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What can We Learn from Analysis of 

the Financial Time Series?

Bing-Hong Wang*

1. INVESTIGATION OF THE DIS-
TRIBUTION AND SCALING OF 
FLUCTUATIONS FOR STOCK 
INDEX IN FINANCIAL MAR-
KET 

In order to probe the extent of universality 
in the dynamics of complex behavior in 
financial markets and to provide a basic 
and appropriate framework for developing 
economic models of financial markets, we 
investigated the distribution of the fluctua-
tions in the Hang Seng index — the most 
important financial index in the Hong Kong 
stock market [1]. The data include minute 
by minute records of the Hang Seng index 
from January 3, 1994 to May 28, 1997. 
It was observed that the distribution of 
returns in the Hang Seng index shows 
apparent scaling behavior, which cannot 
be modeled by a normal distribution. The 
non-Gaussian dynamics of the stochastic 
process underlying the time series of 
returns of the Hang Seng index, is better 
modeled by a truncated Lévy distribution 
which is shown in Fig. 1. A power-law 
behavior is observed for the probability of 

zero return for time intervals ∆t spanning 
at least two orders of magnitude. However, 
the power-law fall-off behavior in the tails 
deviate from that of Lévy stable process. 
The two tails of the distribution drop more 
slowly than a Gaussian, but faster than a 
Lévy process with an exponent outside the 
Lévy stable region. Especially after remov-
ing daily trading pattern from the data, the 
exponential deviation behavior from Lévy 
stable process is more clearly. The daily 
pattern thus affects strongly the analysis 
of the asymptotic behavior and scaling of 
fluctuation distributions. The exponential 
truncation ensures the existence of a finite 
second moment. The observations are use-
ful for establishing dynamical models of 
the Hong Kong stock market [1]. 
 
2. BUILD A FINANCIAL MARKET 

MODEL BASED ON SELF-OR-
GANIZED PERCOLATION

The economy has been perceived as a col-
lection of nonlinear interacting units. This 
collection is complex; everything depends 
on everything else. Physicists are looking 

for empirical laws that can reveal such 
complex interactions and theories that will 
help understand them [2-5]. As far as the 
financial markets are considered, due to 
intensive statistical studies during the last 
decade, the model of market fluctuation 
proposed by Bachelier in 1900 suffers the 
impugnation and the challenge of actual 
financial data such as the real-life markets 
are of return distributions displaying peak-
center and fat-tail properties [6-7], one can 
observe volatility clustering and a non-triv-
ial “multifractal” scaling [8-10], and so on. 
These universal features portray a world of 
non Gaussian random walks and inspire 
scientists to construct microstructure 
market models, such as Cont-Bouchaud 
model [11], Lux-Marchesi model [12], 
LeBaron model [13] and so on, to explain 
its underlying mechanisms. Furthermore, 
this key problem about what is underlying 
market mechanisms, is still open.

We focus on it for years and reap large 
profits from establishing and analyzing 
our market models including a activating 
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model of individual behavior towards eco-
nomics complex system and a stock market 
based on “Genetic Cellular Automata” with 
information exchange among individuals 
[14-15]. Based on them, considering the 
self-organized dynamical evolution of the 
behavior of investors and their structure, 
we build an agent based model to describe 
financial markets. It has incorporated the 
following components: (1) the behavior of 
investors evolve constantly according to 
excess demand;  (2) As reality, the circle 
of professionals and colleagues to whom 
a trader is typically connected evolves as 
a function of time: in some cases, traders 
follow strong herding behavior and their 
effective connectivity parameter p is high; 
in other cases, investors are more individu-
alistic and smaller p seems more reason-
able. So investors structure (the complex 
interactions between traders) undergoes 
generational metabolism process repeat-
edly; (3) The effect of “herd behavior” on 
the trade-volume and the impact of each 
invest-cluster’s trade-volume on the price 
are nonlinear. While this artificial stock 
market evolving, the number of investors 
participating in trading isn’t constant; the 
network made up of invest-clusters takes on 
different structure; cooperation and conflic-
tion among invest-clusters are always op-
erating; the affection of the herd behavior 
on the trade-volume varies dynamically 
accompanying the evolutionary of investor 
structure. In a word, the financial market is 
perceived as a complex system in which the 
large-scale dynamical properties depend 
on the evolutionary of a large number of 
nonlinear-coupled subsystems. 

