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Abstract. The dynamics of information traffic over scale-free networks has been inves-
tigated systematically. A series of routing strategies of data packets have been proposed,
including the local routing strategy, the next-nearest-neighbour routing strategy, and the
mixed routing strategy based on local static and dynamic information. The capacity of
the network can be quantified by the phase transition from free flow state to congestion
state. The optimal parameter values of each model leading to the highest efficiency of
scale-free networked traffic systems have been found. Moreover, we have found hysteretic
loop in networked traffic systems with finite packets delivering ability. Such hysteretic
loop indicates the existence of the bi-stable state in the traffic dynamics over scale-free
networks.
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1. Traffic dynamics based on local routing strategy on scale-free networks

Communication networks such as the Internet, World-Wide-Web and peer-to-peer
networks play a significant role in modern society. Dynamical properties of these
systems have attracted tremendous interests and devotion among engineering as
well as physics communities. The ultimate goal of studying these large commu-
nication networks is to control the increasing traffic congestion and improve the
efficiency of information transportation. Many recent studies have focused on
the efficiency improvement of communication networks which is usually consid-
ered from two aspects: modifying the underlying network structure or developing
better routing strategies [1,2]. Because of the high cost of changing the underlying
structure, the latter is comparatively preferable. In traffic systems, the underlying
network structure plays a significant role in the traffic dynamics. In order to develop
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practical routing strategies, understanding the effect of network on the traffic dy-
namics is the central issue.

Since the surprising discovery of scale-free property of real world networks by
Barabási and Albert, it is worthwhile to investigate traffic dynamics on scale-free
networks instead of random and regular networks. How the traffic dynamics are
influenced by many kinds of structures, such as Web graph, hierarchical trees and
Barabási–Albert network, has been extensively investigated. A variety of empiri-
cally observed dynamical behaviours have been reproduced by such traffic models,
including 1/f -like noise of load series, phase transition from free flow state to con-
gestion, power-law scaling correlation between flux and the relevant variance and
cascading. Moreover, some previous work pointed out that traffic processes taking
place on the networks do also remarkably affect the evolution of the underlying
network. The modelling of traffic dynamics on networks, generating rate of data
packets together with their randomly selected sources and destinations are intro-
duced in a previous work. Some models assume that packets are routed along
the shortest paths from origins to destinations. However, due to the difficulty in
searching and storing shortest paths between any pair of nodes of large networks,
the routing strategies based on local topological information have been proposed
for better mimicking real traffic systems and for more widely potential applications,
such as peer-to-peer networks.

We present a traffic model in which packets are routed based only on local topo-
logical information with a single tunable parameter α [3,4]. As free traffic flow on
the communication networks is the key to their normal and efficient functioning,
we focus on the network capacity that can be measured by the critical point of
phase transition from free flow to congestion. Simulations show that the maximal
capacity corresponds to α = −1 in the case of identical nodes’ delivering ability.
To explain this, we investigate the number of packets of each node depending on
its degree in the free flow state and observe the power-law behaviour. Other dy-
namic properties including average packets’ travelling time and traffic load are also
studied. The dynamics right after the critical generating rate Rc exhibits some
interesting properties independent of α, indicate that although the system enters
the jammed state, it possesses partial capacity for forwarding packets. Our model
can be considered as a preferential walk among neighbour nodes. Inspiringly, our
results indicate that some fundamental relationships exist between the dynamics of
synchronization and traffic on the scale-free networks.

Furthermore, on the basis of next-nearest-neighbour (NNN) routing searching
strategy, we propose a new routing strategy, namely, preferential next-nearest-
neighbour (PNNN) searching strategy which can further alleviate the traffic conges-
tion and greatly improve the packets handling capacity of the network compared
to NNN strategy [1–4]. In PNNN strategy, a parameter α is introduced. The
probability that the ith node with degree ki receives packets from its neighbours
is proportional to kα

