}, E_{k}\right], E_{l}, E_{i}, E_{j}\right)(p) \\
& +R\left(E_{l}, E_{m}, \nabla_{E_{k}} E_{i}, E_{j}\right)(p)+R\left(\left[E_{l}, E_{m}\right], E_{k}, E_{i}, E_{j}\right)(p) \\
& +R\left(E_{k}, E_{l}, \nabla_{E_{m}} E_{i}, E_{j}\right)(p)+R\left(\left[E_{k}, E_{l}\right], E_{m}, E_{i}, E_{j}\right)(p) \\
& -<\nabla_{\left[\left[E_{m}, E_{k}\right], E_{l}\right]+\left[\left[E_{l}, E_{m}\right], E_{k}\right]+\left[\left[E_{k}, E_{]}\right], E_{m}\right]} E_{i}, E_{j}>(p)(\text { definition }) \\
& =0(\text { geodesic and Jacobi identity })
\end{aligned}
$$

4.8 (Schur's Theorem). Let M^{n} be a connected Riemannian manifold with $n \geq 3$.Suppose that M is isotropic, that is, for each $p \in M$, the sectional curvature $K(p, \sigma)$ does not depend on $\sigma \subset T_{p} M$. Prove that M has constant sectional curvature, that is, $K(p, \sigma)$ also does not depend on p.

Proof. For any $p \in M$, choose a geodesic frame $\left(E_{i}\right)_{i=1}^{n}$ at p, i.e. $\left(E_{i}\right)_{i=1}^{n}$ orthonormal in a neighborhood of p and $\nabla_{E_{i}} E_{j}(p)=0$. Denote by

$$
\begin{gathered}
R_{i j k l}=R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)(p) \\
\nabla_{m} R_{i j k l}=\left(\nabla_{E_{m}} R\right)\left(E_{i}, E_{j}, E_{k}, E_{l}\right)(p)=\nabla_{E_{m}}\left(R\left(E_{i}, E_{j}, E_{k}, E_{l}\right)\right)(p)
\end{gathered}
$$

Since the sectional curvature uniquely determines the Riemann curvature, we've:
if $K(p, \sigma)=f(p)$, then

- $R_{i j k l}=f(p)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)$
- $\operatorname{Ric}_{i j}=\sum_{k} R_{i k j k}=f(p) \sum_{k}\left(\delta_{i j}-\delta_{i k} \delta_{k j}\right)=(n-1) f(p) \delta_{i j}$
- $R=\sum_{i} R_{i i}=n(n-1) f(p)$

From the 2nd Bianchi identity,

$$
\nabla_{i} R_{i j k j}+\nabla_{k} R_{i j j i}+\nabla_{j} R_{i j i k}=0
$$

Summing over i, j over $\{1, \cdots, n\}$, one gets

$$
\begin{gathered}
\sum_{i} \nabla_{i} R_{i k}-\nabla_{k} R+\sum_{j} \nabla_{j} R_{j k}=0 \\
2 \sum_{i} \nabla_{i} R_{i k}-\nabla_{k} R=0 \\
2(n-1) \nabla_{k} f(p)-n(n-1) \nabla_{k} f(p)=0 \\
(n-2)(n-1) \nabla_{k} f(p)=0
\end{gathered}
$$

Thus

$$
\nabla_{k} f(p)=0, \quad \forall k
$$

since $n \geq 3$. Finally,

$$
K(p, \sigma)=f \equiv \text { Const }
$$

since M is connected.

5 Jacobi Fields

5.3 Let M be a Riemannian manifold with non-positive sectional curvature. Prove that, for all p, the conjugate locus $C(p)$ is empty.

Proof. For any $p \in M$, if $C(p) \neq$, i.e. $\exists q \in C(p)$, then

$$
\exists\left\{\begin{array} { l }
{ \text { geodesic } \gamma : [0 , a] \rightarrow M } \\
{ \text { Jacobi filed } J \neq 0 }
\end{array} \quad \text { s.t. } \left\{\begin{array}{l}
\gamma(0)=p, \gamma(a)=q \\
J(0)=0=J(a)
\end{array}\right.\right.
$$

From the Jacobi equation,

$$
J^{\prime \prime}+R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=0
$$

We know

$$
\begin{aligned}
<J^{\prime}, J>^{\prime} & =<J^{\prime \prime}, J>+<J^{\prime}, J^{\prime}> \\
& =-<R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J>+<J^{\prime}, J^{\prime}> \\
& =-K_{M}\left(\gamma^{\prime}, J\right)\left\|\gamma^{\prime} \wedge J\right\|^{2}+<J^{\prime}, J^{\prime}> \\
& \geq 0
\end{aligned}
$$

Since M is of non-positive sectional curvature. Thus

$$
\begin{gathered}
0=<J^{\prime}(0), J(0)>\leq<J^{\prime}, J>\leq<J^{\prime}(a), J(a)>=0 \\
<J^{\prime}, J>=0 \\
<J, J>^{\prime}=2<J^{\prime}, J>=0 \\
\|J\|^{2}=\|J(0)\|=0
\end{gathered}
$$

A contradiction.
5.4 Let $b<0$ and let M be a manifold with constant negative sectional curvature equal to b. Let $\gamma:[0, l] \rightarrow M$ be a normalized geodesic, and let $v \in T_{\gamma(l)} M$ such that $<v, \gamma^{\prime}(l)>=0$ and let $|v|=1$. Since M has negative curvature, $\gamma(l)$ is not conjugate to $\gamma(0)$ (See Exercise 3). Show that the Jacobi field J along γ determined by $J(0)=0, J(l)=v$ is given by

$$
J(t)=\frac{\sinh (t \sqrt{-b}}{\sinh (l \sqrt{-b})} w(t)
$$

where $w(t)$ is the parallel transport along γ of the vector

$$
w(0)=\frac{u_{0}}{\left|u_{0}\right|}, u_{0}=\left(\operatorname{dexp}_{p}\right)_{l \gamma^{\prime}(0)}^{-1}(v)
$$

and where u_{0} is considered as a vector $T_{\gamma(0)} M$ by the identification $T_{\gamma(0)} M \approx$ $T_{l \gamma^{\prime}(0)}\left(T_{\gamma(0)} M\right)$

Proof. - The Jacobi field \tilde{J} along γ with $\tilde{J}(0)=0, \tilde{J}^{\prime}(0)=w(0) \in T_{\gamma(0)} M$ is of the form

$$
\tilde{J}(t)=\frac{\sinh (t \sqrt{-b})}{\sqrt{-b}} w(t)
$$

where $w(t)$ is the parallel transport of $w(0)$ along γ.
Indeed, let $\left(E_{i}\right)_{i=1}^{n}$ be an orthonormal basis for $T_{\gamma(0)} M,\left(E_{i}(t)\right)_{i=1}^{n}$ be parallel transport of E_{i} along γ. Then if we write

$$
\begin{gathered}
\tilde{J}(t)=\sum_{i} \tilde{J}_{i}(t) E_{i}(t) \in T_{\gamma(t)} M \\
w(0)=\sum_{i} w_{i} E_{i} \in T_{\gamma(0)} M
\end{gathered}
$$

One gets from the Jacobi equation that

$$
\left\{\begin{array}{l}
\tilde{J}_{i}^{\prime \prime}(t)+b \tilde{J}_{i}(t)=0 \\
\tilde{J}_{i}(0)=0 \\
\tilde{J}_{i}^{\prime}(0)=w_{i}
\end{array}\right.
$$

Hence

$$
\begin{gathered}
\tilde{J}(t)=\frac{\sinh (t \sqrt{-b})}{\sqrt{-b}} w_{i} \\
\tilde{J}(t)=\sum_{i} J_{i}(t) E_{i}(t)=\frac{\sinh (t \sqrt{-b})}{\sqrt{-b}} \sum_{i} w_{i} E_{i}(t)=\frac{\sinh (t \sqrt{-b})}{\sqrt{-b}} w(t)
\end{gathered}
$$

- One can write $\tilde{J}(t)=\left(\operatorname{dexp}_{p}\right)_{t \gamma^{\prime}(0)}(t w(0))$

This is just another saying that Jacobi filed is the variational field of geodesic.