This model can iterate for a period of 
any length. More simulations have been 
done indicating that the return distribution 
of the present model obeys Lévy form in 
the center and displays fat-tail property, 
in accord with the stylized facts observed 
in real-life financial time series. Further-
more, this model reveals the power-law 
relationship between the peak value of the 
probability distribution and the time scales 
in agreement with the empirical studies on 
the Hang Seng Index [16]. It also achieves 
same avalanche dynamics and multi-fractal 

Fig. 1: Probability distributions of the returns and their scaling behavior of the Hang Seng index 
in Hong Kong stock market for the period January 3, 1994 to May 28, 1997.  (a) The probability 
distributions of index returns for time separation ∆t = 1, 2, 4, 8, 16, 32, 64, 128 min. (b) The 
central peak value P (0) as a function of ∆t. A power-law behavior is observed. The slope of the 
best-fit straight line is –0.618 ± 0.025 from which we obtain the scaling exponent α = 1.619 ± 
0.05 characterizing the Lévy distribution. (c) Re-scaled plot of the probability distributions shown 
in (a). Data collapse is evident after using rescaled variables with α = 1.619. The abscissa is for 
the re-scaled returns, the ordinate is the logarithm of re-scaled probability.
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scaling properties of price changes as the 
real [17-18]. All the results indicate that un-
derlying market mechanisms maybe is the 
self-organized dynamical evolution of the 
behavior of investors and their structure.
     
3.	MODELING STOCK MARKET 

BASED ON GENETIC CELLU-
LAR AUTOMATA

In the paper [14], an artificial stock mar-
ket based on genetic cellular automata is 
established. Cells are used to represent 
stockholders, who has the capability of 
self-teaching and are affected by the invest-
ing history of the neighboring ones. The 
topological structure of CA in this paper 
is a two-dimensional square lattice with 
periodic boundary conditions. Before a 
trade, each stockholder should choose the 
trading strategies: to buy, to sell or to ride the 
fence. The stockholder’s decision includes 
two steps: first, each stockholder works out 
a preparatory decision according to the his-
tory of its investment and the stock price. 
The stockholders of different risk-proper-
ties have different decision methods. The 
risk-neutral individuals directly inherit the 
last decision. The risk-aversed individuals’ 
investing strategy is to buy at a low price and 
to sell at a high price. The individuals’ risk-
properties are given randomly initially, and 
can change along with the evolvement of the 
stock market. Similar to genetic algorithm 
[19], the risk property and the decision of 
each individual are naturally divided into 
four types of genes logically, including risk-
property, deal-decision, price-decision and 
amount-decision. Each individual prefer to 
choose one of its successful neighbors to do 
crossover operation. The buyer with higher 
price and the seller with lower price will 
trade preferentially, and the trading-price is 
the average of seller’s and buyer’s price. The 
stock price is the weighted average of trad-
ing-price according to the trading-amount. 

Simulation results about time series of 
price and returns based on genetic cellular 
automata show that when the proper initial 
condition and parameters have been cho-
sen, the artificial stock market can generate 
its stock price whose trend and fluctuations 
are rather similar to that of real stock mar-

If the former strategies are success, the 
clusters would stay the same strategies 
with a higher probability. Otherwise, they 
would change their strategies with a higher 
probability. Not only the former strategies 
would affect the clusters’ status, but also 
the neighbor clusters’ status would have 
an effect. The bigger the cluster is, the 
higher influence on neighbor it owns. If the 
neighbor clusters take the same strategies, 
they would form a bigger cluster. On the 
other hand, the bigger cluster would have 
a higher probability to collapse. Because in 
the real world, the market would become 
much more danger when everyone takes 
the same strategy. Finally, the price would 
be determined by the overall status of the 
clusters. If the number of the clusters which 
take “buying” is bigger than “selling”,  the 
price increases, vice versa. In the next itera-
tion, the fluctuation of the price would have 
a feedback of the clusters new status.

The simulation results which agree well 
with the reality are convincing support to 
our original ideas to some extent [20]. From 
the analysis based on this model, we learn 
that the causes of the various statistical 
properties of the real market are: the dy-
namical evolvement of the trader groups, 
i.e., the process in which different trader 
groups cooperate and conflict; the gradu-
ally accumulating process of the clusters’ 
growth controlled by the model automati-
cally; the self-organized accumulating ef-
fect on the magnified process of the “herd 
behavior”. 

5. EMPIRICAL STUDY ON THE 
VOLATILITY OF THE HANG-
SENG INDEX 

The volatility quantifies the activity of 
stock markets, defined as the number of 
transaction per unit of time connecting 
with interest of trades and is also the key 
input of virtually all option pricing models, 
including the classic Black and Scholes 
model [21] and the Cox-Ross-Rubinstein 
binomial model [22] that are based on the 
estimates of the asset volatility over the 
remaining life of the option. Without an 
efficient volatility estimate, it would be 
difficult for trades to identify situation in 

ket [14]. In addition, in accordance with 
the empirical study on S&P500 [7] and 
Hang Seng index [1], the central part of 
the probability distribution of price returns 
in this model can be well fitted by a Levy 
distribution, while its tail is really fat as 
shown in Fig. 1 [1, 14].

