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Abstract

A discontinuous spectral element method (DSEM) is presented to solve radiative heat transfer in multidimensional

semitransparent media. This method is based on the general discontinuous Galerkin formulation. Chebyshev polynomial is

used to build basis function on each element and both structured and unstructured elements are considered. The DSEM

has properties such as hp-convergence, local conservation and its solutions are allowed to be discontinuous across

interelement boundaries. The influences of different schemes for treatment of the interelement numerical flux on the

performance of the DSEM are compared. The p-convergence characteristics of the DSEM are studied. Four various test

problems are taken as examples to verify the performance of the DSEM, especially the performance to solve the problems

with discontinuity in the angular distribution of radiative intensity. The predicted results by the DSEM agree well with the

benchmark solutions. Numerical results show that the p-convergence rate of the DSEM follows exponential law, and the

DSEM is stable, accurate and effective to solve multidimensional radiative transfer in semitransparent media.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerical methods for solving radiative transfer can be classified into two types, one is the method based
on the discretization of radiative transfer equation, and the other is the method based on ray-tracing
technique. In recent years, the method based on the discretization of radiative transfer equation, such as
discrete ordinate method (DOM) [1], finite-volume method (FVM) [2–4], and finite-element method (FEM)
[5,6], have received considerable attention for their advantages such as being flexible to deal with complex
media and boundary property, easy and efficient to treat multidimensional problems as compared to the ray-
tracing-based methods, such as Monte Carlo method [7] and zonal method [8].

Recently, the discontinuous Galerkin (DG) method was introduced to the solution of radiative transfer
problems. Cui and Li [9,10] presented a DG FEM for solving the radiative transfer in emitting, absorbing, and
scattering media, in which the linear approximation was used on each element. Liu et al. [11] applied the DG
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

H matrix defined in Eqs. (14b) and (15b)
I radiative intensity, W/(m2sr)
Ib black body radiative intensity, W/(m2sr)
K the kth element
Ktr triangular element
Kst standard element
M number of discrete ordinate direction
M matrix defined in Eqs. (14a) and (15a)
n unit outward normal vector
nqK unit outward normal vector of the boundary of element K

Nel total number of elements
Nsol total number of solution nodes
p order of polynomial expansion
q radiative heat flux, W/m2

r spatial coordinates vector
S source term function defined by Eq. (2)
T temperature, K
w weight of discrete ordinates approximation
W weight function
x, y, z cartesian coordinates
b extinction coefficient b ¼ ðkþ sSÞ, m

�1

ew wall emissivity
f nodal basis function
F scattering phase function
m, Z, x direction cosine of radiation direction
k absorption coefficient, m�1

sS scattering coefficient, m�1

s Stefan-Boltzmann constant, W/(m2K4)
tL optical thickness, tL ¼ bL

o single scattering albedo
X, X0 unit vector of radiation direction
O solid angle
z, g, B cartesian coordinates defined in standard element

Subscripts

i, j spatial node index
w value at wall

Superscripts

m, m0 the mth discrete ordinate direction
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FEM to solve radiative transfer in graded index media. All of these works initially demonstrated that the DG
approach is a very promising method for the solution of radiative transfer problems in both regular and
irregular geometries using either structured or unstructured meshes. The DG method has many advantages
comparing to the conventional Galerkin method and has been successfully applied to the solution of many
physics and engineering problems [12–15]. In DG method, the inter-element continuity is released and the
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approximation space composes of discontinuous functions. The DG method is considered to combine both the
advantages of FVM and FEM. The main virtues of the DG method can be summarized as: (1) it is element-
wise conservative and stable, (2) high-order accurate and polynomials of arbitrary degree can be employed at
each element, which make the DG method ideal to be used with hp-adaptive strategies, (3) the method can be
defined on very general meshes, including non-conforming meshes and (4) it is easy to be implemented and
solved element by element. Introduction and comprehensive review of the DG method are referred to
Cockburn et al. [16,17].