- Since
$J(l)=v=\left(\operatorname{dexp}_{p}\right)_{l \gamma^{\prime}(0)}\left(u_{0}\right)=\left(\operatorname{dexp}_{p}\right)_{l \gamma^{\prime}(0)}\left(l \frac{u_{0}}{\left|u_{0}\right|} \cdot \frac{\left|u_{0}\right|}{l}\right)=\frac{\left|u_{0}\right|}{l} \tilde{J}(l)$
We have

$$
J(t)=\frac{u_{0}}{l} \tilde{J}(t)=\frac{u_{0}}{l} \frac{\sinh (t \sqrt{-b})}{\sqrt{-b}} w(t)
$$

Indeed,
M is of negative sectional curvature
$\Rightarrow C(\gamma(0))=\varnothing$
\Rightarrow Jacobi field J along γ is uniquely determined by $J(0), J(l)$

- Since

$$
1=|v|=|J(l)|=\frac{\left|u_{0}\right|}{l} \frac{\sinh (l \sqrt{-b})}{\sqrt{-b}}
$$

We have

$$
\frac{\left|u_{0}\right|}{l}=\frac{\sqrt{-b}}{\sinh (l \sqrt{-b})}
$$

and finally

$$
J(t)=\frac{\sinh (t \sqrt{-b})}{\sinh (l \sqrt{-b})} w(t)
$$

6 Isometric Immersions

6.3 Let M be a Riemannian manifold and let $N \subset K \subset M$ be a submanifolds of M. Suppose that N is totally geodesic in K and that K is totally geodesic in M. Prove that N is totally geodesic M.
Proof. From the hypothesis, we know, every geodesic in N is a geodesic in K, thus a geodesic in M, hence the assertion.
6.11 Let $f: \bar{M}^{n+1} \rightarrow \mathbb{R}$ be a differentiable function. Define the Hessian, Hessf of f at $p \in \bar{M}$ as the linear operator

$$
\begin{aligned}
\text { Hessf }: T_{p} \bar{M} & \rightarrow T_{p} \bar{M} \\
(\text { Hessf }) Y & =\bar{\nabla}_{Y} \bar{\nabla} f, Y \in T_{p} \bar{M}
\end{aligned}
$$

where $\bar{\nabla}$ is the Riemannian connection of \bar{M}. Let a be a regular value of \underline{f} and let $M^{n} \subset \bar{M}^{n+1}$ be the hypersurface in \bar{M} defined by $M=\{p \in$ $\bar{M} ; f(p)=a\}$. Prove that
a) The Laplacian $\bar{\triangle} f$ is given by

$$
\bar{\triangle} f=\operatorname{trac} H e s s f
$$

b) If $X, Y \in \mathfrak{X}(\bar{M})$, then

$$
<(\text { Hessf }) Y, X>=<Y,(\text { Hessf }) X>
$$

Conclude that Hessf is self-adjoint, hence determines a symmetric bilinear form on $T_{p} \bar{M}, p \in \bar{M}$, is given by

$$
(\text { Hessf })(X, Y)=<(\text { Hessf }) X, Y>, X, Y \in T_{p} \bar{M}
$$

c) The mean curvature H of $M \subset \bar{M}$ is given by

$$
n H=-\operatorname{div}\left(\frac{\bar{\nabla} f}{|\bar{\nabla} f|}\right)
$$

d) Observe that every embedded hypersurface $M^{n} \subset \bar{M}^{n+1}$ is locally the inverse image of a regular value. Conclude from c) that the mean curvature H of such a hypersurface is given by

$$
H=-\frac{1}{n} \operatorname{div} N
$$

where N is an appropriate local extension of the unit normal vector field on $M^{n} \subset \bar{M}^{n+1}$.

Proof. a) For any $p \in \bar{M}$, let $\left(E_{i}\right)_{i=1}^{n+1}$ be othonormal basis for $T_{p} \bar{M}$, then

$$
\begin{aligned}
\bar{\triangle} f & =\operatorname{div}_{\bar{M}} \bar{\nabla} f \\
& =\sum_{i=1}^{n+1}<\bar{\nabla}_{E_{i}} \bar{\nabla} f, E_{i}> \\
& =\sum_{i=1}^{n+1}<(\text { Hessf }) E_{i}, E_{i}> \\
& =\text { trace Hessf }
\end{aligned}
$$

b)

$$
\begin{aligned}
<(\text { Hessf }) Y, X> & =<\bar{\nabla}_{Y} \bar{\nabla} f, X>(\text { definition }) \\
& =Y<\bar{\nabla} f, X>-<\bar{\nabla} f, \bar{\nabla}_{Y}, X>\text { (metric) } \\
& =Y X f-\left(\bar{\nabla}_{Y} X\right) f(\text { definition }) \\
& =X Y f-\left(\bar{\nabla}_{Y} X\right) f(\text { definition and torsion-free property) } \\
& =<Y,(\text { Hessf }) X>
\end{aligned}
$$

c) Take an orthonormal frame $E_{1}, \cdots, E_{n}, E_{n+1}=\frac{\bar{\nabla} f}{|\bar{\nabla} f|}=\eta$ in a neighborhood of $p \in M$ in \bar{M}, then

$$
\begin{aligned}
n H & =\operatorname{trace} S_{\eta} \\
& =\sum_{i=1}^{n}<S_{\eta}\left(E_{i}\right), E_{i}> \\
& =-\sum_{i=1}^{n}<\bar{\nabla}_{E_{i}} \eta, E_{i}>-<\bar{\nabla}_{\eta} \eta, \eta> \\
& =-\sum_{i=1}^{n+1}<\bar{\nabla}_{E_{i}} \eta, E_{i}> \\
& =-\operatorname{div} v_{\bar{M}} \eta \\
& =-\operatorname{div}\left(\frac{\bar{\nabla} f}{|\bar{\nabla} f|}\right)
\end{aligned}
$$

d) As a simple consequence of implicit function theorem, for any $p \in M$, there is a coordinate neighborhood (U, x) in \bar{M} of p such that

$$
\bar{M} \cap U=x\left\{x_{n+1}=0\right\}
$$

[See S.S.Chern: Lectures on Differential Geometry, for example.] If we take $f: \bar{M} \rightarrow \mathbb{R}$ defined locally by

$$
f \circ x=x_{n+1}
$$

then

$$
\bar{\nabla} f \in\left(T_{q} M\right)^{\perp}, \forall q \in \bar{M} \cap U
$$

Indeed,
$<\bar{\nabla} f, \frac{\partial}{\partial x_{i}}>=\frac{\partial}{\partial x_{i}} f=d x\left(\frac{\partial}{\partial x_{i}}\right) f=\frac{\partial}{\partial x_{i}}(f \circ x)=\frac{\partial}{\partial x_{i}} x_{n+1}=0, \forall 1 \leq i \leq n$
Thus from c),

$$
H=-\frac{1}{n} \operatorname{div}\left(\frac{\bar{\nabla} f}{|\bar{\nabla} f|}\right)=-\frac{1}{n} \operatorname{div} N
$$

7 Complete Manifolds; Hopf-Rinow and Hadamard Theorems

7.6 A geodesic $\gamma:[0,+\infty) \rightarrow M$ in a Riemannian manifold M is called a ray starting from $\gamma(0)$ if it minimizes the distance between $\gamma(0)$ and $\gamma(s)$, for any $s \in(0, \infty)$. Assume that M is complete, non-compact, and let $p \in M$. Show that M contains a ray starting from P.

Proof. Argue by contradiction.
M contains no ray starting from p
\Leftrightarrow for any $\gamma:[0, \infty) \rightarrow M$ with $\gamma(0)=p, \exists s \in(0, \infty)$, s.t. $\left.\gamma\right|_{[0, s]}$
does not minimizes the distance between p and $\gamma(s)$
\Leftrightarrow for any $v \in T_{p} M$ with $|v|=1, \exists s \in(0, \infty)$, s.t. $\exp _{p}(t v), t \in[0, s]$
does not minimizes the distance between p and $\exp _{p}(s v)$
Define

$$
\begin{aligned}
c: T_{p} M & \rightarrow \mathbb{R}^{+} \\
v & \mapsto c(v)=\inf s<\infty
\end{aligned}
$$

where the inf is taken over all s such that $\exp _{p}(t v), t \in[0, s]$ does not minimizes the distance between p and $\exp _{p}(s v)$. Clearly,

- $c(v)=\inf s=\min s ;$
- c is a continuous function of v.

This is done by careful analysis, see Chapter 13 for example.
Since $\left\{v \in T_{p} M ;|v|=1\right\}$ is a compact set, we know c is bounded, i.e. $\max c<\infty$, thus

$$
M=B(p, \max c+1)
$$

Hence M is compact by Hopf-Rinow Theorem, a contradiction.
7.7 Let M and \bar{M} be Riemannian manifolds and let $f: M \rightarrow \bar{M}$ be a diffeomorphism. Assume that \bar{M} is complete and that there exists a constant $c>0$ such that

$$
|v| \geq c\left|d f_{p}(v)\right|
$$

for all $p \in M$ and all $v \in T_{p} M$. Prove that M is complete.

