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SPECTRAL ELEMENT METHOD WITH ADAPTIVE
ARTIFICIAL DIFFUSION FOR SOLVING THE RADIATIVE
TRANSFER EQUATION

J. M. Zhao and L. H. Liu
School of Energy Science and Engineering, Harbin Institute of Technology,
Harbin, People’s Republic of China

An adaptive isotropically artificial diffusion (AISO) scheme is developed for the spectral

element method to mitigate the ray effects encountered in the solution of radiative transfer

problems. By considering the coupled manner of ray effects and false scattering, the

artificial diffusion coefficient is determined heuristically from both local angular discretiza-

tion scale and local spatial discretization scale. The scheme is easily and efficiently imple-

mented under the spectral or finite-element method framework. The performance of various

artificial diffusion schemes is studied and compared. The streamwise artificial diffusion

schemes are only responsible for stabilization of strong convection-induced instability, while

the isotropically artificial diffusion scheme shows very good performance in mitigating the

‘‘wiggles’’ in both low- and high-order spatial approximation. Numerical experiments show

that the spectral element method with the AISO scheme is stable, high-order-accurate, and

effective for solving radiative transfer in simple and complex geometries, and also robust for

mitigating ray effects of various origins.

INTRODUCTION

Numerical solutions of the radiative transfer equation (RTE) in participating
media require considerable effort for most practical systems. In recent years, the
methods based on the discretization of the radiative transfer equation, such as the
discrete-ordinates method (DOM) [1], the finite-volume method (FVM) [2–4], and
the finite-element method (FEM) [5, 6], have received considerable attention owing
to their good compromise among accuracy, flexibility, and moderate computational
requirements. Some recent developments include the discontinuous finite element
method [7, 8], the spectral or hp finite-element method [9, 10], and the discontinuous
spectral element method [11], which have shown very good performance. However,
former studies show that two kinds of numerical error exist in these methods during
the solution of the RTE, namely, ray effects and false scattering, which set critical
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limitations on the application of these methods. The ray effects are known to be
attributed to the angular discretization, while the false scattering is attributed to
spatial discretization. Furthermore, the influence of ray effects and false scattering
may not be simply taken as independent; they also interact with each other. The false
scattering can be overcome by high-order spatial discretization, while the higher-
order spatial approximation tends to exaggerate the ray effects. The interaction
process of these errors has not been well understood.

The ray effects and the false scattering encountered in the solution of the RTE
by the DOM and the FVM have been studied by several researchers [12–15]. Because
the ray effects can cause unrealistic ‘‘wiggles’’ in the results and even totally spoil the
solution, as compared with false scattering, it can be considered a dominant error in
many cases. Recently, several studies have focused on the mitigation of ray effects.
Ramankutty and Crosbie [16] developed a modified DOM (MDOM) to solve the
radiative transfer in semitransparent media. The MDOM successfully mitigates the
ray effects caused by strong nonuniformity (or sharp gradients) of boundary thermal
loading. In the MDOM, the radiative intensity is decomposed into a direct compo-
nent that accounts for the radiative bundle originating directly from the wall and a
diffuse component that accounts for the radiative bundle originating from the media,
in which the direct component is solved analytically, while the diffuse component is
solved by the DOM. However, the MDOM cannot mitigate the ray effects caused by
strong nonuniformity of media temperature. Based on a similar principle as the
MDOM, while using a different decomposition of the radiative intensity, Coelho
[13, 17] proposed a new, improved MDOM (NMDOM), which can mitigate the
ray effects caused both by strong nonuniformity of boundary loading and of media

NOMENCLATURE

C adjustment parameter defined in

Eq. (17)

ha local angular discretization scale

hs local spatial discretization scale

H matrix defined by Eq. (9)

I radiative intensity, W=m2 sr

Ib black-body radiative intensity,

W=m2 sr

K matrix defined in Eq. (9)

L side length, operator defined by

Eq. (2)

nw unit outward normal vector

Nsol total number of solution nodes

Nh;Nu discretization number of polar and

azimuth angles

p polynomial order

q radiative heat flux, W=m2

r spatial coordinates vector

R radius

S source function defined by Eq. (3)

