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ABSTRACT 

Because the optical plane defined by the incidence and reflection direction at a cylindrical surface has a 

complicated relation with the local azimuthal angle and zenith angle in the traditional cylindrical coordinate 

system, it is difficult to deal with the specular reflective boundary condition in the solution of the traditional 

radiative transfer equation for cylindrical system. In this paper, a New Radiative Transfer Equation for Graded 

index medium in Cylindrical system (RTEGCN) is derived based on a new defined cylindrical coordinate system. 

In this new cylindrical coordinate system, the optical plane defined by the incidence and reflection direction is just 

the isometric plane of the local azimuthal angle, which facilitates the RTEGCN in dealing with cylindrical 

specular reflective boundaries. A least squares finite element method (LSFEM) is developed for solving radiative 

transfer in single and multi-layer cylindrical medium based on the discrete ordinates form of the RTEGCN. For 

multi-layer cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative 

intensity at the interface between two adjacent layers. Various radiative transfer problems in both single and 

multi-layer cylindrical medium are tested. The results show that the present finite element approach has good 

accuracy to predict the radiative heat transfer in multi-layer cylindrical medium with Fresnel surfaces. 
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NOMANCLATURE 

ρe , Ψe , ze  Unit vectors of the ρ -, Ψ - and z -directions, respectively 

H  Matrix defined in Eq. (29b) 

I  Radiative intensity 

bI  Blackbody radiative intensity 

, ( )i LI θ , , ( )i RI θ  The radiative intensity of left and right side of ith interface  

n  Unit normal vector 

n  Refractive index 

solN  Total number of solution nodes 

qρ  Radiative heat flux of radial direction, W/m2 

r  Vector of spatial position 

R  Radius of cylindrical medium, m 

,i oR R  Radius of inner and outer layer, m 

SR , PR  Reflectivity of S polarization and P polarization 

S  Variable defined in Eq. (26b) 

T  Temperature, K 

0T  Surrounding temperature, K 

gT  Medium temperature, K 

V  Solution domain 

W  Weight function 

 

Greek Symbols 

 

 

Vα  Dimensionless volumetric absorption 



 -3-

α  Vector defined in Eq. (36) 

β  Variable defined in Eq. (26a) 

θχ , ϕχ  Difference coefficients defined by Eq. (24) 

wε  Wall emissivity 

φ  Finite element shape function 

Φ  Scattering phase function 

Φ  Matrix defined in Eq. (36) 

ϕ  Azimuthal angle 

ϕΔ  Azimuthal angle step 

aκ  Absorption coefficient, m-1 

sκ  Scattering coefficient, m-1 

, , ,, ,m n m n m nμ ξ η  Direction cosine of the direction (m,n) 

θ  Polar angle 

θ , θ ′′  Refraction and reflection directions of polar angle θ , respectively  

θΔ  Polar angle step 

fρ  Fresnel reflection coefficient  

, , zρ Ψ  Cylindrical coordinates defined in solution domain 

σ  Stefan-Boltzmann constant, W/m2K4 

Rτ  Optical thickness, ( )R a s Rτ κ κ= +  

ω  Single scattering albedo, /( )s a sω κ κ κ= +  

Ω , ′Ω  Vector of radiation direction, zρμ η ξΨ= + +Ω e e e  

Ω  Solid angle 

ℜ  Radial basis function 
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Subscripts  

,i j  Solution node index 

w  Value at wall boundary 

  

Superscripts  

m , m′ , n , n′ , 1/ 2m ± , 1/ 2n ±  Angular indices 

 

1 INTRODUCTION 

Numerical analysis of radiative transfer in participating media plays an important role in engineering 

applications. Due to the structural characteristics of material or temperature and/or concentration dependency, the 

refractive index of a medium will show some spatially varied distribution, which violates the assumption of 

uniform distribution of refractive index in traditional radiative transfer analysis. Recently, radiative transfer in 

variable refractive index or graded index medium has attracted the interest of many researchers [1-5].  

As is well known, the most effective way to deal with cylindrical geometries is in cylindrical coordinates, 

though the methods formulated in Cartesian coordinates are capable of solving radiative transfer in such 

geometries. As for radiative transfer in semitransparent graded index cylindrical medium, Ben Abdallah et. al [6] 

derived an integral form of radiative transfer equation inside refractive cylindrical media and solved the 

temperature distribution inside fibers. The ray tracing method used in Ref. [6] is computational complex and 

difficult. Recently, Liu et al. [7] derived the Radiative Transfer Equation for Graded index medium in the 

traditional Cylindrical coordinate system [8] (RTEGC) as shown in Fig. 1(a), which is a basis to develop efficient 

differential approach to solve radiative transfer in graded index cylindrical medium. Based on the RTEGC [7], 

Zhang et. al [9] developed an efficient finite element approach for radiative transfer in multi-dimensional graded 
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index cylindrical medium with diffuse boundaries.  

It often happens that the interface of medium and surroundings is Fresnel surface, such as the radiative transfers 

in organism and optical fiber. Due to the Fresnel effects, there are additional modeling difficulties which arise 

from the dramatic change of reflectivity near the critical angle. Fresnel boundary is often supposed as diffuse 

boundary [10, 11], which generally introduces computational errors. However, it is found to be inconvenient to 

deal with the specular reflective boundary condition in the traditional cylindrical coordinate system [Fig. 1(a)], 

which is due to the optical plane defined by incident and reflection direction at a cylindrical surface has a 

complicate relation with the local azimuthal angle ϕ′  and zenith angle θ ′ , and the incident direction and 

reflected direction at the cylindrical boundary are not easily to be related in the local angular coordinates.  

In this paper, a New Radiative Transfer Equation formulated for Graded index medium in Cylindrical system 

(RTEGCN) is derived based on a new defined cylindrical coordinate system, with which the Fresnel boundary 

condition can be easily handled. A least squares finite element method (LSFEM) is then developed for solving 

radiative transfer in cylindrical medium with Fresnel surfaces based on the discrete ordinates form of the 

RTEGCN. The method is enhanced to solve radiative transfer in multi-layer cylindrical medium with the help of a 

radial basis function interpolation method to couple the radiative intensity at the interface between two adjacent 

layers. Finally, four various test problems of both solid cylinder and multilayer cylinder, and with medium of 

uniform refractive index distribution and graded refractive index distribution are taken to verify the finite element 

formulation. 