Proof. - $p, q \in M \Rightarrow d_{M}(p, q) \geq c \cdot d_{\bar{M}}(f(p), f(q))$
Indeed, for any piecewise differentiable curve γ joining p to $q, f \circ \gamma$ is
such one joining $f(p)$ to $f(q)$, thus

$$
\begin{aligned}
l(\gamma) & =\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t \\
& \geq c \int_{a}^{b}\left|d f\left(\gamma^{\prime}(t)\right)\right| d t \\
& =c \int_{a}^{b}\left|(f \circ \gamma)^{\prime}(t)\right| d t \\
& \geq c \cdot d_{\bar{M}}(f(p), f(q))
\end{aligned}
$$

Taking inf over all such curves, one gets

$$
d_{M}(p, q) \geq c \cdot d_{\bar{M}}(f(p), f(q))
$$

- M is complete as a metric space

For any Cauchy sequence $\left(p_{n}\right)_{n=1}^{\infty} \subset M$, we've, from

$$
d_{M}\left(p_{n}, p_{m}\right) \geq c \cdot d_{\bar{M}}\left(f\left(p_{n}\right), f\left(p_{m}\right)\right)
$$

that $\left(f\left(p_{n}\right)\right)_{n=1}^{\infty} \subset \bar{M}$ a Cauchy sequence, hence converges to some point, $q \in \bar{M}$, say. Then

$$
p_{n}=f^{-1}\left(f\left(p_{n}\right)\right) \rightarrow f^{-1}(q) \in M \text { as } n \rightarrow \infty
$$

7.10 Prove that the upper half-plane \mathbb{R}_{+}^{2} with the Lobatchevski metric:

$$
g_{11}=\frac{1}{y^{2}}=g_{22}, \quad g_{12}=0=g_{21}
$$

is complete.
Proof. We write $\mathbb{H}^{2}=\left(\mathbb{R}^{2}, g\right)$.

- Lemma Let $f:(M, g) \rightarrow(\bar{M}, \bar{g})$ be an isometry between two Riemannian manifolds, then

$$
d f\left(\nabla_{X} Y\right)=\bar{\nabla}_{d f(X)} d f(Y), \quad \forall X, Y \in \mathfrak{X}(M)
$$

where $\nabla, \bar{\nabla}$ are Riemann connections of M, \bar{M} respectively.
In other words, isometries preserve Riemann connections.
Proof of the Lemma We simply use Koszul formula as follows.

$$
\begin{aligned}
& \left.2 \bar{g}\left(d f\left(\nabla_{X} Y\right), d f(Z)\right)\right) \circ f \\
= & 2 g\left(\nabla_{X} Y, Z\right)(\text { isometry }) \\
= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y])(\text { Koszulformula }) \\
= & X(\bar{g}(d f(Y), d f(Z)) \circ f)-\cdots-\bar{g}(d f(X), d f([X, Y])) \circ f+\cdots \\
= & (d f(X) \bar{g}(d f(Y), d f(Z))) \circ f-\cdots-\bar{g}(d f(X),[d f(Y), d f(Z)]) \circ f \\
= & 2 \bar{g}\left(\nabla_{d f(X)} d f(Y), d f(Z)\right) \circ f
\end{aligned}
$$

- Claim

$$
\gamma(t)=\left(0, e^{t}\right)=i e^{t}, \quad t \in[0, \infty)
$$

is the geodesic with data $(e=(0,1)=i, d y=(0,1)=i)$.
Method 1 we've only to show each portion of γ minimize curve length. To this end,for $c:[a, b] \rightarrow \mathbb{H}^{2}$ with $c(a)=a \geq 1, c(b)=b \geq 1$,

$$
\begin{aligned}
l(c) & =\int_{a}^{b}\left|\frac{d c}{d t}\right| d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d t}{y} \\
& \geq \int_{a}^{b}\left|\frac{d y}{d t}\right| \frac{d t}{y} \\
& \geq \int_{a}^{b} \frac{d y}{y} \\
& =\int_{\ln a}^{\ln b} d t \\
& =l(\gamma \mid[\ln a, \ln b])
\end{aligned}
$$

Method 2 We just see γ satisfies the geodesic equation. Indeed, since the Christoffel symbols are

$$
\left\{\begin{array}{l}
\Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0 \\
\Gamma_{11}^{2}=\frac{1}{y} \\
\Gamma_{12}^{1}=\Gamma_{22}^{2}=-\frac{1}{y}
\end{array}\right.
$$

Thus

$$
\frac{d^{2}}{d t^{2}} e^{t}+\Gamma_{22}^{2} \cdot e^{t} \cdot e^{t}=e^{t}-\frac{1}{e^{t}} \cdot e^{2 t}=0
$$

- Claim

$$
\gamma_{\theta}(t)=\frac{\cos \frac{\theta}{2} \cdot i e^{t}-\sin \frac{\theta}{2}}{\sin \frac{\theta}{2} \cdot i e^{t}+\cos \frac{\theta}{2}}, \quad t \in[0, \infty)
$$

is the geodesic in \mathbb{H}^{2} with data $(e, v=(\sin \theta, \cos \theta))$, where $\theta \in[0,2 \pi)$. Hence by Hopf-Rinow theorem, \mathbb{H}^{2} is complete.

Proof of the Claim

$\checkmark \gamma_{\theta}$, as the image of $\gamma_{0}=\gamma$ under the isometry of \mathbb{H}^{2} :

$$
z \mapsto \frac{\cos \frac{\theta}{2} \cdot z-\sin \frac{\theta}{2}}{\sin \frac{\theta}{2} \cdot z+\cos \frac{\theta}{2}}
$$

is geodesic;
$\checkmark \gamma_{\theta}(0)=i=(0,1)=e ;$

$$
\begin{aligned}
\gamma_{\theta}^{\prime}(0) & =\left.\frac{1}{\left(\sin \frac{\theta}{2} \cdot i e^{t}+\cos \frac{\theta}{2}\right)^{2}} \cdot i e^{t}\right|_{t=0} \\
& =i\left(\cos \frac{\theta}{2}-i \sin \frac{\theta}{2}\right)^{2} \\
& =i(\cos \theta-i \sin \theta) \\
& =\sin \theta+i \sin \theta \\
& =v
\end{aligned}
$$

Remark In the proof we construct all geodesics starting from $e=(0,1)$.

- If $v=(0,1)$, the geodesic being $\left(0, e^{t}\right)$;
- If $v=(0,-1)$, the geodesic being $\left.0, e^{-t}\right)$;
- If $v=(\sin \theta, \cos \theta), \theta \neq k \pi, k \in \mathbb{Z}$, we've the geodesic γ_{θ} satisfies

$$
\left|\gamma_{\theta}(t)-\cot \theta\right|=|\csc \theta|
$$

Indeed,

$$
\begin{aligned}
& \left|\gamma_{\theta}(t)\right|^{2}-2 \Re\left(\gamma_{\theta}(t) \cdot \cot \theta\right) \\
= & \frac{\sin ^{2} \frac{\theta}{2}+e^{2 t} \cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}+e^{2 t} \sin ^{2} \frac{\theta}{2}}-2 \Re\left(\frac{\cos \frac{\theta}{2} \cdot i e^{t}-\sin \frac{\theta}{2}}{\sin \frac{\theta}{2} \cdot i e^{t}+\cos \frac{\theta}{2}}\right) \cdot \frac{1-\tan ^{2} \frac{\theta}{2}}{2 \tan \frac{\theta}{2}} \\
= & \frac{\tan ^{2} \frac{\theta}{2}+e^{2 t}}{1+e^{2 t} \tan ^{2} \frac{\theta}{2}}-2 \frac{\left(e^{2 t}-1\right) \tan \frac{\theta}{2}}{1+e^{2 t} \tan ^{2} \frac{\theta}{2}} \cdot \frac{1-\tan ^{2} \frac{\theta}{2}}{2 \tan \frac{\theta}{2}} \\
= & \frac{1+e^{2 t} \tan ^{2} \frac{\theta}{2}}{1+e^{2 t} \tan ^{2} \frac{\theta}{2}} \\
= & 1
\end{aligned}
$$

Finally,since \mathbb{H}^{2} is a Lie group, all geodesics in \mathbb{H}^{2} is known.

