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The pandemic of influenza A (H1N1) is a serious on-going global public crisis. Understanding its
spreading dynamics is of fundamental importance for both public health and scientific researches.
In this paper, we investigate the spreading patterns of influenza A and find the Zipf’s law of the
distributions of confirmed cases in different levels. Similar scaling properties are also observed for
severe acute respiratory syndrome (SARS) and bird cases of avian influenza (H5N1). To explore
the underlying mechanism, a model considering the control effects on both the local growth and
transregional transmission is proposed, which shows that the strong control effects are responsible
for the scaling properties. Although strict control measures for interregional travelers are helpful to
delay the outbreak in the regions without local cases, our analysis suggests that the focus should be
turned to local prevention after the outbreak of local cases. This work provides not only a deeper
understanding of the generic mechanisms underlying the spread of infectious diseases, but also an
indispensable tool to decision makers to adopt suitable control strategies.

PACS numbers: 89.75.Da, 02.50.-r, 89.75.Hc

I. INTRODUCTION

A new global influenza pandemic has broken out. In
the first three months, the epidemic spread to over 130
countries, and more than 105 people were infected by the
novel virus influenza A (H1N1). H1N1 represents a very
serious threat due to cross-species transmissibility and
the risk of mutation to new virus with increased transmis-
sibility. How to prevent the spreading becomes extremely
urgent problems. Several early studies paid attention to
this public issue from different perspectives [1, 2, 3, 4],
and made known important information such as the bi-
ological activity of H1N1 virus and the patterns of early
spreading. While every effort is being taken to develop
antiviral and vaccination drugs, efficient reduction and
prevention of the spreading could already be achieved by
interventions of population contact. However, such inter-
ventions, like strict physical checking at the borders and
enforced quarantine, are costly and highly controversial.
It is therefore difficult to decide the control strategies:
when should the schools be suspended and whether the
border control should be reinforced or given up?

The detailed mechanism of transmission can differ sig-
nificantly for different virus, the spreading patterns, how-
ever, may display common regularities due to generic
contacting processes and control schemes. Many health
organizations have collected large amount of information
about the spreading of H1N1. In-depth analysis of these
data, together with what we have known for SARS [5, 6],
H5N1 [7, 8], foot-and-mouth epidemic [9, 10] and some
other pandemic influenza [11, 12], may lead us to a more

comprehensive understanding of the common spreading
patterns that do not rely on the detailed biological fea-
tures of virus. In this paper, we study the spreading
patterns of influenza pandemic by both empirical analy-
sis and modeling. Our main contributions are threefold:
(i) The Zipf’s law of the distribution of confirmed cases in
different regions are observed in the spreading of H1N1,
SARS and H5N1; (ii) A simple model is proposed, which
does not rely on the biological details but can reproduce
the observed scaling properties; (iii) The significant ef-
fects of control strategies are highlighted: the strong con-
trol for interregional travel is responsible for the Zipf’s
law and can sharply delay the outbreak in the regions
without local cases, while the focus should be turned to
local prevention after the outbreak of local cases. Our
analysis provides a deeper understanding of the relation-
ship between control and spreading, which is very mean-
ingful for decision makers.

II. EMPIRICAL RESULTS

We first analyze the cumulative number ni of labora-
tory confirmed cases of H1N1 of each country i till a given
date (see the data description in Methods and Materials).
Because ni is growing, the distributions for different dates
are normalized by the global total cases NT =

∑

ni till
the corresponding dates for comparison. Fig. 1(a) and
1(b) report the Zipf’s plots (see Methods and Materials)
for the distributions of normalized ni in different dates.
The maximal rank corresponds to the number of regions
with confirmed cases, which grows during the spreading.
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The normalized distributions P surprisingly display scal-
ing properties. Before the middle of May, P shows clearly
a power-law type P ∼ r−α with an exponent α ≈ 3.0 (ex-
cept the first data point, see Fig. 1(a)). Although the
total cases NT grows rapidly in this early stage, P for
different dates seems to follow the same line in the log-
log plot. After the middle of May, the middle part of the
distribution grows more quickly, and meanwhile the virus
spreads quickly to many more countries. The exponent α
of the left part of P changes from about 3.0 to about 1.5,
and an exponential tail emerges (Fig. 1(b)). After June
10, P can be well fitted by a power-law function with an
exponential tail, for example, P = 0.75r−1.53e−r/40 for
the data of July 6 (solid line, Fig. 1 (b)). The scaling
properties are not special for the influenza A, but quite
common in various diseases. To demonstrate this, we
further analyze SARS in 2003 and the bird cases of avian
influenza (H5N1) in 2008. As shown in Figs. 1(c) and
1(b), both of the two distributions show a power-law-like
form, but the spreading range is much more limited (to
only about 30 countries). For SARS α ≈ 2.7, and for
H5N1, α ≈ 2.0.

Besides the Zipf’s law, the Heaps’ law [13] is another
well-known scaling law observed in many complex sys-
tems, which describes a sublinear growth of the number
of distinct sets as the increasing of the total number of
elements belonging to those sets. Recent empirical anal-
ysis [14, 15] suggested that the Heaps’ law and the Zipf’s
law usually coexist. As shown in Fig. 7, the number of
infected countries M (before May 18, 2009) grows with
the global total confirmed cases NT in a power-law form
as M ∼ Nλ

T with the Heaps’ exponent λ ≈ 0.35. Actu-
ally, Lü et al. [16] proved that if an evolving system has a
stable Zipf’s exponent, its growth must obey the Heaps’
law with exponent λ ≈ 1/α (an approximate estimation
when α > 1: the larger the α, the more accurate the es-
timation). Since before May 18, 2009, the system obeys
the Zipf’s law with exponent α ≈ 3.0, the empirical find-
ings (Fig. 1(a) and Fig. 7 in Supporting Information)
agree well with the theoretical analysis [16].

