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Abstract. In this paper, we present an exactly solvable phase transition model
in which the phase transition is purely statistically derived. The phase transition
in this model is a generalized Bose–Einstein condensation. The exact expression
for the thermodynamic quantity, which can be used to simultaneously describe
both the gas phase and the condensed phase, is solved with the help of the
homogeneous Riemann–Hilbert problem, so one can judge whether there exists
a phase transition and determine the phase transition point mathematically
rigorously. A generalized statistics in which the maximum occupation numbers
of different quantum states can take on different values is introduced, as a
generalization of Bose–Einstein and Fermi–Dirac statistics.
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1. Introduction

A few exactly solvable models play important roles in phase transition theory, since most,
if not all, of our understanding of phase transitions comes from studying models [1]. In
this paper, we present a purely statistically derived solvable phase transition model. In
the model, the exactly solved thermodynamic quantity can be used to simultaneously
describe different phases. Therefore, whether there is a phase transition can be judged
mathematically rigorously, and the phase transition temperature can be calculated directly
by analyzing the discontinuity in the thermodynamic quantities or their derivatives.

Bose–Einstein condensation (BEC) is the first purely statistically derived example of a
phase transition. The phase transition in the present model is a generalized Bose–Einstein
condensation; in other words, the phase transition is a BEC type phase transition.

The BEC type phase transition is a sudden change in the microscopic particle
distribution: in the gas phase, no quantum state is macroscopically occupied, while in
the condensed phase, there is a quantum state being occupied by a macroscopic number
of particles. The microscopic particle distribution determines the macroscopic behavior of
a thermodynamic system, or the macroscopic behavior reflects the average contribution
of all quantum states in the system. In the condensed phase, the macroscopic behavior
of the system is to a certain extent determined by the single quantum state that is
macroscopically occupied, since the number of particles in such a state is of the same order
of magnitude as the total number of particles. As a macroscopic manifestation of such a
sudden change in the particle distribution, there is a singularity in the thermodynamic
quantity.

We will show that, beyond the Bose case, there are still other systems that can display
BEC type phase transitions.
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First, we will introduce a generalized statistics in which different quantum states have
different maximum occupation numbers, and Bose–Einstein and Fermi–Dirac statistics are
its special cases. In particular, we will pay attention to a special case of the generalized
statistics in which at least one quantum state’s maximum occupation number is infinite
and show that the BEC type phase transition may occur in such systems. For example,
we will show that a BEC type phase transition can occur in an ideal gas of any dimension,
obeying the generalized statistics in which the maximum occupation number of the ground
state is infinity, like that in the Bose–Einstein case, and the maximum occupation number
of all other quantum states is 1, like that in the Fermi–Dirac case. For comparison, recall
that the BEC can occur only in three-dimensional ideal Bose gases, and cannot occur in
one- and two-dimensional cases.

The mathematical method for solving the model is based on the homogeneous
Riemann–Hilbert problem—the boundary problem of analytic functions, which comes
from the theory of singular integral equations [2, 3].

Moreover, our result also shows that a phase transition occurs only in the
thermodynamic limit, i.e., the total number of particles and the volume must be infinite.
The common proof for this result depends on an assumption that a finite volume can
accommodate at most a finite number of particles, which is, of course, only valid for
non-ideal gases [4]. Our result provides an example where this result holds also for ideal
gases.

In section 2, we introduce the generalized statistics. In section 3, we construct and
solve the phase transition model. Discussions and an outlook are given in section 4.

2. The generalized statistics

In this section, we introduce a generalized statistics in which the maximum occupation
number of a quantum state can take on unrestricted integer values or infinity and the
maximum occupation numbers of different states may be different.

Let ni be the maximum occupation number of the ith quantum state, where ni can
take on an integer value or ∞. The grand partition function is

Ξ(T, V, μ) =

∞∏

i=0

1 − e−β(ni+1)(εi−μ)

1 − e−β(εi−μ)
, (1)

where T is the temperature, V the volume, μ the chemical potential, εi the energy of the
ith state, and β = 1/(kBT ). Then the equation of state reads

PV

kBT
=

∞∑

i=0

ln
1 − zni+1e−(ni+1)βεi

1 − ze−βεi
, (2)

N =

∞∑

i=0

[
1

z−1eβεi − 1
− ni + 1

(z−1eβεi)ni+1 − 1

]
. (3)

The equations of state for Bose–Einstein, Fermi–Dirac, and Gentile [5, 6] cases can be
recovered by setting ni = ∞, ni = 1, and ni = n, respectively.