8 Spaces of Constant Curvature

8.1 Consider, on a neighborhood in $\mathbb{R}^{n}, n>2$ the metric

$$
g_{i j}=\frac{\delta_{i j}}{F^{2}}
$$

where $F \neq 0$ is a function of $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$. Denote by $F_{i}=\frac{\partial F}{\partial x_{i}}, F_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$, etc.
a) Show that a necessary and sufficient condition for the metric to have constant curvature K is

$$
(*) \quad\left\{\begin{array}{l}
F_{i j}=0, i \neq j ; \\
F\left(F_{j j}+F_{i i}\right)=K+\sum_{i=1}^{n}\left(F_{i}\right)^{2} .
\end{array}\right.
$$

b) Use $(*)$ to prove that the metric $g_{i j}$ has constant curvature K if and only if

$$
F=\sum_{i=1}^{n} G_{i}\left(x_{i}\right)
$$

where

$$
G_{i}\left(x_{i}\right)=a x_{i}^{2}+b_{i} x_{i}+c_{i}
$$

and

$$
\sum_{i=1}^{n}\left(4 c_{i} a-b_{i}^{2}\right)=K
$$

c) Put $a=\frac{a}{4}, b_{i}=0, c_{i}=\frac{1}{n}$ and obtain the formula of Riemann

$$
(* *) \quad g_{i j}=\frac{\delta_{i j}}{\left(1+\frac{K}{4} \sum x_{i}^{2}\right)^{2}}
$$

for a metric $g_{i j}$ of constant curvature K. If $K<0$ the metric $g_{i j}$ is defined in a ball of radius $\sqrt{\frac{4}{-K}}$.
d) If $K>0$, the metric $(* *)$ is defined on all of \mathbb{R}^{n}. Show that such a metric on \mathbb{R}^{n} is not complete.

Proof. a) The metric and its inverse are

$$
g_{i j}=\frac{\delta_{i j}}{F^{2}}, \quad g^{i j}=F^{2} \delta_{i j}
$$

Thus the Christoffel symbols

$$
\begin{aligned}
\Gamma_{i j}^{k} & =\frac{1}{2} g^{k l}\left(\partial_{j} g_{i l}+\partial_{i} g_{l j}-\partial_{l} g_{i j}\right) \\
& =\frac{1}{2} F^{2}\left(\partial_{j} g_{i k}+\partial_{i} g_{k j}-\partial_{k} g_{i j}\right) \\
& =\frac{1}{2} F^{2} \cdot \frac{-2}{F^{3}}\left(\delta_{i k} F_{j}+\delta_{k j} F_{i}-\delta_{i j} F_{k}\right) \\
& =-\delta_{i k} f_{j}-\delta_{k j} f_{i}+\delta_{i j} f_{k}
\end{aligned}
$$

where

$$
f=\log F
$$

Write down precisely,

$$
\left\{\begin{array}{l}
\Gamma_{i j}^{k}=0, \quad \text { if } i \neq j, j \neq k, k \neq i \\
\Gamma_{i i=}^{j}=f_{j}, \Gamma_{i j}^{i}=-f_{j}, \quad \text { if } i \neq j \\
\Gamma_{i i}^{i}=-f_{i}
\end{array}\right.
$$

Hence the Riemannian curvature $(i \neq j)$

$$
\begin{aligned}
R_{i j i j} & =\left\langle-\nabla_{i} \nabla_{j} i+\nabla_{j} \nabla_{i} i, j\right\rangle \\
& =\left\langle-\nabla_{i}\left(\Gamma_{i j}^{k} k\right)+\nabla_{j}\left(\Gamma_{i i}^{k} k\right), j\right\rangle \\
& =\left\langle-\partial_{i} \Gamma_{i j}^{k} k-\Gamma_{i j}^{k} \Gamma_{i k}^{l} l+\partial_{j} \Gamma_{i i}^{k} k+\Gamma_{i i}^{k} \Gamma_{j k}^{l} l, j\right\rangle \\
& =-\partial_{i} \Gamma_{i j}^{k} g_{k j}+\partial_{j} \Gamma_{i i}^{k} g_{k j}-\Gamma_{i j}^{k} \Gamma_{i k}^{l} g_{l j}+\Gamma_{i i}^{k} \Gamma_{j k}^{l} g_{l j} \\
& =\frac{1}{F^{2}}\left(-\partial_{i} \Gamma_{i j}^{j}+\partial_{j} \Gamma_{i i}^{j}-\Gamma_{i j}^{k} \Gamma_{i k}^{j}+\Gamma_{i i}^{k} \Gamma_{j k}^{j}\right) \\
& =\frac{1}{F^{2}}\left[f_{i i}+f_{j j}+\left(f_{j}^{2}-f_{i}^{2}\right)+\left(f_{i}^{2}-f_{j}^{2}-\sum_{k \neq i, j} f_{k}^{2}\right)\right] \\
& =\frac{1}{F^{2}}\left(f_{i i}+f_{j j}-\sum_{k} f_{k}^{2}+f_{i}^{2}+f_{j}^{2}\right)
\end{aligned}
$$

Finally, the sectional curvature

$$
\begin{aligned}
K(i, j) & =\frac{R_{i j i j}}{<i, i><j, j>-<i, j>^{2}} \\
& =F^{2}\left(f_{i i}+f_{j j}-\sum_{k=1}^{n} f_{k}^{2}+f_{i}^{2}+f_{j}^{2}\right) \\
& =F F_{i i}-F_{i}^{2}+F F_{j j}-F_{j}^{2}-\sum_{k} F_{k}^{2}+F_{i}^{2}+F_{j}^{2} \\
& =F\left(F_{i i}+F_{j j}\right)-\sum_{k} F_{k}^{2}
\end{aligned}
$$

Now we prove a). The sufficiency is obvious. For the necessity, we need only to show

$$
F_{i j}=0, \quad \forall i \neq j
$$

Indeed, since $K(i, j)=K=$ Const,

$$
F_{i i}=c, \quad \forall i
$$

Thus

$$
K=2 F c-\sum_{k} F_{k}^{2}
$$

Differentiating w.r.t. l twice, we obtain

$$
\begin{gathered}
0=2 F_{l}-\sum_{k} 2 F_{k} F_{k l} \\
\sum_{k \neq l} F_{k} F_{k l}=0 \\
\sum_{k \neq l}\left(F_{k l}\right)^{2}=\sum_{k \neq l}\left(F_{k l}\right)^{2}+F_{k} F_{k l l}=0 \\
F_{k l}=0 \quad \forall k \neq l
\end{gathered}
$$

Remark For simplicity and type convenience, we use i for $\partial_{i}=\frac{\partial}{\partial x_{i}}$. And there is no confusion between ∇_{i} and F_{i}.
b) Claim From (*),

$$
\left\{\begin{array}{l}
F_{i j}=0, \quad \forall i \neq j \\
F_{i i}=2 a=\text { Const },
\end{array} \quad \forall i\right.
$$

We have

$$
F=\sum_{i=1}^{n} G_{i}\left(x_{i}\right)
$$

where

$$
G_{i}\left(x_{i}\right)=a x_{i}^{2}+b_{i} x_{i}+c
$$

Indeed, $F_{i i}=2 a$ implies

$$
F_{i}=2 a x_{i}+g\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right)
$$

while $F_{i j}=0, \forall j \neq i$ implies

$$
\begin{gathered}
0=F_{i j}=\partial_{j} g, \quad \forall j \neq i \\
g=b_{i}=\text { Const } \\
F_{i}=2 a x_{i}+b_{i}
\end{gathered}
$$

Hence

$$
F=a x_{i}^{2}+b_{i} x_{i}+h_{i}\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}\right)
$$

Thus

$$
\begin{gathered}
a x_{i}^{2}+b_{i} x_{i}+h_{i}=a x_{j}^{2}+b_{j} x_{j}+h_{j}, \quad \forall j \neq i \\
h_{i}-\left(a x_{j}^{2}+b_{j} x_{j}\right)=h_{j}-\left(a x_{i}^{2}+b_{i} x_{i}\right)
\end{gathered}
$$

Since the r.h.s. of the equality above doesn't have the x_{j}-term, we have

$$
h_{i}=\sum_{j \neq i}\left(a x_{j}^{2}+b_{j} x_{j}\right)+c
$$

Hence the claim.
Now,

$$
\begin{aligned}
K & =F\left(F_{i i}+F_{j j}\right)-\sum_{k}\left(F_{k}\right)^{2} \\
& =4 a \sum_{k}\left(a x_{i}^{2}+b_{i} x_{i}+c_{i}\right)-\sum_{k}\left(2 a x_{i}+b_{i}\right)^{2} \\
& =\sum_{k}\left(4 c_{i} a-b_{i}^{2}\right)
\end{aligned}
$$

c) Put $a=\frac{K}{4}, b_{i}=0, c_{i}=\frac{1}{n}$, we obtain the formula of Riemann

$$
g_{i j}=\frac{\delta_{i j}}{\left[\sum_{i}\left(\frac{K}{4} x_{i}^{2}+\frac{1}{n}\right)\right]^{2}}=\frac{\delta_{i j}}{\left(1+\frac{K}{4} \sum_{i} x_{i}^{2}\right)^{2}}
$$

If $K<0$, we should have

$$
\sum_{i} x_{i}^{2} \leq\left(\sqrt{\frac{4}{-K}}\right)^{2}
$$

i.e. $g_{i j}$ are defined in a ball of radius $\sqrt{\frac{4}{-K}}$.
d) If $K>0$, the metric $(* *)$ is defined on all of \mathbb{R}^{n}. We shall show ($\mathbb{R}^{n}, g_{i j}$) is not complete.