We also find that broad distribution of ni is related
to heterogeneity in different countries. Figs. 2(a) and
2(b) report the dependence between the number of con-
firmed cases ni and the population and gross domestic
product (GDP). A clearly hierarchical spreading pattern,
similar to what were predicted by some theoretical mod-
els [17, 18], can be observed: the big and rich countries
will be infected first, and then the disease spreads out
to the global world. This can be understood that bigger
and richer countries usually have more active population
in international travel, and thus are of higher risk to be
new spreading origins in the early stage of epidemic. The
evolution of correlations between the confirmed cases ni

and population and GDP is reported in Fig. 2(c) by
the Kendall’s Tau (see Methods and Materials). Signif-
icantly positive correlations with a tendency of increase
with time can be observed, confirming that the popula-
tion and economic level are important factors for disease
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FIG. 1: (a) Zipf’s distribution of the normalized number of
H1N1 cases in different countries in a log-log plot with date
before May 15, 2009. (b) Same as (a) but with date after May
15, 2009. (c) Zipf’s distribution of the normalized number
of probable SARS cases for different countries in 2003. (d)
Zipf’s distribution of the normalized number of H5N1 cases
for different countries in the whole year of 2008. The dash
and solid curves are fitting functions described in the text.

spreading. The global total confirmed cases NT displays
two phases of growth (Fig. 2(d)): in the early stage NT

increases exponentially with a high rate and then turns
into a stable exponential growth with a much smaller
rate, with the transition occurring around the middle of
May. Such a transition may reflect the changes in the
contacting rate among people due to imposed or self-
adaptive control.

We next investigate the statistical regularities within
a country. In Fig. 3, we compare the normalized dis-
tribution of confirmed cases in different states of USA
and in different provinces of China: P of USA shows
a much more homogeneous form with a large deviation
from strict power-law distribution while P of China is
close to a power-law with exponent α = 1.79 ± 0.04 (the
Zipf’s distribution of SARS cases of different provinces
of China is also a power-law type with exponent α ≈ 3
[19]). These results show clearly that the spreading pat-
terns in different countries can differ significantly. We
believe that different strength of control and intervention
measures adopted by different countries play an impor-
tant role, as will be discussed in more detail in our model.
To summarize, the empirical results show that the scaling
properties in epidemic spreading process may widely exist
at different regional levels and crossing various infectious
diseases. In the following we try to obtain some insight
into the generic mechanisms underlying these common
properties.
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FIG. 2: (a) and (b) show the evolution of the dependence be-
tween the number of laboratory-confirmed cases ni for differ-
ent countries and the population and GDP of these countries,
respectively. The data for Mexico where the disease initiated
are highlighted with an open square. (c) The Kendall’s Tau of
the correlations between the number of confirmed cases and
the population/GDP. (d) Growth of global total number NT

of laboratory-confirmed cases of Influenza A in the semi-log
plot.

III. THE MODEL

The empirical results provoke some outstanding ques-
tions: how to understand the scaling properties in region
distributions, which factors lead to the different spread-
ing patterns for different regions, and what are the effects
of control measures on the regional level spreading? We
believe that the scaling properties have the origin at the
generic contact process underlying the transmission of
diseases, and the variation could result from the hetero-
geneity of the contact process in different diseases and
regions. One most important heterogeneity may be the
control strength. To build a generic model incorporating
the effects of control, let us consider the actions taken by
people when facing a serious epidemic spreading. In gen-
eral, individual people try to take many approaches to
reduce the probability of infection, such as using respira-
tor, reducing the face-to-face social interactions, and dis-
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FIG. 3: Normalized distributions P of confirmed cases in dif-
ferent states of USA and different provinces of China. For
USA, the solid curve is P = 0.17r−0.51e−r/19, fitting the data
of July 23. For China, the solid line is of slope -1.79, fitting
the data of July 23.

infecting frequently. And also, many organizations usu-
ally take measures to prevent the spreading of epidemic,
such as physical examinations in public transportation
and schools, vaccinations and isolations for highly risky
groups, and so on. If epidemic breaks out in a coun-
try, other countries may reinforce the health examina-
tions at the borders for the travelers from that country.
For example, measurement of body temperature is used
in many airports since the outbreak of influenza A in
Mexico, and some countries implement strict isolation
for the infected persons and their close contacts. Similar
but more strict measures have also been adopted in the
control of SARS. These actions of individuals and social
organizations can effectively change the structure of so-
cial contacts, reduce infection probability and affect the
spreading patterns of epidemic [20, 21]. Such effect of
imposed or self-adaptive controlling actions on reduced
infection rate is the starting point of our modeling for
the spreading process.

Different from many individual-based models, our
model is in the regional level, so the detailed social con-
tact structure [22, 23, 24] as well as the control methods
and strategies in individual level [25, 26, 27] are not con-
sidered directly. In our model, a region (such as a coun-
try) is denoted by a node in a network with K nodes
in total. The network is supposed to be fully-connected
since in general there are direct contacts between almost
all countries in the world. However, the strength of con-
nections between the countries could be different due to
the heterogeneity in various factors, such as population
and economics. As we will show later, while such het-
erogeneity has some impact on the epidemic spreading,
the most important ingredients are the strengths of con-
trol within and between the regions. Therefore, instead
of employing the detailed information of real traffics, we
generically denote the international traffic of a node as
its strength si, and the weight of link between two node
i and j is assumed to be symmetric and proportional to
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the products of the strengths si and sj :

qij = sisj/
∑K

k=1
sk. (1)

The spreading at time t from node j to i is proportional
to the number of infected cases nj of node j, together
with a time-varying effective weight wij(t) of the link,
namely wij(t)nj(t). Here wij(t) is related not only to the
link strength qij , but also to the control strategy. Control
measures are in general reinforced on the travelers from
countries with large number of infected cases, and thus
in our model the link weight is

wij(t) = qijnj(t)
−β1 , (2)

where β1 is a free parameter. Effectively, we can take
wij(t) = 0 if nj(t) = 0. Note that while qij is symmetric,
wij is in general asymmetric. This expression describes
generically the effects of various control measures at the
borders, without relying on the details at the individual
level.