Spectral-element method (SEM) was originally proposed by Patera [18] for the solution of fluid flow
problem. In the SEM, the physical domain is broken up into several elements and within each element a
spectral representation based on orthogonal polynomials (such as Chebyshev polynomial and Legendre
polynomial) is used. SEM combines the competitive advantages of high-order spectral method, i.e. the p-
convergence property, and FEM, i.e. the flexibility to deal with complex domain and offering h-convergence
property. SEM has been successfully applied in computational fluid dynamics and heat transfer [18–21].
Recently, by considering that the equation of radiative transfer (RTE) is in a form of convection-dominated
equation [22] and the convection term may cause non-physical oscillation of the solutions of standard
Galerkin scheme-based methods, Zhao and Liu [23,24] developed a least-square SEM (LSSEM) for solving
multidimensional radiative transfer problems in uniform and graded index media, in which the least-square
scheme instead of the standard Galerkin scheme of SEM (GSEM) is used to enhance the stability of the
method to solve the RTE. These works demonstrated that higher-order spectral approximation on each
element is effective to solve multidimensional radiative transfer problems. However, both the GSEM and the
LSSEM are based on global continuous formulation, in which the functions of approximation space are not
allowed to be discontinuous across elements, thus lack the salient properties of the method based on the DG
formulation described above.

To combine both the advantages of the SEM and the DG method, in this paper, based on the general DG
formulation, we present a discontinuous SEM (DSEM) to solve radiative heat transfer in multidimensional
semitransparent media, in which Chebyshev polynomial is used to build basis function on each element. The
influences of different schemes for the treatment of interelement numerical flux are compared and the p-
convergence characteristics of the DSEM are studied. The performance of the DSEM is verified by various test
examples on meshes with both structured and unstructured elements.

2. Mathematical formulation

2.1. Discrete-ordinates equation of radiative transfer

The discrete-ordinates equation of radiative transfer in the enclosure filled with absorbing, emitting, and
scattering gray media can be written in Cartesian coordinates as

rd XmImðrÞ½ � þ bImðrÞ ¼ SmðrÞ, (1)

where the source term Sm(r) is defined as

SmðrÞ ¼ kIbðrÞ þ
sS
4p

XM
m0¼1

Im0 ðrÞUðXm;Xm0
Þwm0 . (2)

For the opaque and diffuse boundary, the boundary conditions are given as

Im
w ¼ �wIbw þ

1� �w
p

X
nwdXm040

Im0

w nwdXm0
�� ��wm0 ;Xmdnwo0, (3)

where Xm is the discrete direction vector, b ¼ ðkþ sSÞ is the extinction coefficient, k and sS are the absorption
and scattering coefficients, respectively, F is the scattering phase function, ew is the wall emissivity and wm0 is
the weight of direction Xm0 for angular quadrature.

The partial differential Eq. (1) with boundary condition given by Eq. (3) is solved for each discrete direction.
The discrete ordinates equation Eq. (1) is in a form as a convection-dominated equation [22]. The convection



ARTICLE IN PRESS
J.M. Zhao, L.H. Liu / Journal of Quantitative Spectroscopy & Radiative Transfer 107 (2007) 1–164
term may cause non-physical oscillatory of solutions. This type of instability can occur in many numerical
methods including finite difference method and FEM if no special stability treatment is taken. In Section 2.2, a
DSEM was developed to solve the discrete-ordinates equation of radiative heat transfer.

2.2. General DG formulation

Unlike the continuous Galerkin solution scheme, which uses global basis function and weight function, the
DG scheme uses basis and weight function locally defined on each element. In DG solution scheme, the
information transfer across element boundaries is imposed by modeling the numerical flux. Details on
description and discussion of the features of the DG method are referred to Ref. [16]. For each element K, Eq.
(1) is weighted by W and integrated over K using Gauss divergence theorem

�oI ;XdrW4K þ ðcXIdnqK ;W ÞqK þobI ;W4K ¼oS;W4K . (4)