Indeed, for any $p=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
\begin{aligned}
d_{g}(0, p) & \leq|0 p|_{g} \\
& =\int_{0}^{1} \sqrt{\sum_{i} \frac{x_{i}^{2}}{\left[1+\frac{K}{4} \sum_{k}\left(t x_{k}\right)^{2}\right]^{2}}} d t \\
& =\int_{0}^{1} \frac{D}{1+\frac{K}{4} D t^{2}} d t\left(D=\sqrt{\sum_{i} x_{i}^{2}}\right) \\
& =\frac{2}{K} \arctan \frac{\sqrt{K}}{2} \\
& \leq \frac{2}{K} \cdot \frac{\pi}{2} \\
& =\frac{\pi}{\sqrt{K}} \\
& <\infty
\end{aligned}
$$

Hence $\left(\mathbb{R}^{n}, g_{i j}\right)$ is bounded, also, it is closed as a whole space, but we know \mathbb{R}^{n} is non-compact (Note that compactness is a topological property.). Thus, ($\mathbb{R}^{n}, g_{i j}$) is not complete by Hopt-Rinow Theorem.
8.4 Identity \mathbb{R}^{4} with \mathbb{C}^{2} by letting $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ correspond to $\left(x_{1}+i x_{2}, x_{3}+i x_{4}\right)$. Let

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ;\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

and let $h: S^{3} \rightarrow S^{3}$ be given by

$$
h\left(z_{1}, z_{2}\right)=\left(e^{\frac{2 \pi i}{q}} z_{1}, e^{\frac{2 \pi i r}{q}} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \in S^{3}
$$

where q and r are relatively prime integers, $q>2$.
a) Show that $G=\left\{i d, h, \cdots, h^{q-1}\right\}$ is a group of isometries of the sphere S^{3}, with the usual metric, which operates in a totally discontinuous manner. The manifold S^{3} / G is called a lens space.
b) Consider S^{3} / G with metric induced by the projection $p: S^{3} \rightarrow S^{3} / G$. Show that all the geodesics of S^{3} / G is closed but can have different lengths.

Proof. a) Claim 1 Each h^{k} is an isometry of S^{3}.
Indeed, denote by

$$
\alpha=\frac{2 \pi}{q}, \quad \beta=\frac{2 \pi r}{q}
$$

then

$$
\begin{aligned}
& h^{k}\left(z_{1}, z_{2}\right)=\left(e^{i k \alpha} z_{1}, e^{i k \beta} z_{2}\right) \\
& d h_{\left(z_{1}, z_{2}\right)}^{k}=\left(e^{k \alpha i} d z_{1}, e^{k \beta i} d z_{2}\right)
\end{aligned}
$$

For any $p \in S^{3}, u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in T_{p} S^{3}$, where

$$
u_{j}=u_{j 1}+i u_{j 2}, \quad v_{j}=v_{j 1}+i v_{j 2}, \quad j=1,2
$$

We have

$$
\begin{aligned}
& \left\langle d h^{k}(u) d h^{k}(v)\right\rangle_{h^{k}(p)} \\
= & \left\langle\binom{ e^{i k \alpha} u_{1}}{e^{i k \beta} u_{2}},\left(e^{i k \alpha} v_{1}, e^{i k \beta} v_{2}\right)\right\rangle \\
= & \left\langle\binom{ u_{11} \cos k \alpha-u_{12} \sin k \alpha}{+i\left(u_{11} \sin k \alpha+u_{12} \cos k \alpha\right)},\binom{v_{11} \cos k \alpha-v_{12} \sin k \alpha}{+i\left(v_{11} \sin k \alpha+v_{12} \cos k \alpha\right)}\right\rangle \\
= & \left(u_{11} \cos k \alpha-u_{12} \sin k \alpha\right)\left(v_{11} \cos k \alpha-v_{12} \sin k \alpha\right) \\
& +\left(u_{11} \sin k \alpha+u_{12} \cos k \alpha\right)\left(v_{11} \sin k \alpha+v_{12} \cos k \alpha\right) \\
& +\left(u_{11} \cos k \alpha-u_{12} \sin k \alpha\right)\left(v_{11} \cos k \beta-v_{12} \sin k \beta\right) \\
& +\left(u_{11} \sin k \beta+u_{12} \cos k \beta\right)\left(v_{11} \sin k \beta+v_{12} \cos k \beta\right) \\
= & \left\langle\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle \\
= & \langle u, v\rangle_{p}
\end{aligned}
$$

Claim $2 G$ operates on S^{3} in a properly discontinuous manner.
Just note that for any $\left(z_{1}, z_{2}\right) \in S^{3}$,

$$
h_{k}\left(z_{1}, z_{2}\right)=\left(e^{i k \alpha} z_{1}, e^{i k \beta} z_{2}\right), \quad k \in\{1, \cdots, q-1\}
$$

are continuous, and $\neq\left(z_{1}, z_{2}\right)$, Hence

$$
\exists U \ni x, \text { s.t. } h^{k} U \cap U \neq \varnothing, \forall k \in\{1, \cdots, q-1\}
$$

Indeed,

- $h^{k}\left(z_{1}, z_{2}\right) \neq\left(z_{1}, z_{2}\right)$

Since q and r are relatively prime,

$$
\exists s, t, \text { s.t. } s q+t r=1
$$

if some $k \in\{1, \cdots, q-1\}$ satisfies

$$
e^{i k \alpha}=1 \quad \text { or } \quad e^{i k \beta}=1
$$

then we have $k=m q$, a contradiction; or $k r=m q$ for some $m \in \mathbb{Z}$, a contradiction again since

$$
k=s k q+t k r=s k q+t m q=(s k+t m) q
$$

© The existence of such U.
Set $p=\left(z_{1}, z_{2}\right), q_{k}=h^{k}(p)$, then by Hausdorff property,

$$
\exists U \ni p, \quad V_{k} \ni q, \text { s.t. } U \cap V_{k}=\varnothing
$$

Since h is continuous, we may retract U such that

$$
h^{k}(U) \subset V_{k}, \quad \forall k \in\{1, \cdots, q-1\}
$$

This U verifies.
b) Since G is a group of isometry, we can introduce the metric on S^{3} / G such that $p: S^{3} \rightarrow S^{3} / G$ is a local isometry. Thus the geodesics are preserved. Now the geodesics on S^{3} are all closed, the geodesics of S^{3} / G are close also, but they may have different length. Consider, for example,

$$
\left\{\begin{array}{l}
\gamma_{1}=\left(e^{i \theta}, 0\right) \\
\gamma_{2}=\left(0, e^{i \theta}\right)
\end{array} \quad \theta \in[0,2 \pi]\right.
$$

the geodesics on S^{3}, but we have

$$
\left\{\begin{array}{l}
l\left(p\left(\gamma_{1}\right)\right)=\alpha \\
l\left(p\left(\gamma_{2}\right)\right)=\beta
\end{array}\right.
$$

when $\alpha \neq \beta$,i.e. $r \neq 1$, these two are different.
8.5 (Connections of conformal metrics) Let M be a differentiable manifold. Two Riemannian metrics g and \bar{g} on M are conformal if there exists a positive function $\mu: M \rightarrow \mathbb{R}$ such that $\bar{g}(X, Y)=\mu g(X, Y)$, for all $X, Y \in \mathfrak{X}(M)$. Let ∇ and $\bar{\nabla}$ be the Riemannian connections of g and \bar{g}, respectively. Prove that

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+S(X, Y)
$$

where

$$
S(X, Y)=\frac{1}{2 \mu}\{(X \mu) Y+(Y \mu) X-g(X, Y) \nabla \mu\}
$$

and $\nabla \mu$ is calculated in the metric g, that is,

$$
X(\mu)=g(X, \nabla \mu)
$$

Proof. By Koszul Formula,

$$
\begin{aligned}
\mu g\left(\bar{\nabla}_{X} Y, Z\right)= & \bar{g}\left(\nabla_{X} Y, Z\right) \\
= & \frac{1}{2}\left\{\begin{array}{c}
X \bar{g}(Y, Z)+Y \bar{g}(Z, X)-Z \bar{g}(X, Y) \\
-\bar{g}(X,[Y, Z])+\bar{g}(Y,[Z, X])+\bar{g}(Z,[X, Y])
\end{array}\right\} \\
= & \frac{1}{2}\{(X \mu g(Y, Z)+Y g(Z, X)-Z g(X, Y)\} \\
& +\frac{\mu}{2}\left\{\begin{array}{c}
X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
-g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y])
\end{array}\right\} \\
= & \frac{1}{2}\{g((X \mu) Y+(Y \mu) X-g(X, Y) \nabla \mu, Z)\}+\mu g\left(\nabla_{X} Y, Z\right) \\
= & \mu g\left(S(X, Y)+\nabla_{X} Y, Z\right)
\end{aligned}
$$