In this paper, we consider an ideal gas obeying the generalized statistics in which
the maximum occupation number of only one quantum state is ∞, but that for all other
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quantum states is n, a given integer, i.e., nk = ∞ and ni = n(i �= k). The equation of
state for such an ideal gas with the dispersion relation ε = ps/(2m) in ν dimensions can
be obtained from equations (2) and (3):

PV

kBT
= Nλhν/s+1(z) − ln

[
1 − (ze−βεk)n+1

]
, (4)

N = Nλhν/s(z) +
n + 1

(z−1eβεk)n+1 − 1
, (5)

where z = eβμ is the fugacity, Nλ = (2Γ(ν/s)/(sΓ(ν/2)))(V/λν), and λ =
h/(2πs/2mkBT )1/s is the mean thermal wavelength. hσ(z) can be expressed using the
Bose–Einstein integral, gσ(z), as

hσ(z) = gσ(z) − (n + 1)−(σ−1)gσ(zn+1),

and in the limit n → ∞ or n = 1, hσ(z) returns to the Bose–Einstein integral gσ(z) or
the Fermi–Dirac integral fσ(z), respectively [5].

We will show that such an ideal gas system may display the BEC type phase transition,
and whether the phase transition occurs or not rests on the value of k, the position of the
state with an infinite maximum occupation number in the spectrum.

3. The phase transition

In this section, we consider two cases which can display BEC type phase transitions: the
ideal gases obeying the generalized statistics with n0 = ∞, ni = n (i �= 0) and with
nk = ∞ (k �= 0), ni = n (i �= k). An interesting case is n = 1. In this case, the maximum
occupation number of only one state is the same as that in the Bose case, but for all other
states it is the same as that in the Fermi case. We will show that even systems in which
only one state’s maximum occupation number is infinite can still display BEC type phase
transitions.

3.1. The explicit expression for the fugacity

For judging whether there is a phase transition or not and determining the phase transition
temperature, we first solve the exact explicit expression for the fugacity from the equation
of state, and, then, analyze the discontinuity in the derivative of the fugacity.

On the basis of the homogeneous Riemann–Hilbert problem [3], we can solve the
explicit expression for the fugacity from equation (5) exactly. (A brief introduction to the
method of addressing the Riemann–Hilbert problem see [7].)

For the case of nk = ∞ and ni = n (i �= k), introduce a complex function

Ψ(ζ) =
Nλ

N
hν/s(ζ) +

1

N

n + 1

(ζ−1eβεk)n+1 − 1
− 1, (6)

where hσ(ζ) is an analytic continuation of hσ(z). From equation (5), we can see that the
fugacity is a zero of Ψ(ζ) on the real axis. Therefore, the problem of solving the fugacity
z is converted into the problem of seeking the real zero of the complex function Ψ(ζ).
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(b)(a)

0 1 0 1

Figure 1. The analytic region of Ψ(ζ). The cases of n = even and n = odd are
illustrated in (a) and (b), respectively.

We can express Ψ(ζ) as

Ψ(ζ) = η
(ζ − z)

∏nzero−1
i=1 (ζ − ωi)∏nρ

j=1(ζ − ρj)
∏nb

m=1(ζ − cm)κm
ϕ(ζ), (7)

where ϕ(ζ) is the fundamental solution of the homogeneous Riemann–Hilbert problem,
which has no zeros and singularities, z (the fugacity) and ωi are zeros of Ψ(ζ), nzero is the
number of zeros, ρj is a pole of Ψ(ζ), nρ is the number of poles, cm is an endpoint that
is different from infinity of the boundary of the analytic region of Ψ(ζ) (in the present
case, the boundary of the analytic region of Ψ(ζ) is a set of rays (see figure 1) with the
origins cm), nb is the number of the endpoints different from infinity of the boundary (in
the present case nb is the number of rays), the constant κm is introduced to equal the
degrees of divergence of the two sides of this equation at the mth endpoint cm, and η is
a constant.