Without ambiguity the superscript m is omitted, where nqK denotes the unit outward normal vector of the
boundary of element K and the operators od; d4 and ðd; dÞ are defined as

of ; g4K ¼

Z
K

fgdV ; ðf ; gÞqK ¼

Z
qK

fgdA, (5)

Here, cXI is the numerical flux across element boundaries to be modeled. In this paper, two numerical schemes
are considered to model cXI . The first scheme considered is the classical up-winding scheme, in which the
numerical flux is modeled as

cXI ¼ X If g þX signðXdnqK Þ1IU, (6)

where the operator fdg and 1dU� denote the mean value and the jump value of arguments across interelement
boundary

If g ¼
1

2
Iþ þ I�
� �

; 1IU� ¼
1

2
Iþ � I�
� �

. (7)

Here the superscript operator ‘‘+’’ and ‘‘�’’ denote the values at the boundary inside element K and outside
element K, respectively, which are defined as

Iþ ¼ lim
d!0

IðrqK � dnqK Þ; I� ¼ lim
d!0

Iðr@K þ dn@K Þ. (8)

It can be seen that the numerical flux defined by Eq. (6) is composed of two parts, the mean value part and
the jump value part or discontinuity part, and the latter accounts for the discontinuity on the element
boundary. Fig. 1 shows the relation between the variables defined on the element K for a good understanding
of the description above. By substituting Eq. (6) into Eq. (4) and using the definition given by Eq. (7), the
K

n∂K

+
−

−

+

+

+

I +

I −

Ω I

Ω

Fig. 1. Schematic diagram of the relations of variables defined in discontinuous Galerkin formulation.
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general DG formulation of RTE for up-winding scheme is obtained as

�oI ;XdrW4K þ
1

2
XdnqK þ XdnqKj jð ÞIþ;W
� �

qK
þobI ;W4K

¼oS;W4K �
1

2
XdnqK � XdnqKj jð ÞI�;Wð ÞqK . ð9Þ

The second scheme considered is the local Lax-Friedrichs scheme. The numerical flux is modeled as

cXI ¼ X If g þ Xj j1IUnqK . (10)

The general DG formulation of RTE for local Lax-Friedrichs scheme is obtained as

�oI ;XdrW4K þ
1

2
XdnqK þ Xj jð ÞIþ;W
� �

qK
þobI ;W4K

¼oS;W4K �
1

2
XdnqK � Xj jð ÞI�;Wð ÞqK . ð11Þ

It should be noted that the modulus |X| is |m|,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Z2

p
and 1 for one-, two- and three-dimensional problem,

respectively. It can be seen that Eqs. (9) and (11) are identical in one-dimensional case.

2.3. Spectral element discretization

Here, the nodal basis functions on each element are constructed by Chebyshev polynomial expansion. The
one-dimensional nodal basis functions are Lagrange interpolation polynomials through the Cheby-
shev–Gauss–Lobatto points. Multidimensional nodal basis functions on structured element (quadrilateral,
cube) are constructed by tensor product from one-dimensional nodal basis functions. The construction of
nodal basis functions on quadrilateral element was described detailedly in Ref. [23]. For the construction of
nodal basis functions on triangular element, if we consider the triangular as a degenerated quadrilateral,
namely, with four nodes as shown in Fig. 2, then the same tensor product procedure can be used to build the
nodal basis function on the triangular element Ktr. But special treatment on the nodal basis of node 1 of the
triangular element Ktr is still needed. The nodal basis function of node 1 of Ktr is selected as the sum
of all nodal basis functions mapped from edge 4 (defined by nodes 1 and 4) of the standard quadrilateral
element Kst.

