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The original radiative transfer equation is a first-order integrodifferential equation, which

can be taken as a convection-dominated equation. The presence of the convection term

may cause nonphysical oscillation of solutions. This type of instability can occur in many

numerical methods, including the finite-difference method and the finite-element method,

if no special stability treatment is used. To overcome this problem, a second-order radiative

transfer equation is derived, which is a diffusion-type equation similar to the heat conduction

equation for an anisotropic medium. The consistency of the second-order radiative transfer

equation with the original radiative transfer equation is demonstrated. The perturbation

characteristics of error are analyzed and compared for both the first- and second-order equa-

tions. Good numerical properties are found for the second-order radiative transfer equation.

To show the properties of the numerical solution, the standard Galerkin finite-element

method is employed to solve the second-order radiative transfer equation. Four test problems

are taken as examples to check the numerical properties of the second-order radiative trans-

fer equation. The results show that the standard Galerkin finite-element solution of the

second-order radiative transfer equation is numerically stable, efficient, and accurate.

INTRODUCTION

Numerical solution of the radiative transfer in an absorbing, emitting, and
scattering medium requires considerable effort for most practical systems composed
of semitransparent media. Recently, many numerical methods have been developed
to solve the problems of radiative heat transfer in semitransparent media. The sol-
ution methods may mainly be classified into two classes: (1) the methods based on
ray tracing, such as the zonal method [1] and the Monte Carlo method [2, 3]; and
(2) the methods based on the discretization of a standard form or variation of the
radiative transfer equation (RTE), such as the discrete-ordinates method (DOM)
[3–15], the finite-volume method (FVM) [16–23], and the finite-element method
(FEM) [24–29]. The ray-tracing-based methods do not rely explicitly on the
RTE. The simulation processes of these methods are numerical stable and have clear
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physical meaning. However, they are often too time-consuming even for relatively
simple problems, thus the second class of methods has received considerable atten-
tion for its advantages, such as being easy and flexible to deal with the multidimen-
sional problems of radiative heat transfer.

In the second class of methods, traditional methods such as the DOM, FVM,
and FEM are often based on the original RTE, which is a first-order integrodiffer-
ential equation and can be taken as a convection-dominated equation. The presence
of a convection term may cause nonphysical oscillation of solutions. This type of
instability can occur in many numerical methods, including the finite-difference
method and the finite-element method, if no special stability treatment is used. Spe-
cial stabilization techniques such as upwinding schemes or artificial viscosity are
often used in the FVM and the FEM to discretize the original RTE. Another method

NOMENCLATURE

Aout error amplifying factor of outflow

boundary condition

AS;1st error amplifying factor of radiative

source term based on the original RTE

AS;2nd error amplifying factor of radiative

source term based on the SORTE

Eint integral averaged relative error

Eint
out integral averaged relative error caused

by the perturbation at outflow

boundary condition

Eint
S;1st integral averaged relative error caused

by the perturbation of radiative source

term based on the original RTE

Eint
S;2nd integral averaged relative error caused

by the perturbation of radiative source

term based on the SORTE

Eint
S;1st integral averaged relative error caused

by the perturbation of radiative source

term based on the original RTE

Erel
in relative perturbation error function of

inflow boundary condition

H matrix defined in Eq. (47)

I radiative intensity, W=m2 sr

I vector of radiative intensity

K stiff matrix defined in Eq. (46)

L length of the ray trajectories

considered, side length of rectangular

enclosure

M number of discrete ordinate direction

n inward normal vector

Nsol total number of solution nodes

q radiative heat flux, W=m2

r spatial coordinates vector

s ray trajectory coordinate

S source function defined in Eq. (5)

T temperature, K

u arbitrary function in a function space

V computational domain

w weight of discrete ordinate direction

x; y; z Cartesian coordinates

b extinction coefficient ð¼ ja þ jsÞ, m�1

C boundary

CD inflow boundary, Dirichlet boundary

CN outflow boundary, Neumann

boundary

e perturbation error

ew wall emissivity

ja absorption coefficient, m�1

js scattering coefficient, m�1

m; n;g Cartesian components of X
r Stefan-Boltzmann constant, W=m2 K4

s optical coordinate

sL optical thickness ð¼ bLÞ
sx, sy,

sz

optical coordinates (sx ¼ bx, sy ¼ by,

sz ¼ bz)
�ss normalized optical coordinate defined

in Eq. (15)