 

2 MATHEMATICAL FORMULATION 

2.1 A New Radiative Transfer Equation for Graded Index Medium in Cylindrical Coordinate System 

The main difference between the new defined cylindrical coordinate system and the traditional one lies in the 

definition of local angular coordinates. The definition of the new cylindrical coordinate system is shown in Fig.1 
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(b), in which the local zenith angle θ  is defined based on the local radial direction ρe . Because ρe  also 

serves as the normal vector of the cylindrical boundary, according to Snell’s law, the optical plane defined by the 

incidence and reflection direction is just the isometric plane of the local azimuthal angle ϕ  in this new 

cylindrical coordinate system. In the optical plane, the local zenith angle of the reflection direction iθ ′  holds a 

simple relationship with incidence direction iθ  as i iθ θ π′+ = , which is the same as the case of one 

dimensional slab, thus facilitates the treatment of Fresnel reflection and refraction at cylindrical boundary. In the 

following, the radiative transfer equation for graded index medium in this new cylindrical coordinate system is 

derived. The radiative transfer equation for graded index medium along the ray trajectory s  can be written as  

( )2 2
2

4

d ( , ) ( , ) ( ) ( , ) ( , )d
d 4

s
a s a b

In I n I I
s n π

κκ κ κ
π

⎡ ⎤ ′ ′= − + + + Φ Ω⎢ ⎥⎣ ⎦ ∫
r Ω r Ω r r Ω Ω Ω       (1) 

where d d s  is the streaming operator; ( , )I r Ω  is the radiative intensity, which is a function of spatial position 

r  and direction Ω ; ( )bI r  is the blackbody radiative intensity at the temperature of the medium; n  is the 

refractive index of medium, which is a function of spatial position; aκ  and sκ  are the absorption and the 

scattering coefficients, respectively; ( , )′Φ Ω Ω  is the scattering phase function indicating scattering from the 

incoming direction ′Ω  to the outgoing direction Ω . 

The major task to express Eq. (1) in the new cylindrical coordinate system [Fig.1 (b)] is to expand the 

streaming operator d d s  in this coordinate system. Similar to the traditional cylindrical coordinate system, the 

radiative intensity in the new cylindrical coordinate system is also a function of spatial position and angular 

coordinates. Following the ray trajectory, the streaming operator d d s  can be expanded as [12]  

d d d d d d
d d d d d d

z
s s s s z s s

ρ ψ θ ϕ
ρ ψ θ ϕ
∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂

                   (2) 

As seen from Eq. (2), five differential coefficients are needed to expand the streaming operator. The first three 

differential coefficients, namely 
d
d s

ρ
, 

d
d s
ψ

 and 
d
d

z
s

 are related to spatial coordinates, while the last two 
d
d s
θ

 

and 
d
d s
ϕ

 are related to local angular coordinates. These differential coefficients will be derived in the following. 
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The definition of the cylindrical coordinates in Fig. 1(b) yields 

d cos d sρ θ= , d sin cos d sρ ψ θ ϕ= , d sin sin dz sθ ϕ=                 (3) 

which give the spatial differential coefficients, and Eq. (2) is further written as 

d d d
d d ds s s

θ ϕ
θ ϕ
∂ ∂

= ∇ + +
∂ ∂

Ωi                              (4) 

where zψ ρμ η ξ= + +Ω e e e  is the local direction vector of the beam; sin cosμ θ ϕ= , sin sinη θ ϕ=  

and cosξ θ= , which are the direction cosines of the beam direction. The gradient operator ∇  in this 

cylindrical coordinates is 

1
zzψ ρρ ψ ρ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
e e e                              (5) 

From the definition of direction cosines, it follows that 

d d dcos cos sin sin
d d ds s s

μ θ ϕθ ϕ θ ϕ= −                          (6a) 

d d dcos sin sin cos
d d ds s s
η θ ϕθ ϕ θ ϕ= +                          (6b) 

d dsin
d ds s

ξ θθ= −                                   (6c) 

and hence the angular differential coefficients 
d
d s
θ

 and 
d
d s
ϕ

 can be expressed as 

d 1 d dcos sin
d sin d ds s s
ϕ η μϕ ϕ

θ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

                         (7a) 

d 1 d
d sin ds s
θ ξ

θ
= −                                 (7b) 

where 
d
d s

μ
, 

d
d s
η

 and 
d
d s

ξ
 are unknown and needed to be derived from the ray equation [7]. By definition, the 

local direction vector Ω  can be obtained from the spatial vector cos sin zρ ψ ρ ψ= + +r i j k  in the 

cylindrical coordinates as 

d (cos sin ) (cos sin )
d

z

s

ψ ρμ η ξ

μ ψ ψ η ξ ψ ψ

= + +

= = − + + +

Ω e e e

r j i k i j
              (8) 

From the ray equation 
d d

d d
n n

s s
⎛ ⎞ = ∇⎜ ⎟
⎝ ⎠

r
, namely, ( )d

d
n n

s
= ∇Ω , it follows that 
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d 1 d
d d

n n n n
s n n s n n

∇ ∇ ∇
= − = −

Ω ΩΩ Ω i
                          (9) 

At the same time 

d ddd d d d
d d d d d d d

z
zs s s s s s s

ψ ρ
ψ ρ

μ η ξμ η ξ= + + + + +
e eeΩ e e e                   (10) 

Using Eq. (8) and the relations given in Eq. (3), it yields 

d
d s

ψ
ρ

μ
ρ

= −
e

e , 
d
d

z

s
=

e 0 , 
d
d s

ρ
ψ

μ
ρ

=
e

e                           (11) 

hence 

2d d d d
d d d dzs s s sρ ψ ψ ρ

μ μ μ η ξξ
ρ ρ

= − + + + +
Ω e e e e e                       (12) 

By dot product equation (9) with ψe , ρe  and ze , and combine Eq. (9), it follows that 

d 1
d

n n
s n n
μ μμ ξ

ρ ψ ρ
∂ ∇

= − −
∂

Ωi
                             (13a) 

d 1
d

n n
s n z n
η η∂ ∇

= −
∂

Ωi
                               (13b) 

