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Nomenclature 

a  = Anisotropy parameter of linear anisotropic scattering phase function 
A  = Area, m2 
c  = Speed of light, m/s 
G  = Integrated intensity defined by Eq. (8a), W/m2 

h  = One-dimensional standard nodal basis function 
 = Three-dimensional standard nodal basis function 

H  = Matrix defined in Eq. (7) 
I  = Radiative intensity, W/(m2sr) 

0I  = Amplitude of transient intensity, W/(m2sr) 

bI  = Black body radiative intensity, W/(m2sr) 

pI  = Transient intensity on the boundary, W/(m2sr) 

k  = Unit direction vector of z-direction 
K  = General hexahedral element 

stK  = Standard hexahedral element 

RL  = Reference length scale, m 
M  = Number of discrete ordinate directions 
M  = Matrix defined in Eq. (7) 

wn  = Unit normal vector of the wall 

K∂n  = Unit normal vector at boundary of element K  

tN  = Number of discretized time steps 

skN  = Number of solution nodes on each element 

Nϕ  = Number of subdivisions for azimuthal angle 

Nθ  = Number of subdivisions for zenith angle 
p  = Order of polynomial expansion 

zq  = Heat flux of z-direction defined by Eq. (8b), W/m2 
r  = Vector of spatial coordinates, ( , , )x y z=r  
t  = Time, s 

*t  = Dimensionless time * / Rt ct L= , Dimensionless time step 
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S  = Function defined in Eq. (7d), W/m3 
T  = Temperature, K 
u  = Unit step function 
V  = Volume, m3 
w  = Weight of discrete ordinates approximation, sr 
, ,x y z  = Global coordinate system variables 

stx  = Local coordinate vector, ( , , )st st st stx y z=x  

, ,st st stx y z  = Reference coordinate system variables 
 
Greek symbols 
β  = Extinction coefficient ( )a sβ κ κ= + , m-1 

β  = Function defined in Eq. (7c), m-1 

*tΔ  = Dimensionless time step 
θ  = Zenith angle 

aκ  = Absorption coefficient, scattering coefficient, m-1 

sκ  = Scattering coefficient, m-1 

ρ  = Bidirectional reflection function 
σ  = Stefan-Boltzmann constant, W/(m2K4) 

Lτ  = Optical thickness, L Lτ β=  

pτ  = Transmissivity 

φ  = Global nodal basis function 
ϕ  = Azimuthal angle 
Φ  = Scattering phase function 
ψ  = Map function defined by Eq. (5) 
ω  = Single scattering albedo 
Ω  = Unit vector of radiation direction 
Ω  = Solid angle, sr 
 
Subscripts 
n  = Time step index 
i  = Mapped one-dimensional index 

, ,i j k′ ′ ′  = Elemental spatial node index 
l  = Node index of standard hexahedral element 
w  = Value at wall 
 
Superscripts 

,m m′  = Index of discrete ordinate direction 

1. Introduction 

Transient radiative transfer within a participating medium has attracted the interest of many researchers 

due to the availability of short pulse lasers and their application to many emerging new technologies [1-3]. 

A number of methods have been developed to solve the transient radiative transfer equation (TRTE), such 

as the Monte Carlo method [4], the integral equation method (IE) [5], the discrete ordinates method (DOM) 

[6, 7] and the finite volume method (FVM) [8]. Among them, the methods based on the differential form of 
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the TRTE, such as DOM, FVM, are efficient and easy to apply to problems with complex media and 

boundary conditions. However, the DOM and the FVM suffer from large false scattering, and the transient 

wave front cannot be captured efficiently and accurately. 

Recently, based on a discontinuous Galerkin (DG) approach, Liu and Hsu [9] developed and analyzed 

transient radiative transfer in two-dimensional graded index media using a discontinuous finite element 

method (DFEM). In the DG approach, the approximation space is composed of discontinuous functions, 

which is expected to be ideal in solving transient radiative transfer problems and accurately capturing the 

sharp wave fronts. The DFEM showed good performance in solving the transient radiative transfer 

problems. As an advanced version of the DFEM, a discontinuous spectral element method (DSEM) [10], 

which enriches the DFEM due to the high order accuracy of the spectral method, was developed to solve 

transient radiative transfer problems. The DSEM was shown to be efficient and accurate in capturing the 

sharp wave front of the transient radiative transfer process. However, performance of the DSEM has only 

been examined in one- and two- dimensional cases. 