i in each time step. We treat all the nodes as both hosts and
routers. The phase transition from free flow to the jammed state with different α
is studied. We find that the network capacity is considerably improved by decreas-
ing α and tends to be stable when α is lower than a specific value. Moreover, by
considering the travel time of average packets with the maximal network capacity,
the optimal parameter value α = −2 is obtained. Near the phase transition point,
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a big fluctuation of traffic load is observed and the extent of the fluctuation with
PNNN strategy is larger than that with the normal NNN strategy in the cases
of large α. Another meaningful phenomenon is the exhibition of 1/f -like noise of
power spectrum of traffic load series, which indicates the long-range correlation. If
the system shows the behaviour of 1/f2-like noise, it reflects the zero correlation of
the series. The 1/f noise is supported by real traffic systems such as vehicular flow
in the highway networks and data packets flow in the computer networks. Simu-
lation results show that when R is far away from the critical packets generating
rate Rc, 1/f noise emerges. The exponent φ of power spectrum S(f) ∼ f−φ not
only depends on R but also correlates with parameter α. The connectivity (link)
density of Barabási–Albert model (BA) can be adjusted by a parameter m, thus
we also investigate Rc as a function of m. The position of phase transition point
influenced by node delivering ability C and network size N is also studied in detail.
Our strategy may be useful for designing communication protocols for large scale-
free networks due to the low cost of local information requirement and the strongly
improved network capacity.

We have also proposed a new routing strategy by integrating local static and
dynamic information [5,6]. The advantages of this strategy for delivering data
packets on scale-free networks have been demonstrated from two aspects of network
capacity and mean packet travel time. The short mean packet travel time is mainly
due to the sufficient use of hub nodes. The large network capacity is caused by
the utilization of dynamic information which reflects the traffic burden on nodes.
Our study indicates that large degree nodes play an important role in the delivery
of packets. Packets can find their targets with higher probability if they pass by
the large degree nodes, which results in shorter average travel time. However, the
large degree nodes are also easily congested if large amount of packets are prone
to pass through them. The introduced strategy can make the large degree nodes
fully used when packet generating rate is low, and also allow packets to bypass
those nodes when they afford heavy traffic burden. Thus the system’s efficiency is
greatly improved. In addition, we note that the new strategy should not be hard for
implementation. The local static, i.e. topology information can be easily acquired
and stored in each router. The local dynamic information could be obtained by
using the keep-alive messages that routers continuously exchange with their peers.
Thus, the strategy may have potential applications in peer-to-peer networks.

2. Phase transition and hysteretic loop of traffic flow
in scale-free networks

We model information traffic on scale-free networks by introducing the node queue
length L proportional to the node degree and its delivering ability C proportional
to L [7]. we report for the first time the fundamental diagram of flow against
density, in which hysteresis is found, and thus we can classify the traffic flow into
four states: free flow, saturated flow, bi-stable and jammed.

Previous studies usually assumed that the capacity of each node, i.e., the max-
imum queue length of each node for holding packets, is unlimited and the node
handling capability, that is the number of data packets a node can forward to other
nodes each time step, is either a constant or proportional to the degree of each node.
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But, obviously, the capacity and delivering ability of a node are limited and can be
changed from node to node in real systems, and in most cases, these restrictions
could be very important in triggering congestion in traffic systems.

Since the analysis on the effects of the node capacity and delivering ability re-
strictions on traffic efficiency is still missing, we propose a new model for the traffic
dynamics of such networks by taking into account the maximum queue length L
and handling capacity C of each node. The phase transition from free flow to
congestion is well captured and, for the first time, we introduce the fundamental
diagram (flux against density) to characterize the overall capacity and efficiency of
the networked system. Hysteresis in such network traffic is also produced.

To generate the traffic network, our simulation starts with the most general
Barabási–Albert scale-free network model. The capacity of each node is restricted
by two parameters: (1) its maximum packet queue length L, which is proportional
to its degree k (a hub node ordinarily has more memory): L = α × k; (2) the
maximum number of packets it can handle per time step: C = β × L.

Motivated by the previous models, the system evolves in parallel according to
the following rules:

(1) Add packets – Packets are added with a given rate R (packets per time step)
at randomly selected nodes. Each packet is given a random destination.

(2) Navigate packets – Each node performs a local search among its neighbours.
If a packet’s destination is found in its nearest-neighbourhood, its direction will be
directly set to the target. Otherwise, its direction will be set to a neighbouring
node h with preferential probability: Ph = kφ

h/(
∑

i kφ
i ). Here the sum runs over

the neighbouring nodes, and φ is an adjustable parameter. It is assumed that the
nodes are unaware of the entire network topology and only know the neighbouring
nodes’ degree ki.