From equation (7), it is easy to see that we can in principle obtain an explicit
expression for the fugacity z. For this purpose, we need to first determine the fundamental
solution ϕ(ζ), the endpoints cm, and the poles ρj , etc.
The analytic region. For determining cm, the endpoints of the boundary of the analytic
region, we first analyze the analytic region of Ψ(ζ).

The boundary of the analytic region of Ψ(ζ) is determined by the analytic region of

hσ(ζ) = gσ(ζ) − 1

(n + 1)σ−1
gσ(ζn+1), (8)

where gσ(ζ) is the analytically continued Bose–Einstein integral which is just the Jonquiére
function [8]:

gσ(ζ) = Liσ(ζ).

The boundary of the analytic region of Liσ(ζ) is the positive real axis from 1 to ∞ [8].
Consequently, the boundary of the analytic region of hσ(ζ) and Ψ(ζ) consists of n rays
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with origins on the unit circle (figure 1), denoted as Lm, m = 1, 2, . . . , n, i.e., the mth ray
Lm is [ei(2πm/(n+1)),∞ei(2πm/(n+1))). It should be emphasized that hσ(ζ) has no singularity
on the positive real axis, or hσ(ζ) is analytic on the positive real axis. Then, the endpoints
that are different from infinity of the boundary (the origins of the rays) are

cm = ei(2πm/(n+1)), m = 1, 2, . . . , n. (9)

Therefore we have nb = n.
The fundamental solution of the homogeneous Riemann–Hilbert problem. Now, we
calculate the fundamental solution of the homogeneous Riemann–Hilbert problem, ϕ(ζ).

Using the result of the homogeneous Riemann–Hilbert problem [3], we have

ϕ(ζ) = eγ(ζ)
n∏

m=1

(ζ − cm)λm . (10)

Here

γ(ζ) =
1

2πi

n∑

m=1

∫

Lm

dx
ln G(x)

x − ζ
=

1

2πi

n∑

m=1

ei(2πm/(n+1))

∫ ∞

1

dx
ln G

(
xei(2πm/(n+1))

)

xei(2πm/(n+1)) − ζ
, (11)

where

G(ζ) =
ϕ+(ζ)

ϕ−(ζ)
(12)

is the jump of ϕ(ζ) on the boundary, and λm is an integer determined by the condition

∓Re
ln G(cm)

2πi
+ λm = 0, if ∓Re

ln G(cm)

2πi
is an integer,

−1 < ∓Re
ln G(cm)

2πi
+ λm < 0, otherwise.

(13)

We first need to analyze the analytic region of the fundamental solution ϕ(ζ). From
equation (7), we can see that the boundary of the analytic region of ϕ(ζ) consists of the
non-isolated singularities of Ψ(ζ), and the jump of ϕ(ζ) on the boundary is the same as
that of Ψ(ζ), i.e.,

G(ζ) =
Ψ+(ζ)

Ψ−(ζ)
. (14)

The value of Ψ(ζ) on the two sides of Lm is determined by the value of the function
hσ(ζ) on the two sides of Lm:

h±
σ (xei(2πm/(n+1))) = gσ(xei(2πm/(n+1))) − 1

(n + 1)σ−1
gσ(xn+1) ∓ i

π

Γ(σ)
(ln x)σ−1,

m = 1, 2, . . . , n, (15)

where gσ(ζ) is the Cauchy principal value of gσ(ζ) on the boundary [9]. Then

Ψ±(xei(2πm/(n+1))) =
Nλ

N

[
gν/s(xei(2πm/(n+1))) − 1

(n + 1)ν/s−1
gν/s(x

n+1)

]

+
1

N

n + 1

(x−1eβεk)n+1 − 1
− 1 ∓ i

π

Γ(ν/s)

Nλ

N
(ln x)ν/s−1. (16)
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Note that, in the case of nk = ∞ and ni = 1 (i �= k), equation (16) reduces to

Ψ±(−x) =
Nλ

N
fν/s(−x) +

1

N

2

(x−1eβεk)2 − 1
− 1 ∓ i

π

Γ(ν/s)

Nλ

N
(ln x)ν/s−1, (17)

where fν/s(ξ) is the Cauchy principal value of the analytically continued Fermi–Dirac
integral.