2d 1
d

n n
s n n
ξ μξ

ρ ρ
∂ ∇

= − +
∂

Ωi
                             (13c) 

Substitute Eq. (13) into Eq. (7), the angular differential coefficients are obtained as 

d 1 1 1 sin coscos sin
d sin

n n
s n z n
ϕ ϕ ϕϕ ϕ ξ

θ ρ ψ ρ
⎛ ⎞∂ ∂

= − +⎜ ⎟∂ ∂⎝ ⎠
                   (14a) 

2d 1 1
d sin

n n
s n n
θ μξ

θ ρ ρ
⎡ ⎤∂ ∇

= − − +⎢ ⎥∂⎣ ⎦

Ωi
                          (14b) 

Therefore, the streaming operator d d s  in Eq. (4) can be written as 

( )1

d sin cos cos
d

1 1
sin sin

s
n n

n nρ

ϕ ϕ ϕξ μ
ρ ϕ ρ θ

ξ
θ ϕ θ θ

∂ ∂
= ∇ + −

∂ ∂

∇ ∂ ∇ ∂⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

Ω

s Ω e

i

i i
                  (15) 

where the vector 1s  is defined as 1 sin cos 0zψ ρϕ ϕ= − + +s e e e . By using the following relation, 
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2
2

d d 1 d d2 2
d d d d

f f n f nn f f
s n s n s s n

∇⎡ ⎤ = − = −⎢ ⎥⎣ ⎦
Ωi

                     (16) 

the radiative transfer equation for graded index medium in the new cylindrical coordinate system (RTEGCN) can 

be expressed in a non-conservative form as 

( )1

2

4

sin cos cos( , ) ( , ) ( , )

1 1( , ) ( , )
sin sin

2 ( , ) ( ) ( , ) ( , ) d
4

s
a s a b

I I I

n nI I
n n

n I n I I
n

ρ

π

ϕ ϕ ϕξ μ
ρ ϕ ρ θ

ξ
θ ϕ θ θ

κκ κ κ
π

∂ ∂
∇ + −

∂ ∂

∇ ∂ ∇ ∂⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∇⎛ ⎞ ′ ′ ′+ + − = + Φ Ω Ω Ω⎜ ⎟

⎝ ⎠ ∫

Ω r Ω r Ω r Ω

s r Ω Ω e r Ω

Ω r Ω r r Ω

i

i i

i

           (17) 

By setting the gradient of refractive index n∇  to zero, Eq. (17) reduces to  

( ) 2

4

sin cos cos( , ) ( , ) ( , )

( , ) ( ) ( , ) ( , ) d
4

s
a s a b

I I I

I n I I
π

ϕ ϕ ϕξ μ
ρ ϕ ρ θ

κκ κ κ
π

∂ ∂
∇ + −

∂ ∂

′ ′ ′+ + = + Φ Ω Ω Ω∫

Ω r Ω r Ω r Ω

r Ω r r Ω

i
               (18) 

which is the radiative transfer equation for uniform index medium in the new cylindrical coordinate system. As 

compared to the radiative transfer equation in traditional coordinate system , a new angular redistribution term 

related to zenith angle θ  appears, namely the 3rd term in Eq. (18). Following the approach in Ref. [7], a 

conservative form of the RTEGCN can be derived as 

[ ]{ } { }

( )
( )

2 2

1

2

( , ) ( , ) ( , )

1cos sin cos ( , ) sin cos ( , )
sin

1 ( , )
sin

1 ( , )
sin

( , )

( ) ( , ) ( , ) d
4

a s

s
a b

I I I
z

I I

n I
n

n I
n

I

n I I

ρ

ρμ η ξ
ρ ψ ρ ρ

θ ϕ ϕ θ ϕ
ρ ϕ θ ρ θ

θ ϕ

ξ
θ θ

κ κ
κκ
π

∂ ∂ ∂
+ +

∂ ∂ ∂
∂ ∂ ⎡ ⎤+ − ⎣ ⎦∂ ∂

∂ ⎧ ∇ ⎫⎡ ⎤+ ⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭
∂ ⎧ ∇ ⎫⎡ ⎤+ −⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

+ +

′ ′ ′= + Φ Ω Ω

r Ω r Ω r Ω

r Ω r Ω

s r Ω

Ω e r Ω

r Ω

r r Ω

i

i

4π
Ω∫

       (19) 

Equation (19) contains four angular redistribution terms [the 3rd to 6th term in Eq. (19)]. The 3rd and the 4th terms 

originate from the connection of the definition of angular coordinates with spatial coordinates. The other two 
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originate from the graded index of refraction and account for the effect of curved ray trajectory. It is noted that the 

term 1/ ρ  in Eq.(19) will lead to numerical singularity at the origin where 0ρ = . To avoid the numerical 

singularity at origin 0ρ = , a simple approach is to multiply Eq. (19) by ρ , as such the RTEGCN is written as 

( )

( )

1

2 2

2

4

( , ) ( , ) ( , )

1 sin cos sin cos ( , )
sin

1 sin cos ( , )
sin

( , ) ( ) ( , ) ( , )d
4

s
a s a b

I I I
z

n I
n

n I
n

I n I I

ρ

π

ρ ρμ η ξ
ψ ρ

ρθ θ ϕ ϕ
θ ϕ

ρξ θ ϕ
θ θ

κρ κ κ ρ κ ρ
π

∂ ∂ ∂
+ +

∂ ∂ ∂

∂ ⎡ ∇ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
∂ ⎧ ∇ ⎫⎡ ⎤+ − −⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

′ ′ ′+ + = + Φ Ω Ω Ω∫

r Ω r Ω r Ω

s r Ω

Ω e r Ω

r Ω r r Ω

i

i
            (20) 

In this circumstance, special treatment and additional mathematical boundary conditions are needed in numerical 

discretization as discussed in [9]. The physical Fresnel boundary condition can be expressed as 

[ ]2( , ) ( ) ( ) ( ) 1 ( ) ( , ), 0w w w b w w wI n I Iε ε ξ′′= + − <r Ω Ω r r Ω r Ω                (21) 

where ′′Ω  is the incident direction of specular reflection, ( )wε Ω  is the directional emittance defined by 

Fresnel law, bI  is the blackbody radiative intensity, wn  is the outward unit normal vector at boundary.  