In this model, the update of the number of cases ni of
an arbitrary node i consists of two parts: a local infection
growth and the global traveling infections:

∆ni = ρ

[

ai(t)ni(t) +
b

〈s〉

∑K

j=1,j 6=i
wij(t)nj(t)

]

, (3)

where ρ is a positive constant related to the basic trans-
missibility of the diseases, 〈s〉, the average value of si,
is introduced for normalization, and the coefficient b de-
notes the relative contribution due to the transmission
from other regions. Note that ∆n is generally a real
number while the real-world increment of infected cases
must be integral. Therefore, we round ∆n to the neigh-
boring integer, namely to set ni(t+1) = ni(t)+ [∆n]+ 1
with probability p and ni(t+1) = ni(t)+[∆n] with prob-
ability 1−p, where p = ∆n−[∆n] ([x] denotes the largest
integer no larger than x).

The relative contribution by local infections, ai(t), is
not constant, but reflects the strength of control within
a region. In the same vein as the border control in Eq. 2,
we describe the generic effects of local control by decaying
ai(t) as a function of ni with a free parameter β2, namely

ai(t) =

{

ni(t)
−β2 , if ni(t)

−β2 > g
g, if ni(t)

−β2≤g.
(4)

Effectively, ai(t) = 0 if ni = 0. Here the decaying of ai is
limited by a constant g (0 < g < 1), which accounts for
the necessary social contacts in the daily life even under
the outbreak of the epidemic. In reality, g is also related
to the transmissibility and death rate of the disease.

IV. RESULTS OF THE MODEL

To focus on the effects of the control parameters β1

and β2, we first consider the simplest case of the model
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FIG. 4: Effects of the parameters β1 and β2 on spreading
speed, measured by the logarithm of the infected range M

(a) and the logarithm of the total cases NT (b) at t = 100.
Simulations run with b = 0.06, and g = 0.2, and all the data
are averaged over 104 independent realizations.

in which si is uniform. In this case, qij = 1/K and Eq.
3 is reduced to the minimal model

∆ni = ρ

[

ai(t)ni(t) +
b

K

∑K

j=1,j 6=i
nj(t)

1−β1

]

. (5)

The impact of the heterogenity in si will be discussed
later.

In the following, to represent a worldwide network of
countries, the total number of nodes in our model is
K = 220, the number of country. The model can also
be used to represent the spreading within a county when
regarding a node as a region within a country and ignor-
ing the transmission from other countries. From Eq. 3,
the parameter ρ does not affect the pattern of the nor-
malized distribution P . ρ is thus fixed at 0.2 in all our
simulations, which is close to the fast growing rate of
the influenza A in the early stage of outbreak (see Fig.
2(d)). Initially, the epidemic starts at a random node k
(nk(0) = 1, and nl(0) = 0 for l 6= k). To quantify the
epidemic spreading with time, we compute the spreading
range M (the number of nodes with ni > 0) and the to-
tal cases NT . The results of M and NT in the minimal
model at time t = 100 are shown in Fig. 4 in the param-
eter space (β1, β2). It is seen that both large β1 and large
β2 can reduce the range of spreading M , but the control
on the interregional borders by β1 is more effective than
β2 (Fig. 4(a)). On the contrary, large β2 is much more
effective than β1 to reduce the total number of cases NT

(Fig. 4(b)). We find that these patterns with respect to
β1 and β2 in Fig. 4 are generic in the model for differ-
ent parameters ρ, b and g and for different time during
the spreading. These results imply that once a country
has local epidemic outbreaks, its growth will be mainly
driven by the local spreading but not the input of foreign
cases.

The parameter space of β1 and β2 can be divided into
four regimes, corresponding to various combinations of
weak or strong local or interregional controls, as indicated
in Fig. 4. Typical normalized distributions P obtained
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FIG. 5: (a) Typical normalized distribution P (at t = 300) in
the regime of I, II, III, and IV in the parameter space (β1, β2)
shown in Fig. 5. The two red dashed lines indicate the power-
law functions with α = 1.67 and α = 2.25, respectively. The
inserts show the dependence of α on β1 for fixed β2 = 0.2
(open circle) and β2 = 0.8 (filled circle). (b) The correspond-
ing growth of NT with respect to time. The other parameters
are the same as in Fig. 4.

in the four regimes are compared in Fig. 5. When β1

is small (regimes (I) and (II)), the epidemics can spread
to almost all nodes in short time, and P is rather ho-
mogeneous. When β1 is large (regimes (III) and (IV)),
the spreading across different region is suppressed, and P
is rather inhomogeneous, manifested as a power-law-like
form. Keeping β2 fixed, the exponent α clearly increases
with β1 and a larger β2 can slightly increase α further (in-
set, Fig. 5(a)). We have included a detailed discussion of
the time evolution of the distributions P and their asso-
ciation to the Heaps’ law in the Supporting Information

(Figs. 8-9).