The unknown radiative intensity is approximated on element K by nodal basis function with Kronecker
Delta property as

IðrÞ ’
XNsk

i¼1

I ifiðrÞ, (12)

where fi is the nodal basis function defined on K, Ii denotes radiative intensity at solution nodes i and Nsk is
the number of solution nodes on K. By substituting the approximation of radiative intensity (Eq. (12)) into the
DG formulation of RTE (Eq. (9) or Eq. (11)) and taking the weight function W as nodal basis function fj(r),
the DSEM discretization of the RTE can be written in matrix form on element K as

MmIm ¼ Hm, (13)
γ

x

Kst

Ktr

(1,-1)

(1,1)

(-1,-1)

(-1,1)

2

y ζ
1 2

4 3

3

1(4)

Fig. 2. Schematic diagram of the coordinates transform from stand element to triangular element.
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here, the matrices Mm and Hm are defined as

Mm
ji ¼ �ofi;X

mdrfj4K þ
1

2
XmdnqK þ XmdnqKj jð Þfi;fj

� �
qK
obfi;fj4K , (14a)

Hm
j ¼oSm;fj4K �

1

2
XmdnqK � XmdnqKj jð ÞIm;�;fj

� �
qK
. (14b)

For the classical up-winding numerical flux scheme or

Mm
ji ¼ �ofi;X

mdrfj4K þ
1

2
XmdnqK þ Xmj jð Þfi;fj

� �
qK
obfi;fj4K , (15a)

Hm
j ¼oSm;fj4K �

1

2
XmdnqK � Xmj jð ÞIm;�;fj

� �
qK

(15b)

for the local Lax-Friedrichs numerical flux scheme.
For the local Lax-Friedrichs numerical flux scheme, the angular ordinates can be completely separated from

spatial coordinates, thus a more efficient algorithm can be obtained. The matrices M defined by Eq. (15a) can
be written as

Mm
ji ¼ �Xmdofi;rfj4K þ

1

2
XmdðnqKfi;fjÞqK þ

1

2
Xmj jðfi;fjÞqKobfi;fj4K (16)

with the nodal basis function interpolation technique, namely

of ;fj4 ¼
XNesol

i¼1

f iofi;fj4; ðf ;fjÞ ¼
XNesol

i¼1

f iðfi;fjÞ, (17)

then the matrix H defined by Eq. (15b) can be written as

Hm
j ¼

XNesol

i¼1

Sm
i ofi;fj4K �

1

2
Xmd

XNesol

i¼1

Im;�
i ðnqKfi;fjÞqK þ

1

2
Xmj j

XNesol

i¼1

Im;�
i ðfi;fjÞqK . (18)

As a result, all the component matrices of M and H, namely, ofi;rfj4K ; ðnqKfi;fjÞqK ;
ðfi;fjÞqK ; obfi;fj4K and ofi;fj4K only need to be computed once for all discrete ordinates Xm.

2.4. Solution procedures

Because the source term of the discrete-ordinates equation in direction m contains the radiative intensities of
the other directions, global iteration similar to those used in the DOM are necessary to update the source term.
A spatial loop is needed to solve by the DSEM element by element and a spatial iteration is needed to ensure
the radiative intensity of each angular direction is converged. On each element the matrix equations given by
Eq. (13) are solved by Gaussian elimination. The implementation of the DSEM can be carried out according
to the following routine:

Step 1: Mesh the solution domain.
Step 2: Begin the global iteration.
Step 3: Angular loop. Loop each angular direction Xm.
Step 4: Begin the spatial iteration.
Step 5: Spatial loop. Loop each element K, choose the order of Chebyshev polynomial and generate the

solution nodes for each element with Gauss–Chebyshev–Lobatto points.
Step 6: Build the nodal basis function for each element K from standard element Kst, and integrate to get the

matrix Mm and Hm defined in Eq. (14) and Eq. (15).
Step 7: Solve the matrix equation Eq. (13) to get the radiative intensity on element K for direction Xm.
Step 8: If the spatial iteration converged then go to Step 3, otherwise continue the spatial iteration.
Step 9: Terminate the iteration process if the stop criterion is satisfied. Otherwise go back to Step 3.
In this paper, the maximum relative error 10�4 of radiative intensity Inew � Ioldk k= Inewk k

� �
is taken as the

stop criterion for the spatial iteration and the global iteration.
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3. Results and discussion