For an infinite long cylinder with axial symmetry, which is the focus of following section of present study, the 

RTEGCN [Eq.(20)] reduces to 

( ){ }

( )

( )

2 2 2

2

4

( , ) cos sin cos ( , )

1 1 sin cos ( , )
sin

( , ) ( ) ( , ) ( , )d
4

s
a s a b

I I

n I
n

I n I I
π

ρ ρξ θ ϕ ϕ ρ
ρ ϕ

ρξ θ ϕ ρ
θ θ ρ

κ
ρ κ κ ρ ρ κ ρ ρ ρ

π

∂ ∂
+

∂ ∂

⎧ ⎫⎡ ⎤∂ ∂
+ − −⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

′ ′ ′+ + = + Φ Ω Ω Ω∫

Ω Ω

Ω

Ω Ω

         (22) 

2.2 Discrete Ordinates Form of the RTEGCN 

Angular discretization is needed before the solution of the RTEGCN. Without loss of generality, only the 

formulation for an infinite long cylinder with axial symmetry is considered. The discrete ordinates form of the 

RTEGCN can be derived following a similar procedure presented in Ref. [9] for the derivation of the discrete 

ordinates form of the RTEGC. The piecewise constant angular approximation (PCA) [13] and step scheme are 
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taken to discretize these angular redistribution terms. The local zenith and azimuthal angle are discretized as in 

Ref. [9]. Finite difference discretization of the two angular redistribution terms in Eq. (22) can be written as 

[ ]
,

, 1/2 , 1/2 , 1/2 , 1/2

cos sin cos ( , )

, 1,..., , 1,...,

m n

m n m n m n m n

n

I

I I
m N n N

w
ϕ ϕ

θ ϕ
ϕ

θ ϕ ϕ ρ
ϕ

χ χ
Ω=Ω

+ + − −

⎧ ⎫∂
⎨ ⎬∂⎩ ⎭

−
= =

Ω

         (23a) 

( )
,

2 2 2

1/2, 1/2, 1/2, 1/2,

1 1 sin cos ( , )
sin

, 1,..., , 1,...,

m n

m n m n m n m n

m

n I
n

I I m N n N
w

θ θ
θ ϕ

θ

ρξ θ ϕ ρ
θ θ ρ

χ χ
Ω=Ω

+ + − −

⎡ ⎤⎧ ⎫⎡ ⎤∂ ∂
− −⎢ ⎥⎨ ⎬⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦
−

= =

Ω
         (23b) 

and the recursion formula for 1/ 2,m n
θχ +  and , 1/ 2m n

ϕχ +  are given as 

[ ]
,

, 1/2 , 1/2 cos sin cos

cos cos 2

m n

m n m n n

n m n

w

w

ϕ ϕ ϕ

ϕ

χ χ θ ϕ ϕ
ϕ

θ ϕ

+ −

Ω=Ω

⎧ ⎫∂
− = ⎨ ⎬∂⎩ ⎭

=

                (24a) 

, 1/2 ,1/2 0m N mϕ
ϕ ϕχ χ+ = =                               (24b) 

( )
,

1/2, 1/2, 2 2 2

2

1 sin cos
sin

2 cos cos

m n

m
m n m n

m

m m n

w n
n

nw
n

θ
θ θ

θ

ρχ χ ξ θ ϕ
θ θ ρ

ρθ ϕ
ρ

+ −

Ω=Ω

⎧ ⎫⎡ ⎤∂ ∂
− = − −⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

⎡ ⎤∂
= − +⎢ ⎥∂⎣ ⎦

         (24c) 

1/2, 1/2, 0N n nθ
θ θχ χ+ = =                               (24d) 

Relations between the variables with fractional indices and the variables with integer indices are needed to 

close the discretization. The step scheme is used to close the discretization which sets the downstream surface 

intensities equal to the upstream center intensities [9]. Substituting Eq. (23) into Eq. (20), the discrete ordinate 

form of the RTEGCN for an infinite long cylinder with axial symmetry is obtained and can be written as  

( ),
, , , ,( ) ( )

m n
m n m n m n m n

I
I S

ρ
ξ β ρ ρ

ρ

∂
+ =

∂
                         (25) 

where ,m nβ  and ,m nS  is defined as 
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( ) ( )

( ) ( )

, 1/2, 1/2,

, 1/2 , 1/2

, ; ,

1 1( ) max ,0 max ,0

1 1max ,0 max ,0

4

m n m n m n
m m

m n m n
n n

m n m n m ns
a s

w w

w w

w w

θ θ
θ θ

ϕ ϕ
ϕ ϕ

θ ϕ

β ρ χ χ

χ χ

κρ κ κ
π

+ −

+ −

= + −

+ + −

⎛ ⎞+ + − Φ⎜ ⎟
⎝ ⎠

                 (26a) 

( ) ( )

( ) ( )

, 2 , , ; ,

1, 1,

1/2, 1, 1/2, 1,

, 1/2 , 1 , 1/2 , 1

( )
4

1 1max ,0 max ,0

1 1max ,0 max ,0

NN
m n m n m n m n m ns

a b
m m m n n n

m n m n m n m n
m m

m n m n m n m n
n n

S n I I w w

I I
w w

I I
w w

ϕθ

θ ϕ

θ θ
θ θ

ϕ ϕ
ϕ ϕ

κρ ρ κ ρ
π

χ χ

χ χ

′ ′ ′ ′ ′ ′

′ ′ ′ ′= ≠ = ≠

+ + − −

+ + − −

= + Φ

+ − +

+ − +

∑ ∑

             (26b) 

2.3 Finite Element Method Discretization for Single Layer 

The common Galerkin scheme based finite element method for solving radiative transfer equation often 

suffers from nonphysical oscillation of solutions due to the convection dominated characteristics of the 

radiative transfer equation [14, 15] and the lower stability of the Galerkin scheme, while the least square 

scheme is more stable, which has been well studied for radiative transfer in uniform index medium [16] and 

graded index medium [9, 17]. Hence in this paper, the least square finite element method (LSFEM) is used to 

spatially discretize the discrete ordinate form of the RTEGCN [Eq. (25)]. The radiative intensity of direction 