While β1 has a sensitive impact on the interregional
spreading and controls the heterogeneity of the distribu-
tion P , β2 mainly affects the growth of total cases NT , es-
pecially in the early stage (Fig. 5(b)). With stronger con-
trol at larger β2, the fast growth of NT in the early stage
will be effectively suppressed and will be transformed to a
slow exponential growth within shorter time. As seen in
Eq. (4), β2 only affects the growth in the very early stage
after the epidemics appears in a region. The significant
effect of β2 on the growth of total cases NT emphasizes
the importance of early epidemic control, in agreement
with the conclusion of previous studies on other diseases
[9, 10].

Comparing the results from the four regimes, we can
see that the spreading pattern in regime III (large β1

and small β2) is closer to the empirical observations of
influenza A. In this regime, the range of α covers most
of empirical results. For example, with β1 = 0.8 and
β2 = 0.2, the distribution P can be well fitted by a
power-law function with exponent 1.67 (Fig. 5(a)), and
this value is close to the empirical exponent of influenza

A on July 6 (Fig. 1(b)). Large β1 and small β2 is consis-
tent with the real-world situation. While more efficient
to implement control measures on the borders, e.g., to
identify infected and suspected candidates and their close
contacts for quarantine, it is much more difficult to get
the same efficiency for the same control schemes in local
communities. The relative lower death rate of influenza
A is also likely to weaken the self-adaptive control and
voluntary isolations of the individuals, leading to insignif-
icant change of the contact patterns (e.g., much weaker
than SARS). All these will render a lower efficiency in the
local control, corresponding to a small β2 and a larger g.

The parameter g expresses the background local
growth speed under the effect of control measures which
cannot be further reduced due to unavoidable social
contacts. The other parameter b denotes the relative
strength of interregional transmission. Both of them can
affect the exponent of distribution P , and g also has a
very sensitive impact on the growth of the total number
NT (see Supporting Information).

All the above discussions are based on the minimal
model where the diversity of the nodes and the edges is
ignored by assuming a uniform si. Now we study the
impact of heterogeneous si and the effect of target con-
trol on the spreading of disease. While previous inves-
tigations have focused overwhelmingly on the impact of
heterogeneity in the degree of complex networks [17, 24],
here we study the effects of the heterogeneity in the in-
tensity of nodes and links in globally coupled networks.
We first take the real population of different countries as
si in our model and investigate how does the initiation
of the disease in countries with different ranks of popu-
lations influence the global spreading. When the disease
starts in a country with a large si (Fig. 6(a), popula-
tion rank Rini = 11 as Mexico), the disease spreads out
quickly and the spreading process displays a clear ten-
dency from the node with large si to those with small si

as seen by the evolution of the scatter plot of ni(t) vs.si

and the Kendall’s tau (Fig. 6(c)), which reproduces the
main features in the empirical data in Fig. 2. On the
contrary, when the initiation happens in a country with
small population (Fig. 6(b), population rank Rini = 100
as Libya), the disease is contained in the country where
it is initiated for a period of time, and then the coun-
tries with the largest populations get infected soon and
become new centers of spreading. τK is around zero in
the very beginning when the diseases is contained and
becomes negative when spreading to a few nodes with
the largest si and quickly shift to positive values when
the new centers take the leading role in the spreading
Fig. 6(c)). The total cases NT grows much faster in the
first case (Fig. 6(d)). We have applied target control
in our model (see Supporting Information), and we find
that strong control just on one or two nodes with the
largest si can sharply reduce the spreading by several or-
ders of magnitude (Fig. 6(e)). This effect is similar to
target immunization of the hubs in degree heterogeneous
complex networks [27]. A more systemactic analysis of
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FIG. 6: Effects of heterogeneous si in the model where si

is taken as the population of different countries. (a) and (b)
show the evolution of of ni(t) vs si when the disease is initi-
ated at different countries (highlighted by an open square).
Simulations run with β1 = 0.8, β2 = 0.2, b = 0.06, and
g = 0.2. (c) Evolution of τK between ni(t) and si. (d) The
corresponding growth of NT (t). (a-d) are obtained from one
realization of simulation. Statistical results from many real-
izations are shown in Fig. 13 in Supporting Information. (e)
NT at t = 50 and t = 100 when Rm nodes with the largest si

are the targets of control with β1 = 0.8 (see Supporting Infor-
mation, the other parameters are the same as in (a-d)). Data
of (e) are averaged from 104 independent runs with disease
initiation at random nodes.

the effects of node heterogeneity and target control by
considering a power-law distribution of si is included in
Supporting Information. We find that even though the
heterogeneity can accelerate the spreading, the strength
of control plays the leading role to determine the patterns
of spreading.

To summarize, power-law distribution of P with large
exponent α appears in the situations with large β1, small
b and large g. This regime corresponds to the real situa-
tions that the epidemic control for the travelers is strong,
the interregional contact is much weaker compared to
that in local communities, and the change of local social
contacts by the disease is not very significant. The epi-
demic control for the interregional travelers (large β1) is
most important condition for the emergence of the power-
law type of P , since the power-law distribution cannot be

generated when β1 is close to zero no matter what other
parameters are.

V. DISCUSSION

The statistics of region distributions of several pan-
demic diseases, including influenza A (H1N1), SARS and
bird cases of avian influenza (H5N1) display obvious scal-
ing properties in the spreading process at different levels.
We study the origin of such scaling properties with a
model of epidemic spreading at the regional level that
incooperates the generic effects of intervention and con-
trol measures without the need of the structure details of
social contacts and the particularity of the transmission
of the diseases. Such a model is then able to capture the
general principles underlying epidemic spreading and to
reveal the generic impact of control measures. We elu-
cidate that strict epidemic control on interregional trav-
ellers plays an important role in the emergence of the
scaling properties.