To verify the performance of the DSEM presented in this paper, four various test cases are selected. For the
sake of quantitative comparison to the benchmark results, the integration averaged relative error of the
DSEM solution is defined as

Relative error % ¼

R
DSEM solution� Benchmark resultj jdxR

Benchmark resultj jdx
� 100. (19)
3.1. Case 1: Gaussian-shaped radiative source term between infinite parallel black plates

We consider the radiative transfer between one-dimensional black parallel plates. The radiative source term
within the media is a Gaussian-shaped function. This problem is modeled by the RTE as

m
dI

dx
þ bI ¼ e�ðx�cÞ2=a2 ; x; c 2 ½0; 1� (20)

with the following boundary conditions:

Ið0;mÞ ¼ e�c2=a2 ; m40, (21a)

Ið0;mÞ ¼ e�ð1�cÞ2=a2 ; mo0. (21b)

The analytical solution of this problem in the case of m40 can be written as

Iðx;mÞ ¼ Ið0;mÞ exp �
bx

m

� 	
�

a
ffiffiffi
p
p

2m
exp �

b
m

x�
a2b
4m
þ c

� 	
 �� 

erf

ab
2m
þ

c� x

a

� 	
� erf

ab
2m
þ

c

a

� 	
 �
.

(22)

This case was also studied in Ref. [25] and served as a good case for testing the stability of the solution
methods. The DSEM was applied to this case for c ¼ 0.5, a ¼ 0.02, m ¼ 1.0 and b ¼ 1.0. Fig. 3 shows radiative
intensities obtained by the DSEM with uniform 20 elements and fourth-order polynomial and compared to
the analytical solution. The results obtained by Galerkin SEM (GSEM) [23] with the same spatial grid is also
presented as a comparison. It can be seen that the result obtained by the DSEM is accurate and stable, while
the result of the GSEM exhibits obvious non-physical oscillations, which was due to the instability of
continuous Galerkin formulation for solving convection-dominated problem with large gradient existing in
the solution. The p-convergence characteristics of the DSEM are shown in Fig. 4 for three values of extinction
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0.00

0.01
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0.03

0.04

DSEM
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x

I(
x
)

Fig. 3. Radiative intensity distribution between the parallel plates.
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Fig. 4. The p-convergence characteristics of the DSEM for 1D case.
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coefficient, namely b ¼ 0.1, 1 and 10. It can be seen that the p-convergence rates of the DSEM are very fast
and follow exponential law for different values of extinction coefficient.

3.2. Case 2: anisotropically scattering in a square enclosure

In this case, we consider radiative heat transfer in a two-dimensional black square enclosure filled with
anisotropically scattering media. The optical thickness based on the side length L of the square enclosure is
tL ¼ bL ¼ 1:0. The media temperature Tg is kept as 1000K, but the temperatures of all boundary walls are
maintained at 0K. This case was also studied by Kim and Lee [26] using the DOM. The scattering phase
function of the media is the F2 phase function given by Eq. (23) with asymmetry factor of 0.66972.

U ¼
X8
j¼0

CjPjðmÞ, (23)

where the Pj are the Legendre polynomials. The Cj are the expansion coefficients defined as C0 ¼ 1.0,
C1 ¼ 2.00917, C2 ¼ 1.56339, C3 ¼ 0.67407, C4 ¼ 0.22215, C5 ¼ 0.04725, C6 ¼ 0.00671, C7 ¼ 67407 and
C8 ¼ 0.00005, respectively.

The DSEM was applied to this case for three values of single scattering albedo o, namely 0.0, 0.5, and 0.9.
The S8 approximation is used for angular discretization. Three spatial decomposition schemes, namely,
uniform four quadrilateral elements (Q4), 26 and 62 triangular elements (T26 and T62), with 4th order
polynomial are used. The decomposition and spectral node distribution of the T26 scheme is shown in Fig. 5.
The dimensionless net radiative heat fluxes on the bottom wall obtained by employing the classical up-winding
numerical flux scheme are shown in Fig. 6 for different values of scattering albedo and compared to the results
obtained by Kim and Lee using the DOM [26]. It can be seen that, even for the decomposition with four
elements (Q4), the DSEM results has a good accuracy. The maximum integral averaged relative error based on
the result of the DOM [26] is less than 0.8%. The DSEM approach has good accuracy in solving the radiative
heat transfer in anisotropically scattering media.