9 Variations of Energy

9.1 Let M be a complete Riemannian manifold, and let $N \subset M$ be a closed submanifold of M. Let $p_{0} \in M, p_{0} \notin N$, and let $d\left(p_{0}, N\right)$ be the distance from p_{0} to N. Show that there exists a point $q_{0} \in N$ such that $d\left(p_{0}, q_{0}\right)=d\left(p_{0}, N\right)$ and that a minimizing geodesic which joins p_{0} to q_{0} is orthogonal to N at q_{0}.
Proof. - Existence of such $q_{0} \in N$.
Let $\left\{q_{i}\right\} \subset N$, s.t. $d\left(p_{0}, q_{i}\right) \rightarrow d\left(p_{0}, N\right)$, then $\left\{q_{i}\right\}$ is bounded, and by Hopf-Rinow therorem,

$$
\exists\{j\} \subset\{i\}, \text { s.t. } q_{j} \rightarrow q_{0}
$$

for some $q_{0} \in M$. But N is closed, we have $q_{0} \in N$ and $d\left(p_{0}, q_{0}\right)=$ $d\left(p_{0}, N\right)$.

- Orthogonality.

Let $\gamma:[0, l] \rightarrow M$ be a minimizing geodesic joining p_{0} to q_{0}. We shall show $\gamma^{\prime}(l) \perp N$, i.e. $\gamma^{\prime}(0) \perp N, \forall v \in T_{q_{0}} N$.
Indeed, for $v \in T_{q_{0}} N$, let $\zeta:(-\varepsilon, \varepsilon) \rightarrow M$ be a geodesic with data $q_{0}, v\left(\right.$ i.e. $\left.\zeta(0)=q_{0}, \zeta^{\prime}(0)=v\right)$ and consider the variation $f:(-\varepsilon, \varepsilon) \times$ $[0, l] \rightarrow M$ such that $f(s, 0)=p_{0}, f(s, l)=\zeta(s)$. If we denote by $V(s)=\left.\frac{\partial f}{\partial s}\right|_{s=0}$, then from the formula for the first variation of energy, $0=\frac{1}{2} E^{\prime}(0)$
$=-\int_{0}^{l}\left\langle V(t), \gamma^{\prime \prime}(t)\right\rangle d t-\left\langle V(0), \gamma^{\prime}(0)\right\rangle+\left\langle V(l), \gamma^{\prime}(l)\right\rangle$
$=\left\langle v, \gamma^{\prime}(l)\right\rangle$
9.2 Introduce a complete Riemannian metric on \mathbb{R}^{2}. Prove that

$$
\lim _{r \rightarrow \infty}\left(\inf _{x^{2}+y^{2} \geq r^{2}} K(x, y)\right) \leq 0
$$

where $(x, y) \in \mathbb{R}^{2}$ and $K(x, y)$ is the Gauss curvature of the given metric at (x, y).
Proof. Argue by contradiction. Denote the complete metric on \mathbb{R}^{2} by g and suppose

$$
\lim _{r \rightarrow \infty}\left(\inf _{x^{2}+y^{2} \geq r^{2}} K(x, y)\right)>0
$$

Then

$$
\exists\left\{\begin{array}{l}
c>0 \\
r>0
\end{array} \quad \text { s.t. } \inf _{x^{2}+y^{2} \geq r^{2}} K(x, y) \geq c>0\right.
$$

Hence by Bonnet-Myers Theorem,

$$
\left(\left\{(x, y) ; x^{2}+y^{2} \geq r^{2}\right\}, g\right)
$$

$\left(\subset \mathbb{R}^{2}\right.$, complete) is compact. Thus

$$
\mathbb{R}^{2}=\left\{(x, y) ; x^{2}+y^{2} \leq r^{2}\right\} \cup\left\{(x, y) ; x^{2}+y^{2} \geq r^{2}\right\}
$$

as the union of two compact sets, is compact. A contradiction!
9.3 Prove the following generalization of the Theorem of Bonnet-Myers: Let M^{n} be a complete Riemannian manifold. Suppose that there exists constants $a>0$ and $c \geq 0$ such that for all pairs of points in M^{n} and for all minimizing geodesics $\gamma(s)$, parametrized by arc length s, joining these points, we have

$$
\operatorname{Ric}\left(\gamma^{\prime}(s)\right) \geq a+\frac{d f}{d s}, \quad \text { along } \gamma
$$

where f is a function of s, satisfying $|f(s)| \leq c$ along γ. Then M^{n} is compact.
Proof. We claim that

$$
\operatorname{diam}(M) \leq \frac{\pi^{2}}{\sqrt{c^{2}+\pi^{2} a}-c} \triangleq L
$$

Thus by Hopf-Rinow Theorem, M is compact.
Indeed, if not, then
$\exists\left\{\begin{array}{l}p, q \in M \\ \text { minimizing geodesic } \gamma:[0, l] \rightarrow M\end{array} \quad\right.$ s.t. γ joing p to q with $l(\gamma)=l>L$
Now choose a parallel orthonormal field

$$
e_{1}(s), \cdots, e_{n-1}(s), e_{n}(s)=\gamma^{\prime}(s)
$$

along γ, and consider the proper variations V_{j} defined by

$$
V_{j}(s)=\sin \frac{\pi s}{l}, \quad j=1, \cdots, n-1
$$

Then from the formula for the second variation of energy,

$$
\begin{aligned}
\frac{1}{2} E^{\prime \prime}\left(V_{j}\right)(0) & =\int_{0}^{l}\left\langle V_{j}, V_{j}^{\prime \prime}+R\left(\gamma^{\prime}, V_{j}\right) \gamma^{\prime}\right\rangle d s \\
& =\int_{0}^{l} \sin ^{2} \frac{\pi s}{l}\left[\frac{\pi^{2}}{l^{2}}-K_{\gamma(s)}\left(\gamma^{\prime}, e_{j}\right)\right] d s
\end{aligned}
$$

Summing j over $\{1, \cdots, n-1\}$, we get

$$
\begin{aligned}
\frac{1}{2} \sum_{j=1}^{n-1} E^{\prime \prime}\left(V_{j}\right)(0) & =\int_{0}^{l} \sin ^{2} \frac{\pi s}{l}\left[\frac{(n-1) \pi^{2}}{l}-(n-1) \operatorname{Ric}\left(\gamma^{\prime}\right)\right] d s \\
& \leq(n-1) \int_{0}^{l} \sin ^{2} \frac{\pi s}{l}\left[\frac{\pi^{2}}{l}-a-\frac{d f}{d s}\right] d s \\
& =(n-1)\left[\left(\frac{\pi^{2}}{l}-a\right) \frac{l}{2}+\int_{0}^{l} \sin \frac{2 \pi s}{l} \cdot \frac{\pi}{l} \cdot f d s\right] \\
& \leq(n-1)\left[\frac{\pi^{2}}{2 l}-\frac{a l}{2}+\frac{c \pi}{l} \cdot \frac{2 l}{\pi}\right] \\
& =-\frac{n-1}{2 l}\left[a l^{2}-2 c l-\pi^{2}\right] \\
& <0
\end{aligned}
$$

As a result,

$$
\exists j, \text { s.t. } E^{\prime \prime}\left(V_{j}\right)(0)<0
$$

which contradicts the fact that γ is minimizing.
Remark The theorem above has application to Relativity, see G.J.Galloway, "A generalization of Myer's Theorem and an application to relativistic cosmology", J.Diff. Geometry, 14(1979), 105-116
9.4 Let M be an orientable Riemannian manifold with positive (sectional) curvature and even dimension. Let γ be a closed geodesic in M, that is, γ is an immersion of the circle S^{1} in M that is geodesic at all of its points. Prove that γ is homotopic to a closed curve whose length is strictly less than that of γ.

Proof. We have only to show \exists a variation field V along γ such that $E_{V}^{\prime \prime}(0)<$ 0 (the second variation of energy concerning V).
Indeed, since M is orientable, if we denote by P_{γ} the parallel transport along γ, then

- P_{γ} is an isometry $\Rightarrow \operatorname{det} P_{\gamma}= \pm 1$;
- P_{γ} preserves orientation $\Rightarrow \operatorname{det} P_{\gamma}=1$;
- $P_{\gamma}\left(\gamma^{\prime}(0)\right)=\gamma^{\prime}(2 \pi)=\gamma^{\prime}(0) \Rightarrow P_{\gamma}$ leaves some $v\left(\perp \gamma^{\prime}(0)\right)$ invariant!