The results of the model can cover the empirical statis-
tics of H1N1 on both the region distribution and the
growth of total cases, and are also consistent with the
region distribution of SARS and H5N1. In particular,
the exponent α of the empirical distribution P of H1N1
is about 3.0 in the early stage and changes to 1.53 on July
6, 2009, and α is about 2.7 for SARS and 2.0 for H5N1.
In the stable spreading period, the α of H1N1 is smaller
than SARS and H5N1. According to the understand-
ing from our model, larger α indicates that the control
measures are more strict and effective. This speculation
is in agreement with the situation in SARS and H5N1
spreading. Because of high death rate and strong infec-
tion capability, SARS gave rise to strong social panic and
attracted attentions from citizens to governments in the
countries with outbreaks, such as China, and strict con-
trol measures were enforced in each public transportation
systems and in daily life of people. As for H5N1, many
efficient control measures were also taken to prevent the
spreading, such as immunity for poultry and culling of
livestock, etc. Large α in the early stage of the spreading
of H1N1 could be related to stronger control effect due
to overrating of the mortality of H1N1. Empirical results
also showed that the distribution P of H1N1 in USA is
more homogenous than in China. While there are proba-
bly several factors contributing to this difference, but the
most obvious difference is in the control measures. China
takes strict control policies, such as enforced quarantine
and isolation for identified infectors and the close con-
tacts, which are not so strict compared to those during
the SARS spreading, but are stronger than USA.

Our main findings, i.e., interregional control mainly
affects the spreading range and the form of the region
distributions while local control sensitively impacts the
growth of total cases, provide us a picture of epidemic
control. For regions that have no or only a few local in-
fected persons, strict control measures for interregional
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travellers can delay the local outbreaks significantly, but
if large number of local cases have been broken out, these
control methods for travellers are not so important. In-
stead, control methods and treatment for local communi-
ties will be much helpful. Recently, the focal point of the
control policies for influenza A of many countries have
turned to the treatment for infected persons. Accord-
ing to the conclusions of the present model, this strategy
shift is reasonable. This model also indicates that the di-
versity of different regions will accelerate the spreading.
Efficient prevention of the spreading could be achieved
by enhanced control measures, especially for the giant
regions.

In summary, a simple physical model basing on the
abstraction of the generic contact processing and the ef-
fects of control can provide meaningful understanding of
the scaling properties commonly observed in various pan-
demic diseases. It deepens our understanding of the rela-
tionship between the strength of control and the spread-
ing process, and provide a meaningful guideline for the
decision maker to adopt suitable control strategies.

VI. METHODS AND MATERIALS

A. Data Description

The cumulative number of laboratory confirmed cases
of H1N1 of each country is available from the website
of Epidemic and Pandemic Alert of World Health Orga-
nization (WHO) (http://www.who.int/), which started
from April 26 to July 6, and updated each one or two
days. After July 6, WHO stopped the update for each
country since the global pandemic has broken out. The
data for SARS and H5N1 are available from the web-
sites of WHO and the World Organization for Animal
Health (OIE) (http://www.oie.int/), respectively. The
data for H1N1 cases of different states of USA is avail-
able on the website of Centers for Disease Control and
Prevention (CDC) (http://www.cdc.gov/h1n1flu/), and
the data of different provinces of China is available
from Sina.com (http://news.sina.com.cn/z/zhuliugan/).
The data for populations and GDPs of differ-
ent countries are obtained from English Wikipedia
http: // en.wikipedia.org/ wiki/ List of countries by
population and http: // en.wikipedia.org/ wiki/ List of
countries by GDP. There are three different lists of
GDPs and what we used here is the one from the World
Bank, which includes 182 countries. Among the 135
countries having reported the confirmed H1N1 cases un-
til July 6, 22 of which do not have GDP data. They are
all small countries and the number of confirmed cases
in these countries is also quite few (the total of the 22
countries are 163 until July 6). We thus ignore them in
evaluating the correlation in Fig. 2(c).
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FIG. 7: Dependence between the number of infected coun-
tries, M , and the global total NT of confirmed cases in log-log
plot. The red lines respectively are the fitting line with slope
0.35 and 0.53.

B. Zipf’s Law and Power Law

Zipf’s plot is widely used in the statistical analysis of
the small-size sample [28], which can be obtained by first
rearranging the data by decreasing order and then plot-
ting the value of each data point versus its rank. The fa-
mous Zipf’s law describes a scaling relation, z(r) ∼ r−α,
between the value of data point z(r) and its rank r. As
a signature of complex systems, the Zipf’s law is widely
observed [29, 30]. Indeed, it corresponds to a power-law
probability density function p(z) ∼ z−β with β = 1 + 1

α .

C. Kendall’s Tau

In the empirical analysis, the numbers of confirmed
cases, populations and GDPs for different countries are
very heterogeneous, covering several orders of magnitude
(e.g., the population of China is about 2×104 times larger
than that of Dominica). Thus the classical measurement
like the Pearson coefficient is not suitable in analyzing
the correlations. We therefore use the rank-based cor-
relation coefficient named Kendall’s Tau. For two series
−→x = {x1, x2, · · · , xm} and −→y = {y1, y2, · · · , ym}, the
Kendall’s Tau is defined as [31]

τK =
2

m(m − 1)

∑

i<j

sgn[(xi − xj)(yi − yj)], (6)

where sgn(x) is the signum function, which equals +1 if
x > 0, -1 if x < 0, and 0 if x = 0. τK ranges from +1
(exactly the same ordering of −→x and −→y ) to -1 (reverse
ordering of −→x and −→y ), and two uncorrelated series have
τK ≈ 0.