T temperature, K

V solution domain

x; y; z Cartesian coordinates

a artificial diffusion coefficient

b extinction coefficient

ew wall emissivity

ja absorption coefficient, m�1

js scattering coefficient, m�1

r Stefan-Boltzmann constant,

W=m2 K4

sL optical thickness

/ nodal basis function

U scattering phase function

x scattering albedo

X;X0 vector of radiation direction

Subscripts

i, j spatial solution node index

w value at wall

Superscripts

m the mth angular direction
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temperature. Though the MDOM and the NMDOM can successfully mitigate the
ray effects encountered in the DOM, they have obvious drawbacks. The principle
of the MDOM or the NMDOM requires that the radiative intensity be decomposed
into a direct component and a diffuse component, in which the direct component has
to be solved analytically or by a numerical method that does not suffer from ray
effects, while the diffuse component is solved by the DOM. As a result, the solution
process of the MDOM is rather complex and difficult to implement compared to the
standard DOM and FVM. To develop a general approach that can efficiently and
effectively mitigate the ray effects encountered in the numerical methods for solution
of the RTE still requires much effort.

The spectral element method combines the competitive advantages of the high-
order spectral method, i.e., the p-convergence property, and the finite-element method,
i.e., the flexibility to deal with complex domains and offering h-convergence property.
Recent study on the spectral element method for the solution of radiative transfer
shows that the higher-order spatial approximation is very effective and efficient [10,
11]. Higher-order approximation brings little false scattering, and solution with very
few numbers of elements can give accurate results. However, the spectral element
method still suffers from some stability problems. One of the causes of instability is
the convection-dominated nature of the RTE [18]. Another important cause of insta-
bility is the ray effects, in which insufficient angular discretization will spoil the results
with ‘‘wiggles’’. Until recently, little work has been done on the mitigation of ray
effects encountered in using the spectral element method to solve the RTE.

In this article, an adaptive, isotropically artificial diffusion (AISO) scheme is
developed for the spectral element method to mitigate the ray effects encountered
in the solution of radiative transfer problems. By considering the compensate man-
ner of ray effects and false scattering, an artificial diffusion coefficient is determined
from both the local angular discretization scale and the local spatial discretization
scale. The performance of various artificial diffusion schemes is studied and
compared. Four test examples are considered to verify the formulation presented.

MATHEMATICAL FORMULATION

Discrete-Ordinates Equation of Radiative Transfer

The discrete-ordinates equation of radiative transfer in an enclosure filled with
participating gray media can be written as

Lm½Im� ¼ SmðrÞ ð1Þ

where the linear operator Lm and the source term function SmðrÞ are defined respect-
ively as

Lm½Im� ¼ Xm � rImðrÞ þ b ImðrÞ ð2Þ

SmðrÞ ¼ jaIbðrÞ þ
js

4p

XM
m0¼1

Im0 ðrÞUðXm;Xm0 Þwm0 ð3Þ

538 J. M. ZHAO AND L. H. LIU
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For the opaque and diffuse boundary, the boundary conditions are given as

Im
w ¼ ewIbw þ

1� ew

p

X
nw�Xm0>0

Im0

w jnw �Xm0 j wm0Xm � nw < 0 ð4Þ

where Xm is the discrete direction vector, b is the extinction coefficient, ja and js are
the absorption and scattering coefficients, respectively, U is the scattering phase
function, nw is the unit outward normal vector of the wall, ew is the wall emissivity,
and wm0 is the weight of direction Xm0 for angular quadrature. The discrete ordinates
equation (1) is in a form as a convection-dominated equation [19]. As demonstrated
in [11, 18], the convection term may cause nonphysical oscillatory of solutions for
radiative transfer problems if no special stability treatment is adapted.

Besides the stability problem caused by the convection-dominated property of
the RTE, another important cause of instability is the ray effects which is attribute to
angular discretization. In the following sections of the paper, various stability
schemes are studied for the spectral element method to overcome these problems.

Artificial Diffusion Schemes for Spectral Element method

The spectral element method can be considered a special kind of finite-element
method. The difference is that, in the spectral element method, the nodal basis func-
tion /iðrÞ is constructed on each element by orthogonal polynomial expansion. The
unknown radiative intensity can be approximated by a nodal basis function with
Kronecker delta property as

ImðrÞ ’
XNsol

i¼1

Im
i /iðrÞ ð5Þ

where /i is the nodal basis function, Im
i denotes radiative intensity of direction Xm at

solution nodes i, and Nsol is the total number of solution nodes. In this article,
Chebyshev polynomial expansion is used to build the basis function. Details on
building the global nodal basis function are given in [10].