In this note, the DSEM is formulated and applied to solve the three-dimensional transient radiative 

transfer problems. Its performance in solving three-dimensional transient radiative transfer is studied and 

verified. 

2. Transient Radiative Transfer Equation 

The discrete-ordinates form of the TRTE for an absorbing, nonemitting and scattering medium can be 

written as [11] 
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with the boundary condition and initial condition given as [11] 
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( , , ) 0I t =r Ω ,   0t = .                              (1c) 

The DSEM is then developed based on Eqs. (1) to model transient radiative transfer processes. 

3. DSEM Discretization 

The radiative intensity field of the nth time step and direction mΩ  is approximated in a function space 
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spanned by Chebyshev nodal basis functions defined on an element K  as [10] 

;
1

( ) ( )
skN

m m
n n i i

i
I I φ

=
∑r r                                  (2) 

where ;
m
n iI  denotes the radiative intensity of the ith node, and iφ  is the nodal basis function of node i 

defined on K . In the present study, the solution domain is subdivided into hexahedral elements. The 

standard element stK , defined in the reference coordinate system as shown in Fig. 1, is a cube: 

: , , [ 1,1]st st st stK x y z ∈ − . The three-dimensional nodal basis function defined on stK  is formulated as 

( , , ) ( ) ( ) ( )i st st st i st j st k stx y z h x h y h z′ ′ ′= , , , 1,..., 1i j k p′ ′ ′ = + , 31,..., ( 1)i p= +     (3) 

where, ih ′  is the one-dimensional Chebyshev nodal basis function defined on [-1,1] [12], and i  is an 

index map defined as ( , , ) ( 1)( 1) ( 1)( 1)i i i j k i j p k p′ ′ ′ ′ ′ ′= = + − + + − + , here p  is the order of 

Chebyshev polynomial expansion. 

The elemental nodal basis function ( , , )i x y zφ  defined on a general hexahedron element K  can be 

obtained from the reference basis function ( , , )i st st stx y z  defined on standard element stK  using a 

coordinate transformation as depicted in Fig. 1. The coordinate transformation is defined based on the 

coordinates of the eight vertices of stK  ( ,st lx , 1,...,8l = ) as shown in Fig. 1, and the corresponding 

coordinates of the eight vertices of K , lr , as 

8

1
( ) ( )st l l st

l
ψ

=

= ∑r x r x ,  ( , , )x y z K= ∈r , ( , , )st st st st stx y z K= ∈x            (4) 

where lψ  is a mapping function related to the vertex ,st lx , which is defined as 

, , ,
1( ) 1 sign( ) 1 sign( ) 1 sign( )
8l st st l st st l st st l stx x y y z zψ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦x ,  1,...,8l =     (5) 

Then ( , , )i x y zφ  is obtained from ( , , )i st st stx y z  as 

[ ( )] ( )i st i stφ =r x x                                (6) 

By substituting the three-dimensional spectral approximation of the intensity field [Eq. (2)] into the 

TRTE [Eq. (1)] and following the general discontinuous Galerkin approach outlined in preceding work [10, 

13], the final DSEM discretization of Eq. (1) over element K  at the nth time step is obtained as 
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m m m
n n n=M I H ,    1,..., tn N=                             (7a) 

where the matrices m
nM  and m

nH  are defined respectively as 
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where the superscript operator “-” denote the values at the outside of element K  [10], in which nβ  and 

( , )nS r Ω  are defined respectively as 
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where RL  is a reference length and is selected as the characteristic length of the problem, * / Rt ct L=  is 

dimensionless time and *tΔ  is the dimensionless time step. The matrix equations given by Eqs. (7) are 

solved element by element at each time step through Gaussian elimination. 