4. EVOLUTIONARY PERCOLA-
TION MODEL OF STOCK MAR-
KET WITH VARIABLE AGENT 
NUMBER

The financial market has been proved to be 
a very important platform for the research 
of the “Complex System” field. By detailed 
analysis of the financial market price, 
more and more universal properties which 
are similar to those observed in physical 
systems with a large number of interact-
ing units are discovered. The motivation 
to capture the complex behavior of stock 
market prices and market agents leads lots 
of sophisticated models based on different 
theoretical principles and evolutionary 
mechanics such as behavior-mind model, 
dynamic-games model, multi-agent model 
and so on. All of these models could repro-
duce some of the stylized observations of 
real markets, but fail to account for either 
the origin of the universal characteristics 
or some very important properties of the 
real multi-agent system.

To solve these problems, our new model 
is based on the following principles which 
were ignored by the former research [20]: 
(1) The system is an open system which 
allows the agents get into or get out of it; 
(2) The growth of the clusters is a gradu-
ally accumulating process controlled auto-
matically by the model itself. (3) The “herd 
behavior” is magnified by self-organized 
accumulating rather than by adjusting the 
parameters forcibly; (4) By cooperation or 
conflict, the clusters could get even bigger 
or crushed.

To initialize our model, a lattice is taken 
up randomly. The interconnected nodes 
form a cluster. Every cluster could have 
three strategies: buying, selling and sleep-
ing. During every iteration, some new 
agents would get into this system first. 
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which options appear to be underpriced or 
overpriced. We study the statistical proper-
ties of volatility of minite-by-minite price 
fluctuation of Hang-Seng index in Hong 
Kong stock market [23].

The volatility is measured by locally 
averaging over a time window, the absolute 
value of price change over a short time in-
terval. Define the price change as the differ-
ence between two successive logarithms of 
the index. In our work [23], we have found 
that the cumulative distribution of volatility 
is consistent with the asymptotic power-
law behavior, characterized by power 
exponent μ=2.12, different from previous 
studies as μ=3. The volatility distribution 
remains the same asymptotic power-law 
behavior for the time scale from ∆t =10 
min to ∆t = 80 min. We can find that Hong 
Kong stock market is more uncontrolled 
for the investors compared with other stock 
markets, thus the concussion (or impact) 
introduced into this market by the investors 
is stronger. Furthermore, we investigated 
the volatility correlations via the power 
spectrum and DFA (detrended fluctuation 
analysis) after filtering the effect caused by 
the daily oscillation pattern. Both of these 
two methods convincingly demonstrate the 
existence of long-range correlations. These 
scaling properties of the volatility distribu-
tion suggest that the volatility correlation 
is a possible explanation of the scaling 
behavior for price change distribution 
observed in [1].

6. ENLIGHTENMENT FROM VAR-
IOUS CONDITIONAL PROB-
ABILITIES ABOUT HANG SENG 
INDEX IN HONG KONG STOCK 
MARKET

In the analysis of the daily Hang Seng in-
dex of the Hong Kong stock market, two 
kinds of sign sequences as given conditions 
have been used to predict the future price 
movements. One is the parameter of multi-
fractal spectrum  Δf  based on the indexes 
recorded in every minute, and the other is 
the variation of the close index Δf. Results 
show that correlation between large fluc-
tuations of the close price and the condition 
in these two methods is strong and some 

sign sequences of the parameter Δf can be 
used to predict the probability of the near 
future price movements.

The efficient market hypothesis (EMH) 
indicates that if the market price were pre-
dictable, then the opportunities would be 
exploited to make a profit so that such op-
portunities would disappear in a competi-
tive and efficient market. The proponents 
of the EMH thought that the market prices 
should behave like a random walk and the 
past price alone could not be used to pre-
dict the future price movement. However, 
many empirical observations cannot be 
explained by the EMH. The variation of 
the price is correlated and is not totally 
unpredictable.

In our work [24] , the Hang Seng stock 
index time series (from January 3, 1994 
to May 28, 1997, totally 838 trading days, 
record by each minute) has been analyzed 
using various conditional probabilities 
to predict the index variation. It is found 
that the change of the close indexes is 
statistically correlated to the simple sign 
sequences of the close index variations in 
previous several days and to the sign se-
quences of the daily multi-fractal spectrum 
parameter ∆f in previous several days, and 
the correlation is strong in the latter. 