To verify the performance of different numerical flux modeling schemes used in the DSEM for solving the
RTE, Fig. 7 shows a comparison of dimensionless net radiative heat flux on the bottom wall obtained by using
the classical up-winding numerical flux scheme and the local Lax-Friedrichs numerical flux scheme for the case
of o ¼ 0.5. As can be seen from Fig. 7, for the coarse decomposition (Q4), the difference of dimensionless net
radiative heat flux obtained by using these two numerical flux modeling schemes is more evident on the left
and the right bottom corners of the square enclosure, and the former scheme gives better result, while with
refining of the decomposition (to T26), the difference of results obtained by using these two numerical flux



ARTICLE IN PRESS

Fig. 5. Solution domain decomposition and spectral nodes distribution (26 elements).
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Fig. 6. Dimensionless net radiative heat flux distribution along the bottom wall of square enclosure filled with anisotropically scattering

media.
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Fig. 7. Comparison of dimensionless net radiative heat flux distribution obtained by DSEM with different schemes of numerical flux.
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Fig. 8. The p-convergence characteristics of the DSEM for solution with (a) quadrilateral elements (Q25) and (b) triangular elements
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Fig. 9. Solution domain and mesh decomposition (535 elements) of the semicircular enclosure.
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modeling schemes becomes unobservable from the figure. Figs. 8(a) and (b) show the p-convergence
characteristics of the DSEM for solving the dimensionless net radiative heat flux of the bottom wall with
quadrilateral (uniform 25 elements, Q25) and triangular elements (T26), respectively, for single scattering
albedo o ¼ 0 and three different values of optical thickness, namely, tL ¼ 0.1, 1.0 and 10. The results obtained
using the DSEM with 10th-order polynomial are considered as benchmark solution. Generally, the p-

convergence rates are fast for both quadrilateral and triangular elements. In the case with large values of
optical thickness, namely, tL ¼ 10, the p-convergence rates follow exponential law.

3.3. Case 3: radiative transfer problem with angular discontinuity induced by shielding of interior obstacle

We consider radiative transfer in non-scattering media in a semicircular enclosure with a circular hole as
shown in Fig. 9. The media is kept hot (1000K), while all other walls are black and kept cold (0K). As shown
in Fig. 10, we consider the angular distribution of radiative intensity of a node denoted P at the bottom wall.
The incident radiative energy of node P comes from three regions, namely regions A–C. Because the interior
circular obstacle shields radiative energy of region D from reaching node P, the incident radiative energy of
node P coming from region B is weaker than that coming from region A and C. As a result, the angular
distribution of radiative intensity of node P is remarkably non-uniform and contains discontinuity, thus the
selected angular integration schemes should ensure that the radiative intensities coming from regions A–C
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Fig. 11. Dimensionless net radiative heat flux distribution on the bottom wall of the semicircular enclosure for optical thickness tL ¼ 1.0.
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being integrated accurately. Inaccuracy of the angular discretization scheme will cause ‘wiggles’ in the results
of the RTE-based methods, which is also known as the ‘ray effect’ [27–29]. As this kind of ray effect is mainly
caused by the shielding effect of the interior obstacle, here, we call this kind of ray effects as ‘interior obstacle-
induced ray effect’, and another kind of ray effect will be discussed further in the next test case.