4. Results and Discussion 

The DSEM described above is applied to solve the transient radiative transfer problem in a cubic 

medium of side length L for the boundary-driven problems listed in Table 1. As for numerical solution, the 

cubic medium is defined in the global coordinate system (Fig. 1) with , , [0, ]x y z L∈ , which will 

thereafter be subdivided into many small rectangular hexahedral elements as described in Section 3 during 

the DSEM solution. The medium is initially cold. In the first case, diffuse radiation is emitted from the 

bottom wall ( 0z = ) of the cube at 0t =  and then travels in the medium at a finite speed c . At any 

given time t , the wave front will travels a distance z ct= , hence the dimensionless time 

/ /t ct L z L∗ = =  gives the exact fractional position of the wave front. 

The transient incident radiation function (or integrated intensity) ( , , , )G x y z t  and the z-direction 

transient radiative heat flux ( , , , )zq x y z t  distribution along the centerline of the cube ( 0, 0x y= = ) 
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obtained by DSEM for Case 1 are presented in Figs. 2 (a) and (b), respectively. The transient incident 

radiation function and radiative heat flux of z-direction is defined and computed as 

2

0 0

( , , , ) ( , , , , , )sin d dG x y z t I x y z t
π π

θ ϕ θ θ ϕ= ∫ ∫                    (8a) 

2

0 0

( , , , ) ( , , , , , ) cos sin d dzq x y z t I x y z t
π π

θ ϕ θ θ θ ϕ= ∫ ∫                 (8b) 

The results obtained using the YIX method [14] are also shown as a comparison. Here, two mesh 

decomposition schemes are used for the DSEM, namely, 2 2 17x y zN N N× × = × ×  elements with 

1p =  and 1 1 17x y zN N N× × = × ×  elements with 2p = , where xN , yN  and zN  denote the 

number of elements (subdivisions) for corresponding dimensions. These two spatial decompositions 

require comparable computational effort. The angular discretization uses the SN approximation [15]. The 

direct component of diffuse irradiation is discretized into 60 120N Nθ ϕ× = ×  equivalent beams by a 

PCA scheme following the special treatment described in Ref. 10. For the temporal discretization, the 

dimensionless time step is taken as * 1/ 34tΔ = . The typical computation time for this case by a Pentium 

4 1.8 Ghz computer is about 30 minutes. Generally, for different instants in time, the results of the DSEM 

agree very well with the results of the YIX method [14]. The maximum relative error based on the results 

of YIX method is less than 3%. It is seen that the higher order approximation ( 2p = ) gives better 

accuracy. Because the DSEM allows discontinuities at the element boundary, it ensures accurate prediction 

of the wave front when it is located on the element boundary. This characteristic of the DSEM agrees well 

with the examination conducted in one and two dimensions [10]. 

In the second case, the DSEM is applied to model transient radiative transfer in an anisotropically 

scattering medium. The scattering phase function of the medium is ( , ) 1 a′ ′Φ = +Ω Ω Ω Ωi . For a = -1, 

0 and 1, the phase function is backward, isotropic and forward scattering, respectively. The transient 

incident radiation and the radiative heat flux distribution along the centerline of the cube ( 0, 0x y= = ) 

obtained by the DSEM for Case 2 are shown in Figs. 3 (a) and (b), respectively. The cube is decomposed 

into 2 2 17x y zN N N× × = × ×  elements with 2p =  for the spectral element approximation. The 

angular discretization is by the S6 approximation. The direct component of diffuse irradiation is discretized 
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into 160 80N Nθ ϕ× = ×  equivalent beams by the PCA scheme. The DSEM accurately predicts the 

wave front at different instants of time. Compared to isotropic scattering, forward scattering significantly 

enhances heat flux, which is the opposite for backward scattering. This is reasonable because more energy 

emitted from the bottom wall is scattered upward (in the positive z-direction) for forward scattering, and 

vice versa for backward scattering. The effect of different phase functions on the incident radiation results 

in more complex behavior. At a given instant in time, both enhancement and weakening happens in the 

incident radiation curve. 