http://www.who.int/
http://www.oie.int/
http://www.cdc.gov/h1n1flu/
http://news.sina.com.cn/z/zhuliugan/
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D. On Power-Law Fitting

Most of the distributions P generated by simulations
of our model with large β1 (≥ 0.6) trend to a power-law-
like type after several steps of evolution. In the fittings of
simulation results, we firstly judge if the curve of P in this
range is power-law-like. If yes, we fit the curve by linear
function in log-log plots in using least square fit method
to get the fitting parameters. The range of the power-law
fittings of is from 2 to 50. If there is obvious deviation
from power-law in this range, we do not use power-law
to fit the curve. The only exception is the distribution
P when b = 0.02 in Fig. 12(a), where the range is from
1 to 30, because the cut-off appears at rank = 30 due to
slow spreading of the disease. All the power-law fitting
results in the model does not show the error-bar (e.g.,
the dependence of α on various parameters of the model),
because the fitting error on the power-law exponent is far
less than the value of α for most cases after 104 averages
(e.g., α = 1.666±0.003 when β1 = 0.8, β2 = 0.2, ρ = 0.2,
b = 0.06 and g = 0.2 in the minimal model).

VII. SUPPORTING INFORMATION

A. Heaps’ Law for H1N1 Spreading

In the real-world spreading of influenza A, a scaling
relation between the number of infected countries, M ,
and the global total NT of confirmed cases was observed.
As shown in Fig. 7, it displays a power-law dependence
with exponent λ ≈ 0.35 in the range from NT = 100
to NT = 8000 (NT = 8000 corresponds to global total
reported on May 18), and then turns to fast spreading
with exponent λ ≈ 0.53 in the range NT > 8000.

This scaling relation, M ∼ Nλ
T , is called the Heaps’ law

[13], which describes a sublinear growth of the number
of distinct sets as the increasing of the total number of
elements belonging to those sets. Note that, the Heaps’
law only exists in a limited range because in the very
early stage, the infected countries are too few to display
any statistical regularities. As discussed in the paper,
λ ≈ 1/α, thus larger λ after May 18 is consistent with
smaller α (Fig. 1). While it has not yet been shown from
the data available only till July 6, the growth of M will
eventually saturate since the number of countries on the
earth is limited.

B. The evolution of Zipf’s distribution P vs the

Heaps’ plots in the model

The empirical results in Fig. 2(b) indicates that the
Zipf’s plot converges to a stable distribution before the
spreading range M reaches saturation. The convergence
to a stable distribution is inherent in our model. Let us
consider a few nodes in the model with the largest ni.
The growth of such nodes is mainly determined by the
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data are average over 104 independent runs.
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FIG. 9: Dependence between M and NT generated by the
model for different β2, corresponding the distributions P

shown in Figure S2.

local growth rate ρg, ni(t + 1) ≈ (1 + ρg)ni(t), since the
number of infected case due to input from other nodes is
much smaller and can be neglected and the local growth
has shifted to a stable rate due to local control in Eq.
4. When considering a power -law distribution at time t,
Pt(r) ∼ r−α, the total global cases NT are also mainly
contributed by these a few nodes with the largest ni,
i.e., NT (t + 1) ≈ (1 + ρg)NT (t). Thus the normalized
distribution at t + 1 for these nodes is Pt+1(r) = ni(t +
1)/NT (t + 1) ∼ r−α which is invariant vs. time. This
analysis is confirmed by the evolution of P at various
parameters in Fig. 8. We can see that the distributions
P at different time overlap for the nodes with the smallest
rank r. The range of the forepart of the curve of P which
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FIG. 10: (a) The normalized distributions P for different b.
The two red lines are power-law functions with exponent α =
0.92 and α = 3.16, respectively. The top insert: dependence
of α on b. Bottom insert: NT (t) vs. time for various b.
Simulations run with β1 = 0.8, β2 = 0.2, and g = 0.2. (b)
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power-law functions with exponent α = 1.05 and α = 2.43,
respectively. Simulations run with β1 = 0.8, β2 = 0.2, and
b = 0.06. All the data are average over 104 independent runs.

can be well fitted by power-law extends along with the
time evolution, and the cut-off tail will move to large
ranks r till it reaches the system size K.

In our model, the scaling property in the distribution
P is mainly contributed by large β1. An extreme situa-
tion is that β1 > 0 and β2 = 0, namely, the effect of local
control is ignored (the parameter g does not have any im-
pacts). In this case, ni(t+1) ≈ (1+ρ)ni(t) for the nodes
with the largest ni and NT increases with a rate close to
ρ. P converges quickly to a power-law distribution when
β1 is large (Fig. 8(a)), and the exponent α is quite large
because the early infected nodes grow very fast. On the
other hand when β2 is large enough, the growth of ni

and NT will shift quickly to a stable rate ρg and P again
converges to a power law distribution. α is significantly
smaller than that at β2 = 0 because the local control re-
duces significantly the growth rate of the early infected
nodes, and ni is not as heterogeneous. When β2 is small,
it takes a long period of time for infected nodes to achieve
an stable exponential growth and consequently it takes
many steps for P to converge. The convergent exponent
α becomes larger when β2 increases, because the newly
infected nodes do not grow very fast under stronger lo-
cal control so that the distribution become slightly more
heterogeneous.

In the discussions of the results of our model, the evo-
lution time of the model generally is set as 300 steps, be-
cause in the parameter settings in our discussion, most
of the P distributions can show long range of power-law
part and the exponent of the power-law part trends to
stable after 300 steps of evolution.