Like the upwind scheme for the finite-difference or finite-volume method,
additional artificial diffusion (numerical diffusion) is essential to stabilize the spec-
tral element method. Here two kinds of scheme that bring different modes of arti-
ficial diffusion are considered, namely, schemes belonging to the streamwise
upwind strategy and a scheme that brings isotropically artificial diffusion.

Streamwise Upwind Strategy

A Streamwise upwind strategy is often taken to stabilize the spectral element
method in the solution of convection-dominated equations, including a group of
schemes, such as the streamline upwind (SU) scheme [20], the streamline upwind
Petrov-Galerkin (SUPG) scheme [20], and the Galerkin least-square (GLS) scheme
[21]. More generally, the least-square (LS) scheme can be seen as a special kind of
GLS scheme under the condition that the upwind factor is selected to be sufficient

SPECTRAL ELEMENT METHOD FOR RADIATIVE TRANSFER 539
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large. In this section, the streamwise upwind strategy is applied to stabilize the radi-
ative transfer equation. Substituting Eq. (5) into Eq. (1) and using the weighted-
residual approach yields

XNsol

i¼1

Im
i

Z
V

Xm � r/iðrÞ½ �WjðrÞ dV þ
Z

V

½b /iðrÞ�Wj dV

� �
¼
Z

V

SmðrÞWjðrÞ dV ð6Þ

where WjðrÞ is the weight function. The weight function Wj is selected as /j for the
Galerkin scheme and Lm½/j� for the LS scheme. As for the convection-type equation
given by Eq. (1), a modified weight function different from that used in the Galerkin
method is used to obtain various streamwise upwind schemes, namely,

Wj ¼ /j þ a P½/j� ð7Þ

where a is an artificial diffusion coefficient or upwind factor and P is a convection
operator. Similar to the upwind schemes used in finite-difference methods, the
streamwise upwind schemes for the spectral or finite-element method brings
additional diffusion to stabilize the convection-dominated problem, and the artificial
diffusion coefficient a characterizes the amount of additional artificial diffusion
added. Different upwind schemes can be obtained by taking different P. For
example, taking P ¼ Xm � r and making the weight function Wj impose only on
the convection term, namely, the first term of Eq. (6), the SU scheme is obtained;
taking P ¼ Xm � r, the SUPG scheme is obtained; and taking P ¼ Lm, the GLS
scheme is obtained. Equation (6) can be written in matrix form as

KmIm ¼ Hm ð8Þ

where matrices Km and Hm are defined respectively as

Km
ji ¼

Z
V

ðXm � r/iÞWj dV þ
Z

V

ðb/iÞWj dV ð9aÞ

Hm
j ¼

Z
V

SmWj dV ð9bÞ

Isotropically Artificial Diffusion

Another kind of artificial diffusion scheme is the isotropically artificial
diffusion scheme (ISO). The ISO scheme is similar to the viscous finite-difference
scheme, namely, by directly adding an isotropically viscous term in the original
convection equation, and then the modified equation is discretized by a central dif-
ference scheme. As for the spectral or finite-element method, the Galerkin approach
is applied. The modified equation with added isotropically artificial diffusion term is
written as

Xm � rIm þ bIm ¼ Sm þ ar2Im ð10Þ

540 J. M. ZHAO AND L. H. LIU
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Assuming the artificially diffusion diminishes along the boundary, Eq. (10) is
discretized by the Galerkin approach as

XNsol

i¼1

Im
i

Z
V

ðXm � r/i þ b/iÞ/j dV þ a
Z

V

r/i � r/j dV

� �
¼
Z

V

SmWj dV ð11Þ

Equation (11) can be reformed into matrix form as Eq. (8); here matrices Km and Hm

are defined respectively as

Km
ji ¼

Z
V

ðXm � r/i þ b/iÞ/j dV þ a
Z

V

r/i � r/j dV ð12aÞ

Hm
j ¼

Z
V

Sm/j dV ð12bÞ

Adaptive Determination of the Artificial Diffusion Coefficient

Because the artificial diffusion coefficient is responsible for the stability and
accuracy of the discretization, its determination is very important. A large value
of a will bring an excessive amount of artificial diffusion, which will result in large
false scattering, while a small value of a cannot ensure stability. The experiences
of many researchers has showed that the stability of methods for solving Eq. (1)
relies on both angular and spatial discretization schemes. As a result, the determi-
nation of a needs to take into account the influence of both angular and spatial
discretization. In this section, the artificial diffusion coefficient is determined heuris-
tically based on knowledge of the property of the discrete ordinates equation.