(3) Deliver packets – At each step, all nodes can deliver at most C packets towards
its destinations and FIFO (first-in-first-out) queuing discipline is applied at each
node. When the queue at a selected node is full, the node will not accept any more
packets and the packet will wait for the next opportunity. Once a packet arrives at
its destination, it will be removed from the system. As in other models, we treat
all nodes as both hosts and routers for generating and delivering packets.

We study the fundamental diagram of network traffic with our model. Funda-
mental diagram (flux–density relation) is one of the most important criterion that
evaluates the transit capacity for a traffic system. Obviously, if the nodes are not
controlled with the queue length L, the network system will not have a maximum
number of packets it can hold and the packet density cannot be calculated, so that
the fundamental diagram cannot be reproduced.

To simulate a conservative system, we count the number of removed packets at
each time step and add the same number of packets to the system at the next
step. The flux is calculated as the number of successful packets delivered from
node to node through links per step. In figure 1, the fundamental diagrams for
φ = 0.0, 0.3,−0.5 and −0.7 are shown.

The curves of each diagram show four flow states: free flow, saturated flow,
bi-stable and jammed. For simplicity, we focus on the φ = 0.3 chart with the
maximum flux = 1319 in the following description. As we can see, when the density
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Figure 1. Fundamental diagram for a N = 1000 network with m0 = m = 5,
α = 1, β = 0.2 and different φ. The data are averaged over 10 typical
simulations on one realization of network. In each chart, the solid square
line shows the flux variation when adding packets to the system (increase
density), while the empty circle line shows the flux variation when drawing
out packet from the system (decrease density). The sudden transition density
values are: 0.26 and 0.23 (φ = 0.0), 0.40 and 0.34 (φ = 0.3), 0.26 and 0.15
(φ = −0.5), 0.15 and 0.13 (φ = −0.7). For different realizations of network,
the fundamental charts are similar, but with small difference in the transition
values. The arrows in charts of φ = 0.3 and −0.5 showing the hysteresis are
guide for the eyes.

is low (less than ≈0.10), all packets move freely and the flux increases linearly with
packet density, which is attributed to the fact that in the free flow state, all nodes
are operated below its maximum delivering ability C. Then the flux’s increment
slows down and the flux gradually comes to saturation (0.10–0.34), where the flux
is restricted mainly by the delivering ability C of the nodes.

At the region of medium density, the model reproduces an important character
of traffic flow – ‘hysteretic’ character, which means that two branches of the fun-
damental diagram coexist between 0.34 and 0.40. The upper branch is calculated
by adding packets to the system, while the lower branch is calculated by removing
packets from a jammed state and allowing the system to relax after the interven-
tion. In this way a hysteretic loop can be traced (arrows in figure 1), indicating
that the system is bi-stable in a certain range of packet density. As we know so
far, it is the first time that the hysteretic phenomenon is reported in the scale-free
traffic system.

In order to test the finite-size effect of our model, we simulate some systems with
bigger size. The simulation shows similar phase transition and hysteretic character
in fundamental diagram as shown in figure 2a.
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Figure 2. (a) Fundamental diagram for a N = 5000 network with
m0 = m = 5, α = 1, β = 0.2 and φ = 0.1. (b) The averaged number of
jammed nodes 〈Nj〉. The symbols for increasing/decreasing density are the
same as in figure 1. One can see that the two sudden change points 0.40 and
0.14 in both charts are equal. The arrows showing the hysteresis are guides
for the eyes.

The flux’s sudden drop to a jammed state from a saturated flow indicates a
first-order phase transition, which can be explained by the sudden increment of
full (jammed) nodes in the system (see figure 2b). According to the evolutionary
rules, when a given node is full, packets in neighbouring nodes cannot get in the
node. Thus, the packets may also accumulate on the neighbouring nodes and get
jammed. This mechanism can trigger an avalanche across the system when the
packet density is high. As shown in figure 2b, the number of full nodes increases
suddenly at the same density where the flux drop to zero and almost no packet
can reach its destination. As for the lower branch in the bi-stable state, starting
from an initial jammed configuration, the data packages accumulated in the very
jammed nodes will be difficult to be sent out and hard to disappear. Hence these
nodes will debase the system’s transmission efficiency by affecting the surrounding
nodes until all nodes are not jammed, thus we get the lower branch of the loop.
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