From Fig. 8 we can also see that the distribution
at a given time t has a cut-off at r = M(t) where
P (r) = 1/NT (t). When α is large (e.g., Fig. 8(a)),
as an approximation we can assume that the power -
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FIG. 11: The growth of total confirmed cases within a coun-
try. The four panels correspond to the four types.

law distribution extends to the cut-off point, i.e., P (r) ≈
1/NT (t) ∼ M−α(t), and we get M ∼ Nλ

T where λ = 1/α,
implying that the Heaps’ law can be observed in the pro-
cess. The Heaps’ plots corresponding to the Zipf’s plots
in Fig. 8 are shown in Fig. 9. We can see that the fit-
ting exponent λ ≈ 1/α as expected from the analysis.
The plots also manifest the saturation of M when NT

becomes very large.

C. Effects of parameters b and g

Besides the two parameters β1 and β2 for the border
and local control, the other two parameters b and g re-
lated to interregional and local contact rates can also
significantly affect the spreading processes.

The parameter b in our model denotes the relative
strength of interregional transmission. Large flow of in-
terregional travels can also make the epidemic spread to
most of the regions rapidly. As a result, the distribution
P becomes more homogeneous with decreasing α when
b is larger; however, b has only a slight impact on the
growth pattern of NT (Fig. 10(a)).

The parameter g expresses the background local
growth speed which cannot be further reduced due to
unavoidable social contacts even under the effect control
measures. Under strong border control (large β1), the
number of infected cases ni is mainly determined by g,
growing exponentially with the rate ρg after an initial
transient period, thus g has a very sensitive impact on
the growth of the total number NT (Fig. 10(b)). If g
is large, earlier infected regions will have much more in-
fected cases compared to later infected regions, leading to
an inhomogeneous distribution P . At smaller g, the ear-
lier and later infected regions do not differ very much in
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the number of infected cases, corresponding to more ho-
mogeneous distribution P with decreasing α (Fig. 10(b)).
Different from the case of weak border control (small β1),
homogeneous P here dose not mean the rapid spreading;
on the contrary, it denotes the situation that the spread-
ing in each country is in a lower level.

D. Diversity of control in data and model

1. Growth of confirmed cases within a country: empirical
data

We have investigated the growth of the number of con-
firmed cases ni for all the countries with ni > 103 until
July 6, and found that the patterns of growth are quite
diverse. As shown in Fig. 11, the growth patterns can be
roughly classified into four different types. Type I (Fig.
11(a))—each curve in this type has a clear transition in
the middle of May from a rapid breakout to a stably ex-
ponential growth. These are the countries got infected
shortly after the breakout of H1N1 in Mexico. Type

II (Fig. 11(b))—each curve in this type also shows a
crossover from quick to slow growth as in Type I, but the
initial infection in these countries were much late. Type

III (Fig. 11(c))—each curve in this type exhibits a sta-
bly exponential growth without a pronounced crossover.
This happens for countries with early or late initial infec-
tion. Type IV (Fig. 11(d))—curves in this type can not
be classified into the former three types. These irregular
curves usually include one or more very sharp growths,
and tend to grow slowly in the later stage. Except the
irregular Type IV, the other three types can be treated
as two basic types: one has clear crossover from rapid
to slow growth and the other shows stably exponential
growth without such a pronounced crossover.

2. Effects of diversity of control in the model

The different growth patterns in the data can be qual-
itatively explained by the diverse effects of control in our
model. To demonstrate this, we assume that parameters
β2 and g within countries are nonidentical and are ran-
domly chosen from 0 to 1 for different nodes, while we
fix the border control parameter β1. In reality, all the
important parameters ρ, β1, β2, g, and b can be different
due to variation of contact structures (population, hy-
giene condition, culture, etc.) from country to country,
but here we do not intend to fit the model precisely to
the real data, but rather to demonstrate the concept and
to prove the principle.

The results are summarized in Fig. 12 for two groups of
nodes with early and late initial infections. In each group,
we consider four combinations of the parameters β1 and
β2. We can see that when β1 is close to 1, the growth
patterns are close to an exponential function regardless
of β2. While when β2 is small, the growth will undergo
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FIG. 12: The growth of averaged value of ni(t) for the nodes
with different β1, β2 and the arrival time ta. (a). For the
nodes that 0 ≤ ta < 30 (ta ∼ 15). (b). For the nodes that
120 ≤ ta < 150 (ta ∼ 135). In the two panels, β1 ∼ 0.25
denotes the data averaged for the nodes that 0.20 ≤ β1 <

0.30, and β1 ∼ 0.85 for 0.80 ≤ β1 < 0.90, and also for the
values of β2. Simulations run with ρ = 0.2, b = 0.06, and
g = 0.2. All the data are average over 104 independent runs.

a pronounced transition from fast to stably exponential
function when β2 is small, because it takes considerable
time to change the local contact patterns (see Eq. 4).
When β2 is large, the growth will shift very quickly to
the exponential function. The situation is the same for
nodes with early or late initial infections except for the
time-delay. In all the cases, the stable growth rates are
close to ρg (the slope ≈ ρg log10 e). Thus we can see
that the two basic types of growth patterns in empiri-
cal data, i.e., with and without a pronounced transition,
can be represented by different control parameters in the
model. The model, however, does not include strong non-
stationary ingredients that could lead to sudden increase
of ni observed in a few countries in Fig. 11(d).

We would like to point out that the growth patterns
of ni in the individual nodes at different parameters are
similar to various growth patterns of the global total NT

in the model (Fig. 5(b) in the paper) and in empirical
data (Fig. 2(d) in the paper). This provides justification
that we an apply our model to the global level where
each node represents a country, or to the level within a
country where each node denotes a state/province. In
the later case, NT of the model represents the growth of
the total cases of a country and is consistent with the
growth of ni in the former case.