As a start, consider a general convection diffusion equation given by

v � ru� ar2u ¼ f ð13Þ

It is well known that the stability condition of Eq. (13) for a central difference
scheme or finite-element method can be written as

a � 1

2
jvjhs ð14Þ

where hs denotes the local spatial discretization length scale. Here jvj ¼ jXj � 1 for
the radiative transfer equation. This stability condition shows that the essential arti-
ficial diffusion coefficient a is related to hs as a � C0hs, where C0 is a constant with
C0<1. By considering the coupled interaction of spatial discretization and angular
discretization for the radiative transfer equation, especially in the case of ray effects,
the stability of the method should be related to the local angular discretization scale
ha. The optimum value of a should decrease with a decrease of hs and ha. When
ha>>hs, the solution error is governed by angular discretization, and the value of
a can be considered to be governed by ha. When hs>>ha, the optimum value of a
can be considered to be governed by hs.

SPECTRAL ELEMENT METHOD FOR RADIATIVE TRANSFER 541
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Based on the above qualitative analysis, here the artificial diffusion coefficient
is assumed to be in a form

aðha; hsÞ ¼ b1ha þ b2hpþ1
s ð15Þ

where b1 and b2 are two positive constants and p is the order of polynomial approxi-
mation for the spectral or finite-element method. Equation (15) simply assumes a
linear relation between a and ha and hpþ1

s . The term hpþ1
s takes into account the order

of polynomial approximation by considering that the artificial diffusion should
decrease considerably with increase of polynomial order p. Equation (15) can be
rewritten as

aðha; hsÞ ¼ ðb1 þ b2Þ
b1

ðb1 þ b2Þ
ha þ

b2

ðb1 þ b2Þ
hpþ1

s

� �
ð16Þ

Furthermore, the artificial diffusion coefficient can be reintroduced in a form as

aðha; hsÞ ¼ Cha þ ð1� CÞhpþ1
s ð17Þ

where C 2 ½0; 1� is considered a balancing parameter for angular and spatial discre-
tization scale. The artificial diffusion coefficient given by Eq. (17) varies adaptively
with local spatial discretization scale hs and angular discretization scale ha. The value
of the balancing parameter C is determined through numerical experiment. Even
though C is undetermined, once it is determined, it should be a constant for a certain
discretization scheme. Equation (17) is prescribed heuristically here with no rigorous
derivation. However, detailed numerical verification of the performance of the given
artificial diffusion coefficient by Eq. (17) is conducted in the next section.

Practical implementation of Eq. (17) requires knowledge of the local angular
and spatial scales. Two angular discretization schemes are considered in this article,
the SN scheme and the PCA scheme [22, 23]. By noticing the scale characteristics of
quadrature weight, the local angular scale of direction Xm is defined as

hm
a ¼ haðXmÞ ¼ wm ð18Þ

For the spectral or finite-element method, the local spatial length scale at node j is
defined as

hs;j ¼ hsðrjÞ ¼
ffiffiffiffiffi
~wwj

d
p

; ~wwj ¼
Z

V

/jðrÞ dV ð19Þ

where d denotes spatial dimension and ~wwj can be considered a virtual volume around
node j. It is noted that the sum of wj through each node equals the volume of the
solution domain.

Combining the definition of local angular scale, local spatial scale, and arti-
ficial diffusion coefficient, namely, Eqs. (18), (19), and (17), the discretization-based

542 J. M. ZHAO AND L. H. LIU
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on artificial diffusion given by Eq. (12a) can be written as

Km
ji ¼

Z
V

ðXm � r/i þ b/iÞ/j dV þ ½Chm
a þ ð1� CÞhpþ1

s;j �
Z

V

r/i � r/j dV ð20Þ

which gives the final discretization of the adaptive isotropically artificial diffusion
scheme (AISO). The streamwise artificial diffusion can also be adaptively applied
in this way.