,m nΩ  can be approximated based on the shape functions ( )iφ ρ  as 

, ,

1
( ) ( )

solN
m n m n

i i
i

I Iρ φ ρ
=
∑ , , ,

1
( ) ( )

solN
m n m n

i i i
i

I Iρ ρ ρ φ ρ
=
∑                    (27) 

The least square finite element approach is obtained when weighted residual method is applied to equation (25) by 

taken the weight function as , ,jm n m n
j j jW

φ
ξ ρ β φ

ρ
∂

= +
∂

. For each discrete direction ,m nΩ , the final radiative 

transfer equation can be written in the following set of linear equations: 

, , ,m n m n m n=K I H                                     (28) 

in which the stiff matrix ,m nK  and the right hand side vector ,m nH  are defined as 
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, , , ,

, , , ,

d d

d d

j jmn m n m n m n m ni
ji i j j i iV V

m n m n m n m ni
j i j j i i jV V

K V V

V V

φ φφξ ξ ρ ρ ξ ρ β φ
ρ ρ ρ

φβ ξ ρ φ β β φ φ
ρ

∂ ∂∂
= +

∂ ∂ ∂
∂

+ +
∂

∫ ∫

∫ ∫
                 (29a) 

, , , ,d djm m n m n m n m n
j j j jV V

H S V S V
φ

ξ ρ β φ
ρ

∂
= +

∂∫ ∫                      (29b) 

As seen from Eq. (29), the least square finite element discretization leads to a symmetric stiff matrix for every 

discrete ordinate direction, which is a very good numerical property. 

2.4 Relationship of Radiative Intensity between Two Adjacent Layers 

The solution of radiative transfer in a single layer cylindrical medium has been well defined in previous 

sections. In this and the following sections, issues on the extension of the method to deal with multilayer 

cylindrical medium will be discussed.  

According to the Snell’s law and energy conservation, when a ray travels from first layer to the second layer (as 

shown in Fig. 2), the following relation holds for the radiative intensities at the interface [18]:  

1 2
,1 2 2 2

1 2

(1 )f
I I
n n

ρ →− =                                 (30) 

where 1I  and 2I  are the incident radiative intensity at the left side and the transmitted intensity at the right side 

of the interface, respectively; ,1 2fρ →  denotes the Fresnel reflectivity when the ray travels from the first layer to 

the second layer. Without considering polarization, ,1 2fρ →  can be expressed as  

( ),1 2
1
2f S PR Rρ → = +                                (31) 

where 

2
S SR r= ，

2
P PR r=                               (32) 

2 2

2 2

cos cos 1

cos cos 1
i i

S

i i

m
r

m

θ θ

θ θ

− + −
=

+ + −
，

2 2 2

2 2 2

cos cos 1

cos cos 1
i i

P

i i

m m
r

m m

θ θ

θ θ

− + −
=

+ + −
            (33) 

where iθ  is the incident angle, 2 1/m n n=  is the relative refractive index; SR  and PR  are the reflectivity of 

S polarization and P polarization, respectively; Sr  and Pr  are the amplitude reflection coefficients of S 
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polarization and P polarization, respectively. 

Because the direction of incidence changes after refraction, the refracted direction often does not belong to the 

discrete ordinates set. This is a problem for the discrete ordinates solution on each layer. The problem can be 

solved by an angular interpolation approach to obtain the intensity of directions that belongs to the discrete 

ordinates set (depicted in Fig. 2). 

2.5 Angular Interpolation of Interface Intensity between Two Adjacent Layers 

With the help of the new cylindrical coordinate system, the interpolation in the two dimensional angular space 

is reduced to a one-dimensional interpolation problem in the optical plane, which will be discussed below. The 

relationship of reflection and refraction at the cylindrical interface between two adjacent layers is shown in Fig. 3. 

It can be seen that optical plane of reflection and refraction is defined by the azimuthal angle iϕ  correspond to 

the incident direction ′′Ω . As such, the interpolation of intensity of the refracted direction ′′′Ω  in the whole 

solid angular space can be conducted only over the plane determined by iϕ , namely, only one-dimensional 

interpolation over the optical plane is needed. The argument of the interpolation function is the local zenith angle 

θ . This is the same as the case of one-dimensional infinite parallel plates. 

The radial basis function is used here to conduct the angular space interpolation. It has many advantages to use 

radial basis function to do interpolation, such as the interpolation nodes can be arbitrarily scattered, being easily to 

program, high accuracy of interpolation can be obtained, and easily to be extended to higher dimensional 

problems, etc. Currently, the radial basis function has been widely applied to the interpolation of scattered data [19, 

20] and used in meshless method to solve partial differential equations [20, 21]. Some commonly used radial basis 

functions [20] are presented in Table 1, in which the first three are the global radial basis functions, while the 

others are the compactly supported radial basis functions.  

The procedure of interpolation using radial basis functions is given following. Firstly, the intensity is 

approximated by the radial basis function in the meridian plane of iϕ  as 
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( )
1

( )
i

N

l l
j

I
θ

ϕ θ α θ θ
=

≈ ℜ −∑                                 (34) 

The constraint of interpolation requires 

( )
1

( )
i

N

m l l m
m

I
θ

ϕ θ α θ θ
=

= ℜ −∑                                (35) 

As such, a system of linear equations about the expansion coefficient lα  can be obtained, which is written in 

matrix form as 

=Φα u                                       (36) 

where [ ] ( )lm l mN N N Nθ θ θ θ
θ θ

× ×
= Φ = ⎡ℜ − ⎤⎣ ⎦Φ , [ ] 1,l l Nθ

α
=

=α  and 
1,

( )
i m m N

I
θ

ϕ θ
=

⎡ ⎤= ⎣ ⎦u . Hence the 

expansion coefficient is obtained as 1−=α Φ u . 