Next, we calculate λm from equations (13).
At the endpoints of the boundary (including both the endpoints that are different

from infinity and the infinity), we have

G(ei(2πm/(n+1))) = G(∞) = 1. (18)

Choosing ln G(∞) = 0 gives

ln G(ei(2πm/(n+1))) = i arg G(ei(2πm/(n+1))) = −i2π. (19)

Then we have

λm = −1. (20)

Therefore, the fundamental solution is

ϕ(ζ) = eγ(ζ)

n∏

m=1

1

ζ − ei(2πm/(n+1))
= eγ(ζ) ζ − 1

ζn+1 − 1
. (21)

The value of κm. The parameter κm is chosen to guarantee that the degrees of divergence
of the two sides of equation (7) at the endpoint cm are the same.

At the origin of Lm, cm = ei2πm/(n+1), when ν/s > 1, gν/s(x
n+1) and (ln x)ν/s−1 are

convergent, and when ν/s ≤ 1, the degrees of divergence of gν/s(x
n+1) and (lnx)ν/s−1 are

less than 1. Thus we have

κm = 0. (22)

The isolated singularity.Ψ(ζ) has only one isolated singularity,

ρ = eβεk . (23)

The number of zeros of Ψ(ζ). Substituting the above result into equation (7) gives

η(ζ − z)
nzero−1∏

i=1

(ζ − ωi) = e−γ(ζ) ζ
n+1 − 1

ζ − 1
(ζ − eβεk)Ψ(ζ). (24)

In principle, if ωi and η are known, one can obtain the explicit expression for z directly.
Nevertheless, the difficulty of finding the zeros ωi is often the same as the difficulty of
finding the zero z. Alternatively, we can construct a set of equations for z, ωi, and η, and
obtain z by solving the equations.

For solving z, we need nzero+1 equations. Since the number of the isolated singularities
of Ψ(ζ) is already known, the number of the zeros, nzero, can be determined by the
argument principle, the contour being chosen as in figure 1. The result shows that Ψ(ζ)
has n + 1 zeros on the ζ-plane, so we need n + 2 equations for determining z.

The case of nk = ∞ and ni = 1 (i �= k). For simplicity, we consider the case of
nk = ∞ and ni = 1 (i �= k); the solutions for more general cases can also be obtained
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exactly but with more complex forms. When n = 1, equation (24) becomes

η(ζ − z)(ζ − ω) = e−γ(ζ)(ζ + 1)(ζ − eβεk)Ψ(ζ). (25)

In this case, for solving z, we need three equations.
Substituting ζ = 0 into equation (25) gives

ηzω = eβεk−γ(0); (26)

substituting equation (26) into the derivative of equation (25) and setting ζ = 0 gives

γ′(0) − 1 + e−βεk − 1

z
− 1

ω
= −Nλ

N
; (27)

and substituting ζ = eβεk into equation (25) gives

η(eβεk − z)(eβεk − ω) = −e−γ(eβεk )(eβεk + 1)
eβεk

N
. (28)

Solving the equations (26)–(28), we have

z = 2

[
ηλ + e−βεk +

√
(ηλ − e−βεk)2 +

4e−βεk(1 + e−βεk)

Neγ(eβεk )−γ(0)

]−1

, (29)

where ηλ = Nλ/N + γ′(0) − 1 and

γ(ζ) =
1

2πi

∫ ∞

1

dx
ln G(−x)

x + ζ
. (30)

3.2. The phase transition and the necessary condition for phase transitions—the
thermodynamic limit

Equation (29) is an exact expression for the fugacity, which can be used to simultaneously
describe both the gas phase and the condensed phase, and, of course, it can be used to
describe the transition between these two phases. From equation (29), we can directly
see that the thermodynamic limit, N → ∞, is the necessary condition for the phase
transition.