RESULTS AND DISCUSSION

The aforementioned methods are implemented using the procedure presented
in [10], which uses a global iteration as in the DOM to update the source term.
The matrix equation for each direction given by Eq. (8) is solved by Gaussian elim-
ination. The maximum relative error 10�4 of incident radiation ( Gnew � Goldj j=Gnew)
is taken as the stop criterion for the global iteration. To verify the formulations
presented in this article, four test cases are selected to verify the performance of
the methods presented.

Case 1: Radiative Equilibrium in a Square Enclosure Filled
with Nonscattering Media

We consider a radiative equilibrium problem in a black square enclosure filled
with nonscattering media. The optical thickness based on the side length L of the
square is sL ¼ bL ¼ 1:0. The temperature of the bottom wall (Tw1) is 1,000 K, and
the other walls are kept at 500 K. This problem was also studied by Larsen and
Howell [24] using the zone method. As shown in Figure 1, the incident radiation
energy of a node P in the interior of the enclosure comes from two regions, namely,

Figure 1. Schematic of boundary loading-induced discontinuity of angular distribution of radiative

intensity.

SPECTRAL ELEMENT METHOD FOR RADIATIVE TRANSFER 543
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regions A and B. The radiative energy coming from region B is stronger than that
coming from region A. This results in discontinuities of radiative intensity of node
P in solid angular space. Inaccuracy of the angular discretization scheme will cause
‘‘wiggles’’ in the numerical results of the RTE, which is known as the ray effect [12,
16, 17]. It should be noted that two kinds of error exist in the numerical solution of
the RTE, namely, the ray effects and false scattering, and these errors interact with
each other.

The spectral element method with different artificial diffusion schemes is
applied to solve the temperature distribution along the vertical symmetry line
(x=L ¼ 0:5) of the enclosure. The result of the zone method [24] is taken as bench-
mark for comparison. Two spatial decomposition schemes shown in Figures 2a
and 2b, namely, (a) 36 elements with second-order polynomial approximation and
(b) 4 elements with eighth-order polynomial approximation, are used to test the
performance of the stabilization schemes on low- and high-order approximations,
respectively. The solid angular space is discretized by an S6 scheme.

To study the performance of different artificial diffusion schemes in the SEM
with low-order approximation, Figures 3a and 3b shows the relative error distri-
bution of temperature along the vertical symmetry line (x=L ¼ 0:5) obtained by
the SEM with different artificial diffusion schemes on mesh (a). With increasing of
a from 0.01 to 0.1, the diffusion is effectively enhanced and the stability performance
of the streamwise artificial diffusion schemes, namely, SU, SUPG, and GLS,
improved a little. Because of the inconsistency of the ISO scheme, a large a reduces
its performance, even though a better choice of a, namely, a ¼ 0:01, gives very good
results as compared to others. To further study the performance of different artificial
diffusion schemes on the SEM with high-order approximation, Figures 4a and 4b
show the relative error distribution of temperature along the vertical symmetry line
(x=L ¼ 0:5) obtained by the SEM with different artificial diffusion schemes on mesh
(b). In this case, with the increasing of a from 0.01 to 0.1, all the streamwise artificial
diffusion schemes, namely, SU, SUPG, and GLS, do not show improvement in stab-
ility. The pattern of error distribution of these streamwise artificial diffusion schemes
resembles that of the LS scheme. However, the ISO scheme shows very good
performance compared to the streamwise artificial diffusion schemes.

By comparison, the ISO scheme shows a different pattern than the streamwise
artificial diffusion schemes and gives better performance in the cases of both low-
order and high-order approximation used in the SEM. For this reason, the following
study is focuses on the improved version of the ISO scheme with adaptive choice of
artificial diffusion coefficient as presented in this article, namely, the AISO scheme.

Case 2: Square Enclosure Filled with Isotropically Scattering Media

In this case, the radiative transfer in a black square enclosure filled with isotro-
pically scattering media with single scattering albedo x ¼ 1:0 is considered. The
optical thickness based on the side length L of the square is sL ¼ 1:0. The tempera-
ture of the bottom wall is kept at Tw1 ¼ 1; 000 K, but all other walls and the media
are kept cold (0 K). Similar to what is depicted in Figure 1, because of the disconti-
nuity or large gradient of boundary loading, there is a large angular nonuniformity
of radiative intensity, thus it is very difficult to accurately integrate the angular

544 J. M. ZHAO AND L. H. LIU
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distribution of radiative intensity by the discrete-ordinates approach. This case was
studied by several researchers [11, 16, 24, 25] and serves as a good test case for
verifying the performance of the numerical method.