/ shape function

U scattering phase function

x scattering albedo

X; X0 vector of radiation direction

X solid angle

Subscripts

b black body

g medium

i; j spatial node index

w value at wall

0 inflow

Superscripts

m; m0 the mth discrete ordinate direction
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to overcome the stability problem just stated is to transform the original RTE into a
second-order equation, in which the second-order derivative term can serve as an
artificial viscosity to ensure stability of solution. Through parity decomposition of
the radiative intensity, the even-parity formulation (EPF) of the RTE [30] was
obtained, which is a second-order partial differential equation for the even parity
of radiative intensity. It is well known that the second-order derivative term has
the characteristic of diffusion and good numerical properties. Cheong and Song
[31] examined several spatial discretization schemes in the DOM solution for the
EPF of the RTE. Fiveland and Jessee [32, 33] studied the finite-element solution
of the EFP of the RTE. Though the stability of the FEM solution of the second-
order even-parity equation is ensured, numerical results indicate that the solution
obtained using the FEM is less accurate as the optical thickness and the wall emiss-
ivity are increased.

In this article, by using a different transformation of the original RTE, a
second-order radiative transfer equation (SORTE) with radiative intensity as primi-
tive variable is derived, which has the major advantages of the EPF of the RTE but
overcomes most of the drawbacks of it, and can be easily applied to solve radiative
transfer in absorbing, emitting, and anisotropically scattering media. After examin-
ing the mathematical properties of the SORTE, we develop a finite-element method
for solving multidimensional radiative transfer problems based on the discrete-
ordinates equation of the SORTE. Four various test cases of radiative heat transfer
in semitransparent media are used to verify the performance of the method.

FORMULATION OF THE SECOND-ORDER RADIATIVE TRANSFER
EQUATION

The radiative transfer equation in an absorbing, emitting, and anisotropically
scattering medium is

dI

ds
þ b I ¼ jaIb þ

js

4p

Z
4p

Iðs;X0ÞUðX0;XÞ dX0 s 2 ½0;L� ð1Þ

with the inflow boundary condition

I ¼ I0 s ¼ 0 ð2Þ

where L is the length of the ray trajectory considered. If b 6¼ 0, Eq. (1) can be rewrit-
ten as

I ¼ �b�1 dI

ds
þ ð1� xÞIb þ

x
4p

Z
4p

Iðs;X0ÞUðX0;XÞ dX0 ð3Þ

Substituting Eq. (3) into the derivative term of Eq. (1) results in the following
SORTE:

�b�1 d

ds
b�1 dI

ds

� �
þ I ¼ S � b�1 dS

ds
ð4Þ
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where S is the source function, defined as

S ¼ ð1� xÞIb þ
x
4p

Z
4p

Iðs;X0ÞUðX0;XÞ dX0 ð5Þ

When b ¼ 0, the SORTE becomes

d2I

ds2
¼ 0 ð6Þ

In the space of optical coordinates, the SORTE can be rewritten as

� d2I

ds2
þ I ¼ S � dS

ds
s 2 ½0; sL� ð7Þ

where the optical coordinate s and the optical thickness sL are defined, respectively,
as

s ¼
Z s

0

bðsÞds sL ¼
Z L

0

bðsÞds ð8Þ

In three-dimensional Cartesian coordinate, the second-order derivative term in the
SORTE can be expanded as

d2I

ds2
¼ m2 q

2I

qs2
x

þg2 q
2I

qs2
y

þ n2 q
2I

qs2
z

þðmgþgmÞ q2I

qsx qsy
ðmnþ nmÞ q2I

qsx qsz

þðgnþ ngÞ q2I

qsy qsz
ð9Þ

By substituting Eq. (9) into Eq. (7), we can see that the SORTE is a diffusion-type
equation similar to the heat conduction equation of an anisotropic medium.