E. Effects of heterogeneity in si

In the paper we discuss the effect of heterogeneity in
si by taking si as the population of a country. Fig. 6 in
the paper shows the evolution of the dependence between
ni(t) and si in one realization of the model simulations.
Fig. 13 display the statistics over many realizations: (a)
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FIG. 13: Evolutions of the probability density in the space
(log

10
si, log10

ni) obtained from 104 realizations of simula-
tions with the epidemic initiation at node with population
rank Rini = 11 (a) and Rini = 100 (b). The correspond-
ing growth of NT (t) (c) and evolution of Kendall’s tau τK

between ni(t) and si (d) averaged over all the realizations.
Simulations run on β1 = 0.8, ρ = 0.2, b = 0.06, and g = 0.2.

and (b) show the probability density function in the space
(log10 si, log10 ni) with color scale. The spreading from
the nodes with large si to those with small si becomes
very evident in this presentation.

In the following we carry out a more systematic anal-
ysis of the impact of heterogeneous si and target control
by considering power distributions of si, i.e., P (s) ∼ s−γ .
Two spreading processes are compared. The first one is
the situation without any control impacts, namely β1 = 0
and β2 = 0. In the second situation we consider strong
border control ( β1 = 0.8 and β2 = 0.2, typical parameter
setting introduced in Fig. 5 in the paper).

Without control, the spreading is very fast even in
the case of uniform si. Simulation results indicate that
increased heterogeneity at smaller γ sharply accelerates
the spreading by increasing the total cases NT in all the
spreading period (Fig. 14(a)). The impact of heterogene-
ity on the spreading range M is different in different pe-
riod of the spreading: for stronger heterogeneity (smaller
γ), M is larger in the early stage, but smaller in the
later stage (Fig. 14(b)). With control, the spreading is
significantly suppressed, and the acceleration by the het-
erogeneity is weaker: NT does not increase so strongly
when γ is smaller (Fig. 14(c)), while M displays similar
non-monotonic, but relatively stronger dependence on γ
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FIG. 14: Impacts of node heterogeneity (γ) on the total cases
NT and range M of the epidemic spreading without control
(panels (a) and (b): β1 = 0 and β2 = 0) and with control
(panels (c) and (d): β1 = 0.8 and β2 = 0.2). The simulations
run on ρ = 0.2, b = 0.06, and g = 0.2.All of Data are averaged
from 104 independent runs.

1 10 100
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 

 

  = 2.0
  = 2.5
  = 3.0
  = 3.5

P

Rank

Slope = -1.37

FIG. 15: The distributions P for different γ. Simulation runs
on β1 = 0.8, β2 = 0.2, ρ = 0.2, b = 0.06, and g = 0.2. The
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All of Data are averaged from 104 independent runs.

(Fig. 14(d)). The non-monotonic impact of heterogene-
ity on M can be understood as follows. When si become
rather heterogeneous, epidemic will rapidly arrive at the
nodes with large si when initiated at a random node (see
Fig. 13), so M is larger at smaller γ in the early stage.
Then the epidemic mainly grows in a few nodes with the
largest si and the majority of nodes with small si have
rather weak connections between them, which make the
spreading to new nodes more difficult, even though the
total cases NT is larger. In the situations with control,
the spreading from these nodes have largest si and ni

to the nodes with small si is further reduced. As a re-
sult, the non-monotonic impact on M is more obvious
in the situations with control. The enhanced spreading
however, only makes the distribution P slightly more ho-
mogeneous (Fig. 15).

The comparison of these heterogeneous networks with
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FIG. 16: (a) and (b), effects of the border control on the total
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(the maximum rank), simulations run on γ = 2.0, β2 = 0.2,
ρ = 0.2, b = 0.06, and g = 0.2, and β1 = 0.8 for the nodes
that rank of si equal or less than Rm, and β1 = 0 for others.
(c) and (d), effects of the local control on NT and M vs. Rm,
simulations run on γ = 2.0, β1 = 0.8, ρ = 0.2, b = 0.06, and
β2 = 0.2 for the nodes that rank of si equal or less than Rm,
and β2 = 0 for others. All of Data are averaged from 104

independent runs.

the minimal models show that while strong heterogeneity
in the nodes (countries) could be an accelerating factor,
just like the effect of the heterogeneous degree distribu-
tion of complex networks [24], the strengths of control
play a leading and dominant role in determining the epi-
demic spreading patterns. In fact, the impact of strong

heterogeneity can be compensated with slightly increased
border control parameter β1.

Generally speaking, the nodes with large intensity on
heterogeneous structures usually is a key towards the dy-
namics of the system. We have applied the target control
to the first Rm nodes with the largest si. The spreading
can be sharply decelerated by reducing both the total
cases NT and range M (Figs. 16(a) and (b)), when only
a few nodes with the largest si are in strong border con-
trol (setting β1 > 0 for the first Rm nodes and β2 = 0 for
others). Similar impact can be also observed in the local
control on few large si nodes (setting β2 > 0 for the front
Rm nodes and β2 = 0 for others, see Figs. 16 (c) and (d)).
In this case, those nodes with β2 = 0 grows very fast and
the control on a few nodes does not reduce NT very signif-
icantly. However, M is clearly reduced because the nodes
with the largest si are usually the centers of spreading in
the early stage and the target control within these nodes
will reduce the spreading to other nodes. These impacts
of control on the nodes with large si are quite similar to
the targeted immunization strategy on hubs notes with
the largest degrees in scale-free networks [27].
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