7. POWER LAW DISTRIBUTION 
OF WEALTH IN POPULA-
TION BASED ON A MODIFIED 
EQUILUZ-ZIMMERMANN 
MODEL 

Empirical evidence of the power-law dis-
tribution of wealth has recently attracted a 
lot of interest of economists and physicists. 
Taking into account the crowding and in-
formation transmission in financial market, 
Equíluz and Zimmermann (EZ) proposed 
a toy model ro reproduce the power-law 
wealth distribution [25]. The EZ model 
gives a power law distribution with an 
exponential cutoff that vanishes only for a 
particular parameter [26-28]. However, the 
real market is not able to subtly tune this 
parameter to a specific value. 

In the work [29], we proposed a money-

based model containing N units of money, 
where N is conserved. Then the total wealth 
is allocated to M economic entities, where M 
is variable. For simplicity, we may choose 
the initial state containing just N corpora-
tions, each with one unit of money.  The state 
of this system is mainly described by n(s), 
which denotes the number of cooperation 
owning s units of money. At each time step, 
we randomly select a unit of money from 
the wealth pool. Since it must belong to a 
certain corporation, we in this way select an 
economic entity too. The evolution of the 
system is under the following rules. (1) With 
probability 1—a, another unit of money is 
randomly selected. If the two selected units 
are occupied by different corporations, 
then the two corporations with all their 
money combine into one entity; otherwise, 
no combination. (2) With probability aγ/s, 
the economic entity that owns the selected 
money is dissociated; here s is the amount 
of capital owned by this corporation, and 
aγ reflects the dissocialized (bankruptcy) 
possibility of any economic entity. After 
disassociation, these s units of money are 
simply assumed to be redistributed to s 
new companies, each with just one unit. 
(3) With probability a (1—γ/s), nothing 
is changed. 

	 The major difference between our model 
and the EZ model is that the dissocialized 
probability of an economic entity, after 
being chosen, is proportional to 1/s in our 
model (to take into account the fact that a 
larger corporation can live longer than a 
smaller one statistically), while in the EZ 
model, the corresponding probability is 
simply proportional to 1. Still, it must be 
stressed that in the EZ model a power-law 
distribution without exponential correction 
is obtained only for a particular parameter, 
while our model will give the exact power-
law distribution in a wide range of a. The 
power-law exponent depends on the model 
parameter in a nontrivial way and can be 
exactly calculated [29].

What Can We Learn From Analysis of Financial Time Series
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8. SELF-SEGREGATION AND EN-
HANCED COOPERATION IN 
AN EVOLVING POPULATION 
THROUGH  LOCAL  INFORMA-
TION TRANSMISSION 

In our work [30] we introduce the local 
information in the evolutionary minority 
game (EMG) and studied the effects of lo-
cal information transmission and imitation 
among agents in an evolving population.  

Showing the sharp comparison with 
EMG, evolution in our model is made 
through local information transmission 
among agents. In order to incorporate the 
idea of neighboring agents, we arrange all 
the agents on a ring. Each agent has two 
nearest neighbors and knows the wealth 
and the strategy parameter p-values of 
her two neighbors. The better neighbor at 
the time step t is the one with the higher 
accumulative wealth. At each time step, 
each agent compares her wealth with 
her nearest-neighbors. If the agent has 
less accumulative wealth than her better 
neighbor, she modifies her p-value by 
choosing a new p-value randomly within 
a range R centered on the p-value of her 
better neighbor. As shown in Fig. 2(a), 
the steady states distribution P(p) for dif-
ferent R are symmetric about p = 0.5 with 
peaks around p=0 and p=1, a behavior 
also exhibited in EMG. The dependence 
of the standard deviation (SD) on R is not 
monotonic.  It  shows a minimum at R = Rc � 
0.0065 which is significantly lower than the 
random coin-toss limit. The results indicate 
that at Rc , there is an optimal degree of 
correlation between the modified p-value 
and her neighbor’s p-value upon evolu-
tion through local information exchange 
and imitation. Fig. 2(b) shows the SD for 
the present model as a function of m for a 
system with N=101 and R = 0.0065. The 
results indicate that the SD is insensitive to 
m and takes on a value significantly lower 
than that of the EMG and other models. The 
average success rate in the present model 
for m=4 and R=0.0065 is about 0.4932, 
while the EMG saturates at a success rate 
of 0.4713.   

In summary, we have proposed and 

studied numerically a new version of the 
evolutionary minority game in which local 
information transmission among neighbor-
ing agents is allowed. It is found that imita-
tion reduces the standard deviation greatly 
and thus leads to an enhanced average 
success rate for the competing population 

as a whole.
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