The fugacity given by equation (29) is a smooth function and there is no singularity.
Therefore, there is no phase transition regardless of how low the temperature is. However,
in the thermodynamic limit, i.e., N → ∞, equation (29) becomes

z = 2
1

ηλ + e−βεk + |ηλ − e−βεk | =

⎧
⎨

⎩

eβεk , when ηλ < e−βεk ,

1

ηλ
, when ηλ > e−βεk .

(31)

The discontinuity may appear in the first-order derivative of the fugacity and the phase
transition may occur. The discontinuous point appears at

ηλ = e−βεk , (32)

which is just the phase transition point.
In the phase transition theory, there is a fundamental law: the necessary condition for

a phase transition is that the system must be infinite, i.e., the thermodynamic limit. The
proof of this statement depends on the assumption that a finite volume can accommodate

doi:10.1088/1742-5468/2009/07/P07034 8

http://dx.doi.org/10.1088/1742-5468/2009/07/P07034


J.S
tat.M

ech.
(2009)

P
07034

An exactly solvable phase transition model

at most a finite number of particles. If the number of particles is finite, the partition
function will be an analytic function and, consequently, there is no singularity in the
thermodynamic function and there is no phase transition [4, 10, 11]. Such an assumption
is equivalent to requiring that the particle must have a nonzero volume. Clearly, this
assumption does not hold for ideal gases. That is to say, though this conclusion is valid
for all realistic systems (realistic gases are non-ideal gases), this proof is not valid for
the idealized model—ideal gases. Our above result shows that for ideal gas systems, the
thermodynamic limit is still a condition for a phase transition.

3.3. The case of n0 = ∞ and ni = 1 (i �= 0): the phase transition temperature

We first consider the case of n0 = ∞ and ni = 1 (i �= 0), i.e., the state whose maximum
occupation number is infinite is the ground state, εk = ε0 = 0.

In any dimension, there must exist a phase transition. This can be verified directly
by observing the discontinuity in the derivative of the fugacity z from equation (32) and
the transition temperature is determined by

ηλ = 1. (33)

Then the phase transition temperature reads

Tc =
hs

2πs/2mkB

[
N

V

sΓ(ν/2)

2Γ(ν/s)

1

(1 − 21−ν/s)ζ(ν/s)

]s/ν

. (34)

Now let us see what happens when a phase transition occurs. The total number of
the excited particles, from equation (5), is

Ne = Nλfν/s(z). (35)

Comparing the expressions for Tc and Ne gives that when the phase transition occurs,

Ne = N. (36)

This is just the condition that one determines the phase transition temperature for a
BEC in an ideal Bose gas. In our case, however, this result comes from a mathematically
rigorous calculation rather than being put in by hand.

This result indicates that when the phase transition occurs, the macroscopic
properties of the system will begin to be controlled, to a certain extent, by a unique
quantum state (here the state is the ground state). Such a phase transition is a sudden
change in the particle distribution: in the gas phase, the macroscopic behavior of the
system is a mean contribution of all quantum states, but in the condensed phase, the
quantum state with an infinite maximum occupation number dominates. This is a BEC
type phase transition. More concretely, when the phase transition begins, the number of
excited particles decreases as the temperature decreases, while the number of particles in
the ground state increases as the temperature decreases:

Ne

N
=

(
T

Tc

)ν/s

,
N0

N
= 1 −

(
T

Tc

)ν/s

. (37)

In contrast to the case for the BEC in an ideal Bose gas, the BEC type phase transition
can occur in any dimension in the ideal gases obeying the statistics in which the maximum
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occupation number of the ground state is ∞ and of all other states is finite, since the phase
transition can occur for any positive value of ν/s. In the Bose case, however, the BEC
only occurs when ν/s > 1, and, as a result, the BEC only occurs in three-dimensional
Bose gases. This is because the Bose–Einstein integral in the Bose case is replaced by
hν/s(z) in the present case, while hν/s(z) is always bounded for 0 ≤ z ≤ 1. That is to say,
in such an ideal generalized statistics gas, the occurrence of the phase transition is easier
to obtain than that in a Bose system.