Generally, there are two schemes to interpolate the radiative intensity between the interface of two adjacent 

layers, (1) forward interpolation, this is based on the forward ray tracing, and all the refracted directions are 

selected as the interpolation nodes; (2) backward interpolation, this is based on the back forward ray tracing. The 

incident direction is inversely obtained through the refracted direction based on Fresnel’s law, and all the 

directions before refraction are selected as interpolation nodes. Our numerical experiments reveal that the first 

scheme is less stable than the second scheme. This may be due to the refracted directions varying with different 

refractive indices of the adjacent layers, and which will result in some kind of randomization. However, the 

second scheme does not have this problem, for the interpolation nodes is always selected as the incident directions. 

As such, the second angular interpolation is used in following section. 

In order to make a comparison of the performance of different radial basis functions in angular interpolation, 

angular intensity interpolation between two homogeneous layers is considered. The refractive indices of the left 

and right layers are 1Ln =  and 2.5Rn = , respectively. Because L Rn n< , the radiative energy will converge 

for the reason of refraction in case the incidence is from left side. For the incidence from right side, total reflection 

will happen in some angular region.  
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The incidence from the left side of the interface with an intensity 0I  is considered, and the radial basis 

function is used to interpolate the refracted intensity distribution transmit the left layer into the right layer. Figure 

4 (a) and 4(b) present the interpolated intensity obtained by several different radial basis functions, and which are 

compared to the exact results under angular discretization of Nθ =30 and Nθ =100, respectively. Here, the 

support domain of the Wendland type radial basis functions are all taken as 0.2max( )wθ . It is seen that the 

accuracy of interpolation by compactly supported radial basis function depend much on the size of support 

domain. If the size of support domain is not selected appropriately, the interpolated result will not be stable even 

the angular discretization is refined. As compared to the compactly supported radial basis functions, additional 

adjustment parameter is not required for the global radial basis function and stable interpolation results are 

obtained under different refinement of angular grid. By comparison, the global radial basis function IMQ is 

selected in the following section to do angular interpolation. 

2.6 Treatment of Multilayer Fresnel Boundary and Implementation 

The basic idea for solving radiative transfer in multilayer cylindrical medium is that each layer is treated as 

medium with continuous refractive index distribution and solved separately. The key problem is how to couple the 

radiative intensity between adjacent layers. In this section, the coupled relation of radiative intensity between 

adjacent layers is discussed and the detailed solution procedure for solving radiative transfer in multilayer 

cylindrical medium is described. In order to solve radiative transfer in each layer separately, boundary condition is 

needed for each layer, which can be obtained from the coupled relation of intensity at the interface. The 

configuration of a radial multilayer medium is shown in Fig. 5. For the ith layer, the radiative intensity at the 

interface is composed of the transmitted intensity from adjacent layer and the reflected intensity originates from 

the same layer. Because the optical plane is the isometric plane of local azimuthal angle ϕ , the boundary 

condition at the interface can be written shortly as  
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2

, , 1 1, , 1 ,2
1

( ) 1 (cos ) ( ) (cos ) ( )i
i L f i i i R f i i i L

i

nI I I
n

θ ρ θ θ ρ θ θ− → − → −
−

⎡ ⎤ ′′ ′′= − +⎣ ⎦ , cos 0θ >        (37a) 

2

, , 1 1, , 1 ,2
1

( ) 1 (cos ) ( ) (cos ) ( )i
i R f i i i L f i i i R

i

nI I I
n

θ ρ θ θ ρ θ θ+ → + → +
+

⎡ ⎤ ′′ ′′= − +⎣ ⎦ , cos 0θ <        (37b) 

where , ( )i LI θ  and , ( )i RI θ  denote the radiative intensity of local zenith angle θ  at the left and the right 

boundary of the ith layer, respectively; , 1f i iρ − →  is the Fresnel reflection coefficient for incident radiation from 

the (i-1)th layer to the ith layer [obtained by Eq. (31)], which is a function of incident angle and relative refractive 

index of the adjacent layer; θ  is the corresponding coming incident direction of the refracted direction θ ; θ ′′  

is the corresponding coming incident direction of the reflection direction θ . The first term of the right hand side 

of Eq. (37) accounts for the contribution of transmitted energy from adjacent layer, and the second term accounts 

for the contribution of reflected energy from internal reflection of the same layer. 

To ensure convergence of layer by layer solution, upwinding treatment is needed to impose boundary condition 

for each layer only on the upwind boundary. The implementation of solving the radiative transfer equation in 

multilayer cylinder can be carried out according to the following routine: 

1） Begin angular loop and determine the optical plane. For discrete direction , ( , )m n m mθ ϕ=Ω , the optical 

plane is determined as nϕ ϕ= . 

2） Solve the radiative intensity distribution in the 1st layer. Firstly, calculate the stiff matrix related to the first 

layer based on Eq. (29). Then the boundary condition is imposed on the upwind boundary by checking the 

sign of cos mθ (if cos mθ >0 the upwind boundary is the left boundary, and if cos mθ <0 the upwind 

boundary is the right boundary). If the determined boundary is a interface between two adjacent layers, the 

intensity at this interface is computed by Eq. (37), where the transmitted radiative intensity is obtained by 

angular interpolation by radial basis functions. The corresponding coming incident direction of reflection of 

direction ,m nΩ  is 1,N m nθ − +Ω . 

3） Calculate the radiative intensity distribution of the 2nd layer. The solution procedure, imposing of boundary 
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condition, and treatment of interface between adjacent layers are the same as the 1st layer. 

4） If the multilayer medium composed of n layer, loop each layer, and solve the radiative intensity distribution 

following the approach of the 1st layer described above. 