Thus, we may choose variation field $V(t)=P_{\gamma}(v)$, and by the formula for the second variation of energy,

$$
\begin{aligned}
\frac{1}{2} E_{V}^{\prime \prime}(0) & =-\int_{0}^{2 \pi}\left\langle V, V^{\prime \prime}+R\left(\gamma^{\prime}, V\right) \gamma^{\prime}\right\rangle d t \\
& =-|v|^{2}\left|\cdot \gamma^{\prime}(0)\right|^{2} \cdot \int_{0}^{2 \pi} K_{\gamma(t)}\left(v(t), \gamma^{\prime}(t)\right) d t \\
& <0
\end{aligned}
$$

as asserted.

Remark Note that in this settting, in the formula for the second variation of energy, the last four terms offset! Just because we consider closed geodesic...
9.5 Let N_{1} and N_{2} be two close disjoint submanifolds of a compact Riemannnian manifold M.
a) Show that the distance between N_{1} and N_{2} is assumed by a geodesic γ perpendicular to both N_{1} and N_{2}.
b) Show that, for any orthogonal variation $h(t, s)$ of γ, with $h(0, s) \in N_{1}$ and $h(l, s) \in N_{2}$, we have the following expression for the formula for the second variation
$\frac{1}{2} E^{\prime \prime}(0)=I_{l}(V, V)+\left\langle V(l), S_{\gamma^{\prime}(l)}^{(2)}(V(l))\right\rangle-\left\langle V(0), S_{\gamma^{\prime}(0)}^{(1)}(V(0))\right\rangle$
where V is the variational vector and $S_{\gamma^{\prime}}^{(i)}$ is the linear map associated to the second fundamental form of N_{i} in the direction $\gamma^{\prime}, i=1,2$.

Proof. a) Let $\left\{p_{i}\right\} \subset N_{1},\left\{q_{i}\right\} \subset N_{2}$ be such that $d\left(p_{i}, q_{i}\right) \rightarrow d\left(N_{1}, N_{2}\right)$. Since M is compact, we can find (common) $\{j\} \subset\{i\}$, s.t.

$$
p_{j} \rightarrow p \in N_{1}, \quad q_{j} \rightarrow q \in N_{2}
$$

then

$$
d(p, q)=d\left(N_{1}, N_{2}\right)
$$

Since d is continuous.
b) Now let $\gamma:[0, l] \rightarrow M$ be a minimizing geodesic joining p to q, then

$$
\gamma^{\prime}(0) \perp T_{p} N_{1}, \quad \gamma^{\prime}(l) \perp T_{q} N_{2}
$$

from the result of Exercise 1.
b)

$$
\begin{aligned}
\frac{1}{2} E^{\prime \prime}(0)= & I_{l}(V, V)-\left\langle\frac{D}{d s} \frac{\partial f}{\partial s}, \frac{d \gamma}{d t}\right\rangle(0,0)+\left\langle\frac{D}{d s} \frac{\partial f}{\partial s}, \frac{d \gamma}{d t}\right\rangle(0, a) \\
& -\left\langle V(0), \frac{D V}{d t}(0)\right\rangle+\left\langle V(a), \frac{D V}{d t}(a)\right\rangle \\
= & I_{l}(V, V)-\left\langle B\left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial s}\right), \frac{d \gamma}{d t}\right\rangle(0,0)+\left\langle B\left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial s}\right), \frac{d \gamma}{d t}\right\rangle(0, a)
\end{aligned}
$$

(by a) and orthogonality of h)
$\left.\left.=I_{l}(V, V)-\left\langle S_{\gamma^{\prime}(0)}(V(0)), V(0)\right)\right\rangle+\left\langle S_{\gamma^{\prime}(l)}(V(l)), V(l)\right)\right\rangle$

10 The Rauch Comparison Theorem

10.3 Let M be a complete Riemannian manifold with non-positive sectional curvature. Prove that

$$
\left|\left(d \exp _{p}\right)_{v}(w)\right| \geq|w|
$$

for all $p \in M$, all $v \in T_{p} M$ and all $w \in T_{v}\left(T_{p} M\right)$.
Proof. Let $\tilde{M}=\left(T_{p} M=\mathbb{R}^{n}, \delta_{i j}\right)$ and

- $\tilde{\gamma}(t)=t v, \gamma(t)=\exp _{p}(t v)$;
- $\tilde{J}(t)=t w, J(t)=\left(d \exp _{p}\right)_{t v}(t w)$.

Then by Rauch Comparison Theorem, using $K_{M} \leq 0$, that

$$
\left|d\left(\exp _{p}\right)_{v}(w)\right| \geq|w|
$$

10.5 (The Sturm Comparison Theorem). In this exercise we present a direct proof of Rauch's Theorem in dimension two, without using material from the present chapter. We will indicate a proof of the Theorem of Sturm mentioned in the Introduction to the chapter. Let

$$
\begin{cases}f^{\prime \prime}(t)+K(t) f(t)=0, & f(0)=0, \\ \tilde{f}^{\prime \prime}(t)+\tilde{K}(t) \tilde{f}(t)=0, & \tilde{f}(0)=0, t] \\ f^{\prime}(0, l]\end{cases}
$$

be two ordinary differential equations. Suppose that $\tilde{K}(t) \geq K(t)$ for $t \in$ $[0, l]$, and that $f^{\prime}(0)=\tilde{f}^{\prime}(0)=1$.
a) Show that for all $t \in[0, l]$,
(1) $0=\int_{0}^{t}\left\{\tilde{f}\left(f^{\prime \prime}+K f\right)-f\left(\tilde{f}^{\prime \prime}+\tilde{K} \tilde{f}\right)\right\} d t=\left[\tilde{f} f^{\prime}-f \tilde{f}^{\prime}\right]_{0}^{t}+\int_{0}^{t}(K-\tilde{K}) f \tilde{f} d t$

Conclude from this that the first zero of f does not occur before the first zero of \tilde{f}.
b) Suppose that $\tilde{f}(t)>0$ on $(0, l]$. Use (1) and the fact that $f(t)>0$ on $(0, l]$ to show that $f(t) \geq \tilde{f}(t), t \in[0, l]$, and that the equality is verified for $t=t_{1} \in(0, l]$ if and only if $K(t)=\tilde{K}(t), t \in\left[0, t_{1}\right]$.
Verify that this is the Theorem of Rauch in dimension two.
Proof. a) First, integration by parts gives (1). Second, we prove that the first zero of f does not occur before the first zero of \tilde{f}. Indeed, if $t \in(0, l]$ is such that

$$
\tilde{f}(t)>0 \text { on }\left(0, t_{0}\right), \quad \tilde{f}\left(t_{0}\right)=0
$$

and if $f\left(t_{1}\right)=0$ for some $t_{1} \in\left(0, t_{0}\right)$, then

$$
\tilde{f}\left(t_{1}\right)>0, \quad f^{\prime}\left(t_{1}\right)<0
$$

contradicting (1) with t replaced by t_{1}.
b) We know from (1) that

$$
\tilde{f} f^{\prime}-f \tilde{f}^{\prime} \geq 0
$$

i.e.

$$
\begin{aligned}
\frac{f^{\prime}}{f} & \geq \frac{\tilde{f}^{\prime}}{\tilde{f}} \\
(\ln f)^{\prime} & \geq(\ln \tilde{f})^{\prime}
\end{aligned}
$$

Integrating from t_{0} to $t\left(0<t_{0}<t \leq l\right)$, we obtain

$$
\begin{aligned}
\ln f(t)-\ln f\left(t_{0}\right) & \geq \ln \tilde{f}(t)-\ln \tilde{f}\left(t_{0}\right) \\
\ln \frac{f(t)}{\tilde{f}(t)} & \geq \ln \frac{f\left(t_{0}\right)}{\tilde{f}\left(t_{0}\right)} \\
\frac{f(t)}{\tilde{f}(t)} & \geq \frac{f\left(t_{0}\right)}{\tilde{f}\left(t_{0}\right)}
\end{aligned}
$$