3.4. The case of nk = ∞ and ni = 1 (i �= k): the phase transition temperature and the
Fermi energy

Next, we consider the case where the only state with an infinite maximum occupation
number is not the ground state, i.e., nk = ∞ and ni = 1 (k �= 0 and i �= k). More general
cases can be treated by the same procedure.
The phase transition temperature. From equation (31), we can see that the discontinuous
point of the derivative of the fugacity appears at ηλ = e−βεk . Equation (31) indicates that
the phase transition appears at z = ω = eβεk . Substituting ζ = eβεk into the derivative of
equation (25), when N → ∞, gives

Λ(kBTc)
ν/sfν/s(e

εk/(kBTc)) = 1, (38)

where Λ = (2Γ(ν/s)/(sΓ(ν/2)))((2πs/2m)ν/s/hν)(V/N). This result indicates that when
the phase transition occurs, the number of particles in all the states except the infinite-
maximum-occupation-number kth state equals the total number of particles of the system,
i.e., Nn �=∞ = N .

On the basis of the homogeneous Riemann–Hilbert problem, we can solve the phase
transition temperature from equation (38). For simplicity, we only give the result for the
case of s = ν.

Introduce a complex function

φ(τ) =
2

sΓ(s/2)

V

N

2πs/2m

hs
kBτf1

(
eεk/(kBτ)

)
− 1. (39)

The phase transition temperature Tc is a zero of φ(τ) on the real axis.
The analytic region. We first analyze the analytic region of φ(τ) on the τ -plane. The
analytic region of φ(τ) is determined by the behavior of the analytically continued Fermi–
Dirac integral, f1(e

εk/(kBτ)), which is illustrated in figure 2(a). The boundary of this region
is complex. Introducing a transformation

ξ =
1

kBτ
, (40)

we have

ψ(ξ) =
2

sΓ(s/2)

V

N

2πs/2m

hs

1

ξ
f1(e

εkξ) − 1. (41)

The boundary of the analytic region of ψ(ξ) on the ξ-plane is

Re ξ ≥ 0,

Im ξ =
(2q + 1)π

εk
, q = 0,±1,±2, . . . ,

(42)

doi:10.1088/1742-5468/2009/07/P07034 10

http://dx.doi.org/10.1088/1742-5468/2009/07/P07034


J.S
tat.M

ech.
(2009)

P
07034

An exactly solvable phase transition model

0

Figure 2. (a) The analytic region of φ(τ); (b) the analytic region of ψ(ξ).

as illustrated in figure 2(b), which is a set of rays running parallel to the real axis with
origins

cq =

(
0,

(2q + 1)π

εk

)
. (43)

The fundamental solution of the homogeneous Riemann–Hilbert problem. We can also
express ψ(ξ) in the form of equation (7), and, then, solve the explicit expression for
the phase transition temperature. First, we seek for the fundamental solution of the
homogeneous Riemann–Hilbert problem. According to equation (10), the fundamental
solution can be written in the following form:

ϕ(ξ) = eγ(ξ)

∞∏

q=−∞
(ξ − cq)

λq , (44)

where

γ(ξ) =
1

2πi

∫

ΣqLq

dχ
ln G(χ)

χ − ξ
, (45)

and the integral is along the boundary of the analytic region,

Lq: ξ = x + i
(2q + 1)π

εk

, x ∈ [0,∞) and q = 0,±1,±2, . . . . (46)

The constant λq is an integer satisfying the condition (13).
The jump on the boundary of the fundamental solution ϕ(ξ) is the same as that of

ψ(ξ):

G(ξ) =
ϕ+(ξ)

ϕ−(ξ)
=

ψ+(ξ)

ψ−(ξ)
. (47)
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ψ±(ξ), the value of ψ(ξ) on the two sides of the boundary, is determined by the behavior
of the analytically continued Fermi–Dirac integral,

f±
σ

(
e[x+i((2q+1)π/εk)]εk

)
= fσ(−exεk) ∓ i

π

Γ(σ)
(xεk)

σ−1. (48)

Then,

ψ±
(

x + i
(2q + 1)π

εk

)
=

Λ′

x2 + [((2q + 1)π/εk)]2

{
xf1(−exεk) ∓ π

(2q + 1)π

εk

}
− 1

+ i
Λ′

x2 + [((2q + 1)π/εk)]2

{
∓πx − f1(−exεk)