 

3 RESULTS AND DISCUSSION 

Based on the formulation described above, a computer code capable of modeling radiative transfer problems in 

an infinitely long multilayer cylindrical graded index medium has been developed. Three various test cases are 

selected to verify the performance of the finite element method. The absorption and the scattering coefficients of 

the medium enclosed by the enclosure are uniform. For the sake of comparison, the relative error based on data in 

the references is defined as 

FEM solution ( ) Benchmark result ( )
Relative Error % = 100

Benchmark result ( )

r r dr

r dr

−
×

∫

∫
          (38) 

3.1 Case 1: Semitransparent Cylinder with Fresnel Boundary 

A semitransparent uniform index cylindrical medium with Fresnel boundary is considered. The temperature of 

surroundings is 0 1000KT = , while the cylindrical medium is nonscattering and nonemitting. The LSFEM is 

applied to this case with 40 isoparametric linear elements and the total solid angle is subdivided as 

200 200N Nθ ϕ× = × . Figure 6(a) and 6(b) present the dimensionless radial distributions of volumetric radiative 

absorption and dimensionless incident radiation, respectively, for three different optical thickness, namely 

1.0R aRτ κ= = , 5 and 10, and the refractive index 1.2n = , which are also compared with the results obtained 

using ray tracing method [22]. The dimensionless volumetric absorption Vα  follows the same definition given in 

Ref. [22], 

2d d
( ) =

d 2 ( ) d 2 ( )V

q qR R
q R R q R

ρ ρ

ρ ρ

πα ρ
ρ π ρ

=                        (39) 
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As seen from Fig. 6, the results obtained using LSFEM are in good agreement with the results obtained using ray 

tracing method [22], the maximum relative error based on the data of ray tracing method is less than 2.5%.  

3.2 Case 2: Parabolic Refractive Index Distribution with Fresnel Boundary inside Cylindrical Medium 

We consider radiative transfer problem in a graded index one-dimensional nonscattering semitransparent 

cylinder with Fresnel boundary. The temperature of the surroundings and the cylindrical medium are 

0 1000KT =  and 0KgT = , respectively. The refractive index within the cylinder varies parabolically with the 

radius as 2( ) 4 ( / )n Rρ ρ= − . For this distribution of refractive index, the ray trajectory can be obtained 

analytically [23], hence a ray tracing method following Liu [24] is convenient to be developed to obtain the 

intensity distribution. The LSFEM is applied to this case with 40 isoparametric linear elements and the total solid 

angle is subdivided as 200 200N Nθ ϕ× = × . Figure 7(a) and 7(b) present the solved radial dimensionless net 

radiative heat flux distributions and dimensionless incident radiation along the radial coordinate, respectively, for 

three different values of absorption coefficient, namely, 1.0R a Rτ κ= = , 5, and 10, which are compared with the 

solutions obtained by ray tracing method as benchmark. It can be seen that the results obtained using the LSFEM 

are in good agreement with the benchmark results for different values of absorption coefficient. The maximum 

relative error based on the data of benchmark results is less than 2.3%.  

3.3 Case 3: Infinite Long Hollow Cylinder with Fresnel Boundary 

The dimensionless incident radiation of an infinitely long hollow cylinder with Fresnel surfaces is calculated 

numerically using the LSFEM. Figure 8 compares the distribution of the dimensionless incident radiation obtained 

by the LSFEM with the results obtained using ray tracing method [25] for three cases: 1
ORτ = , / 0.5

i oR Rτ τ = , 

1.5n = ; 1
oRτ = , / 0.1

i oR Rτ τ = , 1.5n =  and 2n = . The temperature of surroundings and cylindrical 

medium are 1000KoT =  and 0KgT = , respectively. The cylindrical medium is non scattering and emitting. 

Both spatial and angular discretizations are refined to ensure convergence of final results. The LSFEM is applied 

to this case with 10 isoparametric linear elements on each layer and the total solid angle is subdivided as 
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200 200N Nθ ϕ× = × . It can be seen that the results obtained using the LSFEM are in good agreement with the 

benchmark results in reference. The maximum relative error based on the data of ray tracing method is less than 

1%. 

As seen from Fig. 8, the dimensionless incident radiation near the inner surface is higher than the incident 

radiation near the outer surface for both / 0.5
i oR Rτ τ =  and / 0.1

i oR Rτ τ = , which is due to the rays being 

refracted toward the center at the outer surface, hence much energy are concentrated near the inside surface. The 

dimensionless incident radiation has distinctive difference when the refractive index varies from 1.5n =  to 

2n = . The effects of a Fresnel surface on incident radiation are more prominent with large refractive index 

because of the increased refraction.  

3.4 Case 4: Two-Layer Graded Index Cylindrical Medium 

Three test problems of two-layer cylindrical medium with different variable refractive index distributions 

bounded by Fresnel wall are considered in this case. Detailed definition of the three problems is given in Table 2. 

The first problem is a simple case in which the inner layer is vacuum, while the outer layer is a cold absorbing 

medium. In the second problem, both the inner layer and the outer layer are cold absorbing medium and have 

graded index distributions. Scattering is involved in the third case, in which the inner layer is isotropically 

scattering and absorbing and has a parabolic type refractive index distribution as studied in Case 2, while the outer 

layer is nonscattering with a uniform refractive index distribution. In all three test problems, the temperature and 

refractive index of the surrounding medium are taken as 1000KoT =  and 1n = .  

Figure 9(a) and 9(b) present the solved radial dimensionless net radiative heat flux distributions and the 

dimensionless incident radiation along the radial coordinate, respectively, for test problem 1 by the LSFEM. The 

refractive index distribution in the outer layer is ( ) / 2n k Rρ ρ= + , in which the slope parameter is taken as 

=0.1k , 1, 1.5 and 2 respectively. The LSFEM is applied to this problem with 10 isoparametric linear elements in 

the inner layer, 20 isoparametric linear elements in the outer layer along the radial direction, and the total solid 
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angle is subdivided as 200 200N Nθ ϕ× = × . It is observed that the heat flux penetrating into the medium 

decreases with increasing the gradient of outer layer index distribution. At the same time, an inflection point exists 

in the radial distribution of heat flux due to the discontinuity of refractive index at the interface between the two 

layers. The incident radiation distribution also decreases with increasing the gradient of outer layer index 

distribution. As the incident radiation is a measure of volume absorption for external irradiation, it indicates that 

the volume absorption decreases with the increasing of the gradient of refractive index distribution inside the outer 

layer. This conforms to the decrease of total heat flux penetrating into the medium. A discontinuity is observed in 

the radial distribution of incident radiation, which is due to the discontinuity of refractive index distribution at the 

interface. The refractive index distribution of the outer layer significantly influences radiative absorption in the 

multilayer cylindrical medium. 