But

$$
\lim _{t_{0} \rightarrow 0} \frac{f\left(t_{0}\right)}{\tilde{f}\left(t_{0}\right)}=\lim _{t_{0} \rightarrow 0} \frac{f^{\prime}\left(t_{0}\right)}{\tilde{f^{\prime}}\left(t_{0}\right)}=1
$$

we've

$$
f(t) \geq \tilde{f}(t)
$$

as required
And if the equality is valid for some $t=t_{1} \in(0, l]$,then

$$
f(t)=\tilde{f}(t), \quad \forall t \in\left[0, t_{1}\right]
$$

(Otherwise, $\exists t^{*} \in\left(0, t_{1}\right)$ satisfies $f\left(t^{*}\right)>\tilde{f}\left(t^{*}\right)$, then

$$
1=\frac{f\left(t_{1}\right)}{\tilde{f}\left(t_{1}\right)} \geq \frac{f\left(t^{*}\right)}{\tilde{f}\left(t^{*}\right)}>1
$$

A contradiction!)
Thus

$$
f^{\prime}\left(t_{1}\right)=0=\tilde{f}^{\prime}\left(t_{1}\right)
$$

Hence by (1),

$$
\begin{gathered}
0=\int_{0}^{t_{1}}(K-\tilde{K}) f^{2} d t \\
K=\tilde{K}, \quad \forall t \in\left[0, t_{1}\right] \\
(f>0, \forall t \in(0, l] \text { and continuity of the } K ' s) .
\end{gathered}
$$

11 The Morse Index Theorem

11.2 Prove the following inequality on real functions (Wirtinger's inequality). Let $f:[0, \pi] \rightarrow \mathbb{R}$ be a real function of class C^{2} such that $f(0)=0=f(\pi)$. Then

$$
\int_{0}^{\pi} f^{2} d t \leq \int_{0}^{\pi}\left(f^{\prime}\right)^{2} d t
$$

and equality occurs if and only if $f(t)=c \sin t$, where c is a constant.
Proof. Let $\gamma:[0, \pi] \rightarrow S^{2}$ be a normalized geodesic joining $\gamma(0)=p$ to $\gamma(\pi)=-p$, and let v be a parallel field along γ with $\left\langle v, \gamma^{\prime}\right\rangle=0,|v|=1$. Set $V=f v$, then

$$
\begin{aligned}
0 & \leq I_{\pi}(V, V) \text { (Morse Index Theorem) } \\
& =\int_{0}^{\pi}\left\{\left|f^{\prime}\right|^{2}-|f|^{2}\right\} d t\left(K_{S^{2}}=1\right)
\end{aligned}
$$

as required. And

$$
\text { equality occurs } \Leftrightarrow V \text { is a Jacobi field. }(f(0)=0=f(\pi), n=2)
$$

$$
\begin{aligned}
& \Leftrightarrow \quad f^{\prime \prime}+f=0\left(K_{S^{2}}=1\right) \\
& \Leftrightarrow \quad f=c \sin t(f(0)=0=f(\pi))
\end{aligned}
$$

11.4 Let $a: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $a(t) \geq 0, t \in \mathbb{R}$, and $a(0)>0$. Prove that the solution to the differential equation

$$
\frac{d^{2} \varphi}{d t^{2}}+a \varphi=0
$$

with initial conditions $\varphi(0)=1, \varphi^{\prime}(0)=0$, has at least one positive zero and one negative zero.
Proof. We need only to prove φ has at least one positive zero, the other assertion being similar. Argue by contradiction, if

$$
t \in(0, \infty) \Rightarrow \varphi(t)>0
$$

then

$$
\varphi^{\prime \prime}=-a \varphi \leq 0
$$

i.e.

$$
\varphi^{\prime} \text { is non-increasing }
$$

But now, $a(0)>0, \varphi(0)=1$,

$$
\varphi^{\prime \prime}(0)=-a(0) \varphi(0)<0
$$

$$
\exists \varepsilon>0, \text { s.t. } t \in(0, \varepsilon] \Rightarrow \varphi^{\prime \prime}(t)<0 \Rightarrow \varphi^{\prime}(t)<\varphi^{\prime}(0)=0
$$

Thus

$$
\begin{aligned}
\varphi(T) & =\varphi(0)+\int_{0}^{T} \varphi^{\prime}(t) d t \\
& =1+\int_{0}^{\varepsilon} \varphi^{\prime}(t) d t+\int_{\varepsilon}^{T} \varphi^{\prime}(t) d t \\
& <1+\int_{\varepsilon}^{T} \varphi^{\prime}(t) d t \\
& \leq 1+\varphi^{\prime}(\varepsilon)(T-\varepsilon) \\
& <0
\end{aligned}
$$

if T is large enough. A contradiction!
11.5 Suppose M^{n} is complete Riemannian manifold with sectional curvature strictly positive and let $\gamma:(-\infty, \infty) \rightarrow M$ be a normalized geodesic in M. Show that there exists $t_{0} \in \mathbb{R}$ such that the segment $\gamma\left(\left[-t_{0}, t_{0}\right]\right)$ has index greater or equal to $n-1$.

Proof. Let Y be a parallel field along γ with $\left.<Y, \gamma^{\prime}\right\rangle=0,|Y|=1$. Set

$$
\begin{aligned}
& \varphi_{Y}=\left\langle R\left(\gamma^{\prime}, Y\right) \gamma^{\prime}, Y\right\rangle \\
& K(t)=\inf _{Y} \varphi_{Y}(t)>0
\end{aligned}
$$

and let $a: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that

$$
0 \leq a(t) \leq K(t), \quad 0<a(0)<K(0), \quad t \in \mathbb{R}
$$

Let φ be the solution of the system

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}+a \varphi=0 \\
\varphi(0)=1, \varphi^{\prime}(0)=0
\end{array}\right.
$$

and let $-t_{1}, t_{2}$ be the two zeros of this system. If we denote by $X=\varphi Y$, then

$$
\begin{aligned}
& I_{\left[-t_{1}, t_{2}\right]}(X, X) \\
= & \int_{-t_{1}}^{t_{2}}\left\{\left\langle X^{\prime}, X^{\prime}\right\rangle-\left\langle R\left(\gamma^{\prime}, X\right) \gamma^{\prime}, X\right\rangle\right\} d t \\
= & -\int_{-t_{1}}^{t_{2}}\left\langle X^{\prime \prime}+R\left(\gamma^{\prime}, X\right) \gamma^{\prime}, X\right\rangle d t\left(\varphi\left(-t_{1}\right)=0=\varphi\left(t_{2}\right)\right) \\
= & -\int_{-t_{1}}^{t_{2}}\left[\varphi^{\prime \prime} \varphi+\varphi^{2} \varphi_{Y}\right] d t \\
\leq & -\left(\int_{-t_{1}}^{-\varepsilon}+\int_{-\varepsilon}^{\varepsilon}+\int_{-\varepsilon}^{t_{2}}\right)\left[\varphi^{\prime \prime} \varphi+\varphi^{2} K\right] d t \\
< & -\left(\int_{-t_{1}}^{-\varepsilon}+\int_{-\varepsilon}^{\varepsilon}+\int_{-\varepsilon}^{t_{2}}\right)\left[\varphi^{\prime \prime} \varphi+\varphi^{2} a\right](K(0)>a(0), K(t) \geq a(t)) \\
= & -\int_{-t_{1}}^{t_{2}}\left[\varphi^{\prime \prime}+a \varphi\right] \varphi d t \\
= & 0
\end{aligned}
$$

Thus if $t_{0}=\max \left\{t_{1}, t_{2}\right\}$, then

$$
\operatorname{Index}\left(\left.\gamma\right|_{\left[-t_{0}, t_{0}\right]}\right) \geq \operatorname{Index}\left(\left.\gamma\right|_{\left[-t_{1}, t_{2}\right]}\right) \geq n-1\left(t_{0}=t_{1} \text { or } t_{2}\right)
$$

11.6 A line in a complete Riemannian manifold is a geodesic

$$
\gamma:(-\infty, \infty) \rightarrow M
$$

which minimizes the arc length between any two of its points. Show that if the sectional curvature K of M is strictly positive, M does not have any lines. By an example show that the theorem is false if $K \geq 0$.
Proof. Of course, we take $n \geq 2$. By Exercise 5,

$$
\exists t_{0} \in \mathbb{R}, \exists X \in \mathfrak{V}\left(-t_{0}, t_{0}\right) \text {, s.t. } I_{\left[-t_{0}, t_{0}\right]}(X, X)<0
$$

Then by the formula for the second variation of energy,

$$
\left.\gamma\right|_{\left[-t_{0}, t_{0}\right]} \text { is not minimizing }
$$

Thus M does not have any rays.
If $K \geq 0$, the theorem is false, because any "line" is Euclidean flat space $\left(\mathbb{R}^{n}, \delta_{i j}\right)$ is indeed a line!

Concluding Remarks-Lobatchevski Geometry

- 1.4

As a Lie group, endowed with left-invariant metric, the isometry of which...

- 2.8

The Christoffel symbols, a beautiful parallel field...

- 7.10

As a complete manifold, all the geodesics are calculated...

- 8.1

Some extensions...