The SEM with AISO scheme (AISO-SEM) is applied to solve the radiative heat
flux distribution along the top wall. First the balancing parameter C is determined
from numerical experiment. Figure 5 shows the results obtained by the AISO-
SEM under different values of C, namely, C ¼ 0.01, 0.05, and 0.25. Here the square
enclosure is uniformly decomposed into 9 elements and fourth-order polynomial
approximation is used, the angular discretization taking S8. It can be seen that very

Figure 2. Mesh decomposition and spectral node distribution: (a) 36 elements with second-order poly-

nomial approximation; (b) 4 elements with eighth-order polynomial approximation.

SPECTRAL ELEMENT METHOD FOR RADIATIVE TRANSFER 545
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small values of C result in poor stability, while very large values of C result in large
false scattering. In this test case, taking the value of C as 0.05 works very well. In the
following analysis, C is taken as 0.05 for more general verification.

Figures 6a–6c show the radiative heat flux distribution along the top wall of
the square enclosure obtained by standard Galerkin SEM (GSEM), least-square
SEM (LSSEM), and the AISO-SEM under the same spatial and angular
discretizations, respectively, and compared to the quasi-exact solution of Crosbie

Figure 3. Relative error distribution of temperature along the centerline obtained by the SEM with differ-

ent artificial diffusion schemes under low-order approximation p ¼ 2: (a) a ¼ 0.01; (b) a ¼ 0.1.
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and Schrenker [25]. The spatial discretization uses 9 uniform quadrilateral elements
and fourth-order polynomial approximation. Four angular discretization scheme are
used to better show the ray effects of the method, namely, S4, S6, S8, and the PCA
scheme with Nh �Nu ¼ 20� 40. There are obvious ‘‘wiggles’’ in the results obtained
using the GSEM and the LSSEM, though they are much mitigated with refinement
of angular discretization. The results obtained using the AISO-SEM are free of ‘‘wig-
gles’’ under different accuracies of angular discretization and show very good per-
formance, which demonstrates that the AISO scheme can effectively mitigate the
ray effects encountered in the solution of this problem.

Figure 4. Relative error distribution of temperature along the centerline obtained by the SEM with differ-

ent artificial diffusion schemes under low-order approximation p ¼ 8: (a) a ¼ 0.01; (b) a ¼ 0.1.
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Figure 7 shows the radiative heat flux distribution along the top wall of the
square enclosure obtained using the AISO-SEM under five different spatial decom-
positions, namely, M � p ¼ 12� 1; 6� 2; 3� 4, and 2� 6. Here, the square
enclosure is decomposed uniformly into quadrilateral elements and the spatial
decompositions are denoted as M � p, where M is the number of elements per side
of the square enclosure and p is the order of polynomial approximation. In this
notation, the total number of elements is Nel ¼M �M and the total number of
solution nodes is Nsol ¼ ðM � pþ 1Þ2. The selected spatial decomposition schemes
have the same number of solution nodes. The angular discretization takes the
PCA scheme with Nh �Nu ¼ 20� 40. It is seen that with increasing of order of poly-
nomial approximation, the accuracy of the result obtained by the AISO-SEM
increases rapidly compared to the reference result and no ‘‘wiggles’’ exist in the solu-
tions, which demonstrates that the AISO-SEM is robust in both low- and high-order
polynomial approximation, and higher-order approximation gives better accuracy
under the same number of computational efforts. The AISO scheme does not
degrade much the accuracy of higher-order approximation.