Figure 10(a) and 10(b) present the solved radial dimensionless net radiative heat flux distributions and the 

dimensionless incident radiation along the radial coordinate, respectively, for test problem 2. The LSFEM is 

applied to this case with 20 isoparametric linear elements in the inner and outer layer along the radius direction, 

respectively, and the total solid angle is subdivided as 200 200N Nθ ϕ× = × . The heat flux penetrating into the 

medium decreases with the increasing of the gradient of refractive index distribution inside the outer layer, which 

conforms to the trend of the incident radiation distribution. This observation is similar to the case that the inner 

layer has a uniform index distribution [Fig. 9(a)]. However, the trends of distribution of radiative heat flux and 

incident radiation vary substantially when the refractive index distribution inside the inner layer has a parabolic 

profile, which is due to the curved ray trajectory induced by the graded index distribution. 

Figure 11(a) and 11(b) present the solved radial dimensionless net radiative heat flux distributions and the 

dimensionless incident radiation along the radial coordinate, respectively, for test problem 3. The LSFEM is 

applied to this case with 10 isoparametric linear elements in the inner and outer layer, respectively, and the total 

solid angle is subdivided as 200 200N Nθ ϕ× = × . It is observed that the dimensionless heat flux penetrating 
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into the medium hold a value about 0.6 for different scattering albedo, which indicates the total absorption of the 

two-layer medium are affected little by scattering process. However, the trends of radial distribution of internal 

radiative heat flux and the incident radiation are substantially altered with different strength of scattering. For a 

bigger scattering albedo, more incident radiation is scattered, as such, the incident radiation is smaller at the center 

of cylindrical medium. 

 

4 CONCLUSIONS 

A new radiative transfer equation is derived based on a new cylindrical coordinate system in order to deal with 

the specular reflection and the Fresnel boundary. A Least squares finite element method is developed for solving 

the radiative transfer equation for graded index medium in the new cylindrical coordinate system. For multi-layer 

cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative intensity at the 

interface between two adjacent layers. Various problems of both solid cylinder and multilayer cylinder and with 

medium of uniform refractive index distribution and graded refractive index distribution are tested. The results 

show that the finite element approach presented in this paper has good accuracy in predicting radiative transfer in 

semitransparent graded index cylindrical medium with Fresnel boundary, and the presented method can also solve 

radiative transfer in multilayer cylindrical medium precisely.  
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Table 1. Commonly used radial basis functions 

 

RBF ( )rℜ  

MQ ( )
1

2 21 r+  

IMQ ( )
1

2 21 r
−

+  

G ( )2exp r−  

Wendland C0 ( )221 r
+

−  

Wendland C2 ( ) ( )421 4 1r r
+

− +  

Wendland C4 ( ) ( )62 21 35 18 3r r r
+

− + +  
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Table 2. Physical definitions of problems studied in Case 4. 

Problem Layer 1 (inner layer) Layer 2 (outer layer) Surrounding 

1 vacuum cold and nonscattering; 

1
oR a oRτ κ= = ; 

( ) / 2n k Rρ ρ= + ; 

=0.1k , 1, 1.5 and 2. 

0 1000KT =  

1n =  

2 cold and nonscattering; 

0.5
iR a iRτ κ= = ; 

2( ) 4 ( / )n Rρ ρ= − . 

cold and nonscattering; 

1
oR a oRτ κ= = ; 

( ) / 2n k Rρ ρ= + ; 

=0.1k , 1 and 2. 

0 1000KT =  

1n =  

3 cold and isotropic scattering, 
0.1ω = , 0.5, and 0.9; 

0.5
iR a iRτ κ= = ; 

2( ) 4 ( / )n Rρ ρ= − . 

cold and nonscattering; 

1
oR a oRτ κ= = ; 

( ) 4n ρ = . 

0 1000KT =  

1n =  
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FIGURE CAPTIONS 

 

Figure 1. Definition of variables in cylindrical coordinate systems: (a) traditional cylindrical coordinate system (b) 

new cylindrical coordinate system. 

Figure 2. Refraction relationship between two adjacent layers. 

Figure 3. The schematic of reflection and refraction between layers. 

Figure 4. Interpolated angular distribution of intensity at the right side of the interface subjected to incident 

irradiation from left side of the interface, (a) 30Nθ =  and (b) 100Nθ = . 

Figure 5. Configuration of radial multilayer medium. 

Figure 6. Radial distributions of volumetric radiative absorption and dimensionless net radiative heat flux: (a) 

volumetric radiative absorption (b) dimensionless net radiative heat flux. 

Figure 7. Radial distributions of dimensionless net radiative heat flux and incident radiation in the cylindrical 

medium with parabolic refractive index distribution: (a) radiative heat flux (b) incident radiation. 

Figure 8. Dimensionless radial incident radiation distribution in the infinite long hollow cylinder. 

Figure 9. Radial distributions of dimensionless net radiative heat flux and incident radiation for the problem 1 of 

Case 4: (a) radiative heat flux (b) incident radiation. 

Figure 10. Radial distributions of dimensionless net radiative heat flux and incident radiation for the problem 2 of 

Case 4: (a) radiative heat flux (b) incident radiation. 

Figure 11. Radial distributions of dimensionless net radiative heat flux and incident radiation for the problem 3 of 

Case 4: (a) radiative heat flux (b) incident radiation. 
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Figure 1(a) 
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Figure 1(b) 
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Figure 3  
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Figure 4 (a)  

Authors: Zhang, Zhao and Liu 

 

 



 -34-

 

 

 

 

 

 

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

 Exact
 Wendland C4
 Wendland C0
 IMQ

θ (°)

n1=1, n2=2.5

 I(
θ)

 / 
I 0

 

L R

0I

Ln Rn

 

 

 

 

 

 

 

Figure 4 (b)  
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Figure 6(a)  
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Figure 6(b)  
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Figure 7(a)  
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Figure 7(b)  
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Figure 8  

Authors: Zhang, Zhao and Liu 

 

 



 -41-

 

 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

4
0

( )q
T

ρ ρ
σ

/ Rρ

 

 

 k=0.1
 k=1
 k=1.5
 k=2

 

 

 

 

 

 

 

Figure 9(a) 
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Figure 9(b) 
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Figure 10(a) 
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Figure 10(b) 
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Figure 11(a) 
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Figure 11(b) 
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