

Modeling & Simulation of tubular SOFC

Daan Cui (崔大安), Mojie Cheng (程谟杰)

Nov 2008

Working Principle

Characteristics of tubular SOFC

High efficiency

Silent work

Clean generation of electric power

High fuel flexibility

What to model in tubular SOFC?

- *Micromodeling (1D, 2D): 1.interface 2.microstructure*
- Cell (2D,3D): repeating unit
- Stack(3D): fuel reforming, heat exchange, after burning, etc.
- System(0D): CHP, BOP, etc.

Objective in tubular SOFC modeling

1. Performance modeling

Explain phenomena of the observations

Predict behaviour

- 2. Design of the cell structure
 - long life
 - low losses
 - high output

low thermal stress

Our work

1.Effects of different current collecting modes to the performance of anode supported tubular SOFC

2. Thermal phenomena in the anode supported tubular SOFC

Model assumptions

state. Gas flows in the channels are laminar. Reactant gas mixtures are approximated as ideal gas and incompressible. Fuel cell operates with 100% current efficiency. Model is assumed to be isothermal, and the cell run at 800 °C. 中国科学院大连化学物理研究所

Model is based on steady

Schematic diagram of a micro-tubular geometry in 2D.

Electrochemical Equation

$$\frac{1}{2}O^2 + 2e^- \rightarrow O^{2-}$$
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

$$H_2 + 2O^{2-} \rightarrow H_2O + 2e^{-}$$

$$i = i_0 \left\{ \exp\left(\beta \frac{n_e F \eta_{Act}}{RT}\right) - \exp\left[-(1-\beta) \frac{n_e F \eta_{Act}}{RT}\right] \right\}$$

$$\eta_{act} = v_{rev} - abs(v_{electrode} - v_{electrolyte})$$

Governing equations

• Electronic charge

 $-\nabla(\boldsymbol{\sigma}\cdot\nabla\phi)=0$

• Momentum transport equations

$$\rho(u\cdot\nabla u)-\mu(\nabla^2 u)+\nabla P=0$$

mass transport equations

$$\nabla \left(-D_{ij} \cdot \nabla c_i + c_i \cdot u \right) = 0$$

Distributions of anode (a) and cathode (b) electric potentials, electrolyte (c) potential.

Distribution of E_{Nernst} along the anode/electrolyte interface

Distribution of current density along the anode/electrolyte interface

Distribution of cathode overpotential along the anode/electrolyte interface

Vector plots of current density inside anode under IC (a), OC (b), BC (c) and TC (d) modes.

 $loss = 1 - \frac{I_i}{I_{\rm TC}}$

The cell efficiency loss and IC loss/BC loss as a function of anode tube length.

2. Thermal phenomena in the anode supported tubular SOFC

Heat generation

$$q_{rev,a} = T \cdot \Delta S_a \frac{i_a}{2F}$$

$$q_{irr,a} = \eta_{act,a} \cdot i_a$$

$$Q = \boldsymbol{\sigma} \cdot \nabla^2 \boldsymbol{\phi}$$

Heat transfer

Conductive and convective equation

$$\nabla (-k \cdot \nabla T) + \rho \cdot C_P \cdot u \cdot \nabla T = Q$$

Vector plots of current density inside anode under IC (a), OC (b) and BC (c) modes.

3D contour plot of the anodic resistive heating (W/m3)

3D contour plot of the anodic current density (A/m2)

Conclusion

- Simulation well reflects the current flow in an real cell.
- Efficiency loss under the BC mode was about 2–6-fold lower than others.
- current collector area has less effect on current collecting.
- A very high resistive heating point is found at anode, but it is not a hot spot because of the rapid heat transfer rate.

Acknowledgments

Ministry of Science and Technology of China No.2004CB719506, 2005CB221404, 2006AA05Z147

Natural Science Foundation of China No. 20676132 20876156