(2q + 1)π

εk

}
, (49)

where Λ′ = (2/(sΓ(s/2)))(2πs/2m/hs)(V/N). From equations (47) and (49), we can see
that G(∞ + i(2q + 1)π/εk) = 1. The constant λq is determined by the condition (13).
Choosing ln G(∞) = 0 gives

λq = 0. (50)

Consequently, the fundamental solution is

ϕ(ξ) = eγ(ξ). (51)

The value of κq. At the endpoints cq = (0, (2q + 1)π/εk), we have ψ(i(2q + 1)π/εk) ∼
ln[ξ − i(2q + 1)π/εk]. Then,

κq = 0. (52)

The isolated singularity of ψ(ξ). ψ(ξ) has only one isolated singularity,

ρ = 0. (53)

The number of the zeros of ψ(ξ). By the argument principle, the contour being illustrated
in figure 2(b), we can determine that ψ(ξ) has only one zero, ξ = βc = 1/(kBTc), which is
on the real axis.

Introducing Φ(ξ) = ξψ(ξ), we have

Φ(ξ) = υ(ξ − βc)e
γ(ξ), (54)

where υ is a constant. Substituting ξ = 0 into equation (54) and its first-order derivative
gives two equations. Solving these equations gives

Tc =
hs

2πs/2mkB

N

V

s

2
Γ

(s

2

) 1

ln 2
− 1

2 ln 2

εk

kB

+
1

kB

1

2πi

∞∑

q=−∞

∫ ∞

0

dx
ln G(x + i(2q + 1)π/εk)

(x + i(2q + 1)π/εk)2
. (55)

The last term of equation (55) is small when εk is small, and is roughly proportional to
ε2

k.
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The explicit expression for the phase transition temperature shows that Tc depends
on the value of εk. In particular, Tc = 0 appears at

εk =
hs

2πs/2m

[
Γ

(ν

2
+ 1

) N

V

]s/ν

≡ εF, (56)

i.e., when εk ≥ εF, there will be no phase transition. Note that this result holds also for the
case of s �= ν. It is not difficult to recognize the physical meaning of εF: it is just the Fermi
energy of a ν-dimensional ideal Fermi gas with the dispersion relation ε = ps/(2m) [5].
The reason why there is no phase transition when εk > εF is that if εk > εF, the states
below εF can accommodate all particles in the system and, then, there are not enough
particles accumulating in the kth state, i.e., the BEC type phase transition cannot occur.

4. Discussion and outlook

In this paper, we construct an exactly solvable phase transition model. We first consider
a generalized statistics in which the maximum occupation numbers of different quantum
states can take on different values. When the maximum occupation numbers of all the
states are the same, e.g., equaling ∞, 1, or an arbitrary integer, the generalized statistics
returns to Bose–Einstein, Fermi–Dirac, or Gentile statistics [5, 6, 12], respectively. The
model constructed in this paper is an ideal gas obeying the generalized statistics in which
the maximum occupation number of only one state is infinite, but that of all other states
is finite. The phase transition which occurs in such systems is the BEC type phase
transition. For judging whether the phase transition can occur and determining the phase
transition point, we calculate the exact explicit solution for the fugacity with the help of
the mathematical result of the homogeneous Riemann–Hilbert problem. By observing the
discontinuity in the derivative of the fugacity, we analyze the phase transition rigorously.
From this phase transition model, we can see that the thermodynamic limit is a necessary
condition for a phase transition of an ideal system.

For constructing the solvable phase transition model, we introduce a kind of
intermediate statistics. Various generalized exclusion statistics models play important
roles in many fields [6], [13]–[18], since many physical systems may behave as neither Bose–
Einstein nor Fermi–Dirac systems. Though Nature realizes only bosons and fermions,
there are many composite particle systems, e.g., the Cooper pair in the theory of
superconductivity, the Fermi gas superfluid [19], the exciton [20], the magnon [21], etc.
For example, a boson consists of two fermions obeying Bose–Einstein statistics. However,
when two such bosons come closer together, the fermions in the composite bosons may
‘feel’ each other, and the statistics may somewhat deviate from Bose–Einstein statistics.
In this case, such a composite system can be effectively viewed as obeying a kind of
intermediate statistics. It is shown in a recent study [22] that the fermion pairs in the
one-dimensional Fermi gases obey generalized exclusion statistics.