Case 3: Quadrilateral Enclosure with a Curved Bottom Wall

To verify the performance of the AISO-SEM in solving a problem with
complex geometry, the radiative transfer in a quadrilateral enclosure with a curved
bottom wall is studied. The configuration of the geometry is shown in Figure 8.
The enclosure is filled with isotropically scattering media with scattering albedo
of x ¼ 1:0. The optical thickness based on the width R of the top wall is
sL ¼ bR ¼ 1:0. The curved bottom wall is kept hot (1,000 K), while all other walls
and the media are kept cold (0 K). This case was also studied by Parthasarathy

Figure 5. Dimensionless radiative heat flux distribution along the top wall of the square enclosure

obtained by the SEM with AISO scheme under different values of C.
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et al. [26] and by Sakami and Charette [27]. The AISO-SEM is applied to solve the
dimensionless radiative heat flux along the top wall. The enclosure is decomposed
into 255 quadrilateral elements as shown in Figure 8. The results obtained using
the AISO-SEM with different orders of approximation for spatial discretization
and different angular discretization schemes are shown in Figure 9, and are
compared to the result obtained by Parthasarathy et al. [26] using the Monte Carlo
method. It can be seen that the result obtained using the AISO-SEM is stable and
free of ‘‘wiggles’’ for all spatial and angular discretization schemes. With increasing
order p of polynomial approximation of spatial discretization, the solution accuracy
is considerably improved for both angular discretization, namely, S8 and the PCA
scheme with Nh �Nu ¼ 20� 40. This demonstrates that the SEM based on the
AISO scheme is stable and effective in solving radiative transfer in complex
geometry.

Figure 6. Dimensionless radiative heat flux distribution along the top wall of the square enclosure

obtained by: (a) GSEM; (b) LSSEM; (c) AISO-SEM under the same spatial and different angular

discretizations.
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Case 4: Semicircular Enclosure with a Circular Hole

As a further verification, we consider the radiative transfer in a semicircular
enclosure with a circular hole filled with nonscattering media as shown in
Figure 10. The medium is kept hot (1,000 K), while all other walls are black and kept
cold (0 K). In this case, the circular hole plays a role as an obstacle. The shielding
effect of the obstacle will cause discontinuity in angular distribution of radiative
intensity, which makes it difficult to do angular integration efficiently and accu-
rately. As discussed and demonstrated in [11], ray effects are encountered in this case
when it is solved by the GSEM.

Figure 8. Configuration and mesh decomposition of the irregular quadrilateral enclosure.

Figure 7. Dimensionless radiative heat flux distribution along the top wall of the square enclosure

obtained by the AISO-SEM under five different spatial decomposition schemes.
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The AISO-SEM is applied to solve the radiative heat flux along the bottom
wall of the enclosure. The enclosure is decomposed into 272 quadrilateral elements
as shown in Figure 10. Figures 11a and 11b show the results obtained using the
AISO-SEM with third-order polynomial approximation and different angular
discretization schemes for two values of optical thickness, namely, sL ¼ bR ¼ 0:1
and 1.0, respectively. The exact solution obtained by Kim et al. [28] is taken here
as a benchmark. The result obtained using the GSEM under the same spatial discre-
tization is also shown for comparison. It is found that obvious ‘‘wiggles’’ exists in the
results obtained using the GSEM. However, the result obtained using the AISO-
SEM is free of ‘‘wiggles’’ even in a case of very coarse angular discretization,
such as Nh �Nu ¼ 5� 10. With refinement of angular discretization from

Figure 9. Dimensionless radiative heat flux distribution along the top wall of the irregular quadrilateral

enclosure.

Figure 10. Configuration and mesh decomposition of the semicircular enclosure.
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Nh �Nu ¼ 5� 10 to 20� 40, the result of the AISO-SEM stably approaches the
exact result for different values of optical thickness. Though the cause of this kind
of ray effects is different than in the cases discussed formerly, the AISO-SEM is
demonstrated to be very robust to solve this kind of problem.

CONCLUSIONS

Ray effects and false scattering are two major drawbacks of the methods based
on discretization of the radiative transfer equation. As for the high-order spectral
element methods, the ray effects become dominant. An AISO scheme has been
developed for the spectral or finite-element method to mitigate the ray effects
encountered in the solution of radiative transfer problems. The artificial diffusion
coefficient is determined heuristically from both local angular discretization scale
and local spatial discretization scale. The scheme is easily and efficiently implemented
under the spectral or finite-element method framework. The isotropically artificial
diffusion scheme shows very good performance in mitigating the ‘‘wiggles’’ in both
low- and high-order spatial approximation. The SEM based on the AISO scheme
is stable and effective for solving radiative transfer in simple and complex geometries,
and is also robust in mitigating ray effects of different origins.
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