As shown in Eq. (7), the SORTE can be seen as a second-order ordinary dif-
ferential equation (ODE) of radiative intensity with respect to the optical coordinate
s. It is known that two boundary conditions are needed to uniquely define a solution
for the second ODE. Therefore, another appropriate boundary condition is needed
to be imposed for the SORTE, besides the inflow boundary condition given by Eq.
(2). A natural idea is to define a boundary condition for the outflow boundary of
radiation. Because the original RTE describes radiative energy conservation and is
valid at any position of ray trajectories, we can naturally use Eq. (1) as the outflow
boundary condition for the SORTE, namely,

b�1 dI

ds
þ I ¼ S s ¼ L ð10Þ

In Cartesian coordinates, the SORTE given by Eq. (4) and boundary
conditions Eq. (2) and Eq. (10) can be expressed in divergence form as

�b�1X � r½b�1X � rI � þ I ¼ S � b�1X � rS ð11Þ
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Iðrw;XÞ ¼ I0ðrw;XÞ nw � X > 0 ð12aÞ

b�1X � rI þ I ¼ S nw � X � 0 ð12bÞ

The boundary condition [Eq. (12a)] is conventionally called a Dirichlet boundary
condition or essential boundary condition, and Eq. (12b) the Neumann boundary
condition or natural boundary condition. A schematic of the boundary conditions
for the SORTE is shown in Figure 1, where C denotes all the domain boundary with
C ¼ CD [ CN ; CD and CN denote the inflow boundary and the outflow boundary,
respectively.

ANALYSIS OF MATHEMATICAL PROPERTIES OF THE SORTE

For the sake of analysis, the optical coordinate s is normalized according to the
optical thickness sL; then the original RTE can be rewritten as

1

sL

dI

d�ss
þ I ¼ S �ss 2 ½0; 1� ð13Þ

Similarly, the SORTE given by Eq. (7) can be rewritten as

1

sL
2

d2I

d�ss2
þ I ¼ S � 1

sL

dS

d�ss
�ss 2 ½0; 1� ð14Þ

where �ss is the normalized optical coordinate, defined as

�ss ¼ s
sL

ð15Þ

The inflow and the outflow boundary conditions can be rewritten as

I ¼ I0 �ss ¼ 0 ð16aÞ

Figure 1. Schematic of boundary conditions for the second-order formula of the RTE.
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1

sL

dI

d�ss
þ I ¼ S �ss ¼ 1 ð16bÞ

Consistency

To check the consistency of the SORTE with the original RTE, we consider a
radiative transfer problem in a nonemitting and nonscattering medium. For a non-
emitting and nonscattering medium, the SORTE can be written as

� d2I

d�ss2
þ s2

LI ¼ 0 ð17Þ

with the inflow and the outflow boundary conditions

I ¼ I0 �ss ¼ 0 ð18aÞ

dI

d�ss
þ sLI ¼ 0 �ss ¼ 1 ð18bÞ

The general solution of Eq. (17) can be found as

Ið�ssÞ ¼ C1e�sL�ss þ C2esL�ss ð19Þ

The coefficients C1 and C2 are determined by the boundary conditions as C1 ¼ I0

and C2 ¼ 0, respectively. Therefore, the solution of Eq. (17) can be written as

Ið�ssÞ ¼ I0e�sL�ss �ss 2 ½0; 1� ð20Þ

which is the same as the solution of the original RTE with boundary condition given
by Eq. (18a). This result proves the consistency of the SORTE with the RTE.

Perturbation Error Analysis

The solution of a physical model is often perturbed by errors of model para-
meters and boundary conditions. Thus, to know the spreading characteristics of
the error is very important to evaluate the numerical properties of the SORTE.