In the following analysis, The DSEM with local Lax-Friedrichs numerical flux scheme is applied to this
case. The enclosure is decomposed into 535 triangular elements shown in Fig. 9. Fig. 11 shows the
dimensionless net radiative heat flux distribution on the bottom wall for optical thickness tL ¼ bR ¼ 1:0
obtained by the DSEM with first-order polynomial and three different angular discretization schemes, namely
S8 approximation, and PCA schemes [24,30] with Ny�Nj ¼ 10� 20 and 14� 28, and compared to the exact
result of Kim et al. [31]. It can be seen that the ‘wiggles’ or ray effect of the solution obtained using S8
approximation scheme is the strongest, which is attributed to its inaccuracy in integrating radiative intensity
with remarkable non-uniformity. With the increasing of the accuracy of the angular discretization, the ray
effect is effectively diminished. Generally, the DSEM is convergent, accurate and effective to solve the
radiative transfer and can effectively bate this kind of ray effect.

Fig. 12(a)–(c) show comparison of the dimensionless net radiative heat flux distribution on the bottom wall
obtained by the DSEM, the GSEM, and the LSSEM [23] under the same angular (Ny�Nj ¼ 14� 28) and
spatial discretization (535 triangular elements with first-order polynomial) for three different optical
thicknesses, namely tL ¼ bR ¼ 0:1, 1.0 and 10, respectively. The exact solution obtained by Kim et al. [31] is
taken as benchmark. It can be seen that obvious wiggles exists in the results of the GSEM, which is attributed
to the instability of continuous Galerkin formulation for solving convection-dominated problem. However,
the results of the DSEM and the LSSEM are free of wiggles, and the DSEM give the best accuracy. The lack
of accuracy of the LSSEM is attributed to large false scattering induced by discontinuity, while the DSEM
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Fig. 12. Dimensionless net radiative heat flux distribution on the bottom wall of the semicircular enclosure for three values of optical

thickness: (a) tL ¼ 0.1, (b) tL ¼ 1.0, and (c) tL ¼ 10.
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brings less false scattering because the DG formulation brings minimal numerical diffusion. As compared to
the GSEM and the LSSEM, the DSEM is accurate, stable and effective to solve radiative transfer in
multidimensional semitransparent media with complex configuration.

3.4. Case 4: radiative transfer problem with angular discontinuity induced by boundary loading

In this case, the radiative transfer in a black square enclosure filled with isotropically scattering media with
single scattering albedo o ¼ 1.0 is considered. The optical thickness based on the side length L of the square is
tL ¼ 1.0. The temperature of the bottom wall is kept Tw1 ¼ 1000K, but all other walls and the media are kept
cold (0K). As shown in Fig. 13, the incident radiation energy of a node denoted P at the top wall comes from
three regions, namely, regions A–C. Due to radiation from the high-temperature bottom wall, the radiative
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Fig. 13. Schematic diagram to illustrate the ‘boundary induced ray effect.’

Fig. 14. Solution domain decomposition for the square enclosure (226 elements).
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energy coming from region B is stronger than that coming from regions A and C. As a result, the angular
integration accuracy of the radiative intensities of node P over 4p angular space is mainly attributed to the
accuracy of integrating the radiative intensities coming from region B. Because the defined region B is different
for different solution nodes on the top wall, thus it is difficult to do angular integration both efficiently and
accurately. In this case, the ray effect is mainly caused by the non-uniform and discontinuity loading from the
boundaries. Here, we call the ray effect of this kind as ‘boundary induced ray effect’. It should be noted that
two kinds of error existing in the numerical solution of the RTE, namely the ‘ray effect’ and the false
scattering, and these errors interact with each other, such that the ‘wiggles’ in the solution may also be related
to spatial discretization. In this case, for the node P at the top wall, the incident radiative intensity originated
from the bottom wall is much less than that for the node P at other three walls. This means there is larger
angular non-uniformity of radiative intensity at the top wall, thus it is very difficult to accurately integrate the
angular distribution of radiative intensity. This case was studied by several researchers [28,32,33] and serves a
good test case for test the performance of the numerical method.

