ABC inequality

Show that

$$
a^{2}+a c+c^{2}+3 b(a+b+c) \geq 0, \forall a, b, c
$$

Proof

We need to show

$$
f(b)=3 b^{2}+3(a+c) b+\left(a^{2}+a c+c^{2}\right) \geq 0
$$

Since $3>0$, we are led to

$$
\begin{aligned}
& \Delta=9(a+c)^{2}-12\left(a^{2}+a c+c^{2}\right) \\
& =3\left[3 a^{2}+6 a c+c^{2}-4 a^{2}-4 a c-4 c^{2}\right] \\
& =-3\left[a^{2}-2 a c+c^{2}\right] \\
& =-3(a-c)^{2} \leq 0
\end{aligned}
$$

The proof is complete if we check the graph of $f(b)$ as a function b, with a, c being constant.

Note The inequality was showed by Dr. Wu to me this morning at yaodisgrp.