A collimated beam propagating through a purely isotropic scattering medium of three different optical 

thicknesses, namely, Lτ =  0.1, 1 and 2, is considered in the third case. The beam enters the bottom wall 

of the cube and transmits in the z-direction. The transient incident radiation and the radiative heat flux 

distribution along the centerline of the cube ( 0, 0x y= = ) obtained by the DSEM for Case 3 are shown in 

Figs. 4 (a) and (b), respectively. In this study, the cube is divided into 4 4 10x y zN N N× × = × ×  

elements with 2p =  for the spectral element approximation. The angular discretization uses the S8 

approximation. The dimensionless time step is taken as * 0.02tΔ = . Here, the dimensionless time t∗  

gives the position of the wave front as was the situation for the former cases. The DSEM accurately 

predicts the transient sharp wave fronts for different instants in time. With increasing optical thickness, the 

scattering effect is enhanced. A peak appears in the incident radiation curve at each instant in time. The 

position of maximum incident radiation is not at the bottom wall, which is due to the scattering 

contribution. At each instant in time, the heat flux distribution monotonically decreases with increasing 

optical thickness. The DSEM shows very good performance in solving a transient collimated beam 

radiative transfer problem and can accurately capture the sharp wave fronts. 

5. Conclusions 

A discontinuous spectral element method (DSEM) is presented to solve transient radiative transfer 

problems in a three-dimensional semitransparent medium. The performance of the DSEM in modeling 

three-dimensional transient radiative transfer processes is examined. The predictions of the DSEM agree 

well with reported solutions in the literature. The DSEM is demonstrated to be efficient and accurate in 

capturing the sharp wave fronts of a transient radiative transfer process. Because of high accuracy of 
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spatial discretization, accurate results can be obtained by DSEM with relatively few elements. 
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Table 1. Boundary condition and medium property for different cases. 

Case Bottom boundary (z = 0) Medium property Other boundaries 

1 
diffuse emission, 

0 0( ), 1pI I u t I= = 2W / m sr  
isotropic scattering, 

1Lτ = , 0.1ω =  
transparent,  
non-reflective 

2 
diffuse emission, 

0 0( ), 1pI I u t I= = 2W / m sr  

linear anisotropic 
scattering: 1 a ′Φ = + Ω Ωi  

1Lτ = , 1ω = , 1,0,1a = −  

transparent, 
non-reflective 

3 
Collimated intensity in z-direction, 

0 ( ) ( ),pI I u t δ= −Ω k 0 1I = 2W / m sr
isotropic scattering, 

0.1,1,2Lτ = , 1ω =  
transparent,  
non-reflective 

*note: here ( )u t  is the unit step function, which is unity for 0t > , and zero otherwise. 
k  is the unit direction vector of the z-direction. 

 

Figure Captions 

Figure 1. Schematic of coordinate transformation from a cubic standard element stK  defined in the 

reference coordinate system ( , ,st st stx y z ) to a general hexahedral element K  in the global coordinate 

system ( , ,x y z ). 
Figure 2. Transient incident radiation function and heat flux distribution along the centerline of a cube 

with one diffusive emission boundary: (a) incident radiation function, (b) heat flux. 

Figure 3. Transient incident radiation function and heat flux distribution along the centerline of a cube 

filled with linear anisotropic scattering medium: (a) incident radiation function, (b) heat flux. 

Figure 4. Transient incident radiation function and heat flux distribution along the centerline of a cube 

with one collimated intensity emitting boundary: (a) incident radiation function, (b) heat flux.
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Figure 2 (a) 
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Figure 2 (b) 
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Figure 3 (a) 
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Figure 3 (b) 
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Figure 4 (a) 
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Figure 4 (b) 

Authors: Zhao and Liu 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

 τL = 0.1
 τL = 1
 τL =2

q z(0
,0

,z,
t) 

  (
W

/m
2 )

t* = 0.3

0.6
0.9

/z L

3.0