The experimental and theoretical research of BEC is a branch of the statistical physics
of a rapidly growing importance [23]. The BEC of ideal Bose gases is a special case of
the generalized BEC phase transition. By studying this exactly solvable model, we can
also obtain a deeper insight into the BEC of ideal Bose gases. We can conclude that the
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conditions for the BEC type phase transition are as follows:

(1) There must exist a low enough quantum state with an infinite maximum occupation
number, where ‘low enough’ means that when the temperature tends to the absolute
zero, there are still a macroscopic number of particles in this state. In other words,
this condition requires that the total capacity of all states below such a state must be
small enough that this state can be macroscopically occupied when the temperature
is low. As a result, the energy of this state, denoted as εmin

∞ , must be the lowest one
among the states whose maximum occupation numbers are infinite. Such a condition
is of course satisfied by a Bose system since the maximum occupation number of the
ground state is infinite. However, for the systems obeying the generalized statistics,
as discussed above, in the case of n0 = ∞ and ni = n (i �= 0), this condition can
always be satisfied, but in more general cases, e.g., the case of nk = ∞ and ni = n
(i �= k), this condition can be satisfied only when εk < εF.

(2) The state that will be macroscopically occupied when a BEC type phase transition
occurs must be isolated from other infinite-maximum-occupation-number states,
where ‘isolated’ means that the state density of this state is a δ-function, i.e., the state
density of the states with infinite maximum occupation numbers (not the state density
of the system) must take the form of ρ∞(ε) = η∞(ε) + δ(ε − εmin

∞ ) and η∞(εmin
∞ ) = 0,

where ρ∞(ε) is the density of the infinite-maximum-occupation-number states. In
the examples of the generalized statistics that we considered above, this condition is
satisfied naturally, since there is only one infinite-maximum-occupation-number state,
for n0 = ∞ and ni = n (i �= 0), ρ∞(ε) = δ(ε), and for nk = ∞ and ni = n (i �= k),
ρ∞(ε) = δ(ε − εk). However, for the case of ideal Bose gases, this condition is not
always satisfied. In ideal Bose gas systems, the maximum occupation number of all
states is infinite, i.e., the state density of the system ρ(ε) = ρ∞(ε), and then the
lowest infinite-maximum-occupation-number state is the ground state, i.e., εmin

∞ = 0.
In three dimensions, the state density is ρ∞(ε) = η∞(ε)+ δ(ε), where η∞(ε) ∝ √

ε, so
η∞(0) = 0. The condition is satisfied, and the BEC phase transition can occur in a
three-dimensional ideal Bose gas. In one and two dimensions, the state densities are
ρ∞(ε) = η∞(ε) ∝ 1/

√
ε and ρ∞(ε) = η∞(ε) = const, respectively; the above condition

is not satisfied, and there are no BEC phase transitions in one- and two-dimensional
Bose gases.

Furthermore, many physical systems possess other kinds of statistics beyond Bose–
Einstein and Fermi–Dirac statistics. For example, the Calogero–Sutherland model is
shown to possess fractional statistics [15], a spinless fermion system in two dimensions
may obey exclusion statistics [17], and bound pairs of fermions form hard-core bosons
obeying generalized exclusion statistics [22]. Moreover, in the model constructed in the
present paper, there are both bosonic and fermionic states in a system. In a Bose system,
if each boson consists of two fermions, then in the system there must simultaneously exist
both bosons and fermions due to the fact that there exists an ‘ionization’ energy. As
long as the temperature of the system is not the absolute zero, there are always a certain
proportion of particles having energies larger than the ‘ionization’ energy and behaving
as fermions. In such a case, the particle in the low-lying state behaves as a boson and the
particle in the high-lying state behaves as a fermion. That is to say, a composite system
will not accurately possess Bose–Einstein or Fermi–Dirac statistics. In such a composite
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system, our model may work. We will address this issue in future work. Moreover, a
system consisting of both bosons and fermions has also been studied in the literature [24].
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