The DSEM with local Lax-Friedrichs numerical flux scheme is applied to this case. The square enclosure is
decomposed into 226 triangular elements as shown in Fig. 14. Here the PCA scheme [24,30] is used for angular
discretization, in which the 4p angular space is decomposed into Ny�Nj parts. Basically two spatial
refinement strategies are available for the DSEM, namely, the h-refinement and p-refinement. First, the DSEM
with first-order polynomial was applied to this case, and three different angular discretization schemes,
namely, Ny�Nj ¼ 12� 24, 16� 32, and 20� 40 are used. The dimensionless net radiative heat flux
distributions on the top wall are shown in Fig. 15(a) and compared with the quasi-exact solution of Crosbie
and Schrenker [32]. It can be seen that obvious ‘wiggles’ exist in the result of the DSEM when
Ny�Nj ¼ 12� 24, which is attributed to the less accuracy of angular discretization, while with the refining
of the angular discretization, the ‘wiggles’ are effectively mitigated and smooth results are obtained.
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To study the interaction of spatial discretization and angular discretization of the DSEM, we further
consider applying the DSEM to this case with second-order polynomial. Fig. 15(b) shows the dimensionless
net radiative heat flux distributions on the top wall for three angular discretization schemes, namely,
Ny�Nj ¼ 20� 40, 28� 56, and 36� 72. By comparison with Fig. 15(a), it can be seen that, in the case of
Ny�Nj ¼ 20� 40, the ray effect becomes stronger with increasing the polynomial order such that remarkable
angular refinements are needed to mitigate the ‘wiggles’. Then we consider the performance of the DSEM by
just decreasing the element size, namely the performance of h-refinement. The DSEM is applied with third-
order polynomial and the angular discretization is fixed to Ny�Nj ¼ 26� 52. Fig. 16 shows the dimensionless
net radiative heat flux distributions on the top wall for three spatial discretization schemes, namely, T26, T62
and T226. It can be seen that, even for the fixed angular discretization, the ray effect becomes stronger with
decreasing the element size. However, when the angular discretization increases up to Ny�Nj ¼ 48� 96, the
‘wiggles’ in the result obtained with spatial decomposition of T226 are effectively mitigated. It is well known
that two kinds of error existing in the numerical solution of the RTE, namely the ‘ray effect’ and the false
scattering. Like other methods, such as the DOM and the FVM, simultaneous refinements of both the spatial
and the angular discretizations are needed for the DSEM to obtain accurate results. Because the DG
formulation brings minimal numerical diffusion, the DSEM suffer little from false scattering, and the ray
effect can be bated effectively from angular refinement. Generally, the DSEM is convergent, accurate and
effective to solve the radiative transfer and can effectively bate the ‘boundary-induced ray effect.’
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4. Conclusions

A discontinuous spectral element method (DSEM) is presented to solve radiative heat transfer in
multidimensional semitransparent media. This method is based on the general DG formulation, in which
Chebyshev polynomial is used to build basis function on each element and both structured and unstructured
elements are considered. The DSEM have properties such as hp-convergence, local conservation and solutions
are allowed to be discontinuous across each element.

The DSEM with classical up-winding numerical flux scheme gives better results than the local Lax-
Friedrichs numerical flux scheme on a coarse mesh while with mesh refining the difference between the results
obtained through the two numerical flux modeling schemes becomes negligible. For the one-dimensional test
case, the p-convergence rates of DSEM are very fast and follow exponential law for different values of
extinction coefficient. For the two-dimensional test case, the p-convergence rates are fast for both
quadrilateral and triangular elements, and follow exponential law for large optical thickness.

Two kinds of ray effect of the RTE-based numerical methods, namely the boundary-induced ray effect and
the interior obstacle-induced ray effect, are studied. The DSEM brings less false scattering because the DG
formulation brings minimal numerical diffusion, while the LSSEM suffers from large false scattering induced
by discontinuity. Like other methods, such as the DOM and the FVM, simultaneous refinements of both the
spatial and the angular discretizations are needed for the DSEM to obtain accurate results. The DSEM is
convergent, accurate and effective to solve the radiative transfer problems in multidimensional
semitransparent media with complex configuration and can effectively bate both the interior obstacle-
induced ray effect and the boundary-induced ray effect.
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