First, we consider the perturbation error caused by inflow boundary condition.
The perturbation error at the inflow boundary is simulated as a small constant
perturbation in Eq. (16a), and written as

I ¼ I0 þ e �ss ¼ 0 ð21Þ

Under the boundary conditions given by Eq. (21) and Eq. (18b), the SORTE given
by Eq. (17) has the following perturbed solution:

Ieð�ssÞ ¼ I0 þ eð Þe�sL�ss ð22Þ
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Thus the relative perturbation error function of the solution is

Erel
in ð�ssÞ ¼

Ie � IE

IE
¼ ee�sL�ss

I0e�sL�ss
¼ e

I0
ð23Þ

where IE is the exact solution when no errors of model parameters and boundary
conditions exist. From Eq. (23), it can be seen that the relative perturbation error
is linearly proportional to the error at the inflow boundary and independent of
the optical coordinates. For this inflow boundary condition perturbation, the rela-
tive perturbation error function is the same for the RTE.

Then we consider the perturbation errors caused by the outflow boundary con-
dition. A small constant perturbation is imposed in the outflow boundary condition
given by Eq. (18b) as follows:

dI

d�ss
þ sLI ¼ e �ss ¼ 1 ð24Þ

Under the boundary conditions given by Eq. (18a) and Eq. (24), the SORTE given
by Eq. (17) has the following perturbed solution:

Ieð�ssÞ ¼ I0e�sL�ss þ e
2sL

e�sLð1��ssÞ � e�sLð1þ�ssÞ
h i

�ss 2 ½0; 1� ð25Þ

In order to investigate the global property of the perturbation error in the solution of
the SORTE, here we define the integral averaged relative error of the solution as

Eint ¼
R 1

0 Ie � IEj jd�ssR 1

0 IEj jd�ss
ð26Þ

By substituting the perturbed solution Eq. (25) and the exact solution into Eq. (26),
we obtain the following integral averaged relative error for the solution of the
SORTE caused by perturbation in the outflow boundary condition:

Eint
out ¼

ej j
I0

AoutðsLÞ ð27Þ

where error amplifying factor AoutðsLÞ is

AoutðsLÞ ¼
1

2sL
1� e�sLð Þ ð28Þ

As shown in Figure 2, the error amplifying factor AoutðsLÞ diminishes quickly with
increasing of optical thickness and is always less than 1.0.

Finally, we consider the perturbation error caused by the radiative source func-
tion in the case of S ¼ 0. The perturbed SORTE is written as

� d2I

d�ss2
þ s2

LI ¼ e ð29Þ
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and the integral averaged relative error is obtained by the same analysis procedure
given above:

E int
S;2nd ¼

ej j
I0

AS;2ndðsLÞ ð30Þ

where error amplifying factor AS;2ndðsLÞ is

AS;2ndðsLÞ ¼
1

sL

1

1� e�sL
� 3� e�sL

2sL

� �
ð31Þ

The perturbation error caused by the radiative source function for the original RTE in
the case of S ¼ 0 can be similarly analyzed. The perturbed original RTE is written as

1

sL

dI

d�ss
þ I ¼ e �ss 2 ½0; 1� ð32Þ

and the integral averaged relative error is obtained as

Eint
S;1st ¼

ej j
I0

AS;1stðsLÞ ð33Þ

where error amplifying factor AS;1stðsLÞ is

AS;1stðsLÞ ¼
1

1� e�sL
� 1

sL
ð34Þ

As shown in Figure 3, the amplifying factors AS;1stðsLÞ and AS;2ndðsLÞ are both not
greater than 1.0. However, the amplifying factors AS;1stðsLÞ of the original RTE
increases with the optical thickness, but the amplifying factors AS;2ndðsLÞ of the

Figure 2. Error amplifying factor of outflow boundary condition.
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SORTE diminish quickly with increasing optical thickness. From the above analysis,
it can be seen that the SORTE has good numerical properties.

NUMERICAL SOLUTION METHOD

In order to fully verify the second-order formula for the RTE and the associa-
ted boundary conditions described above, a numerical solution method based on the
Galerkin finite-element method is developed to solve the SORTE. First, the discrete-
ordinates equation of the SORTE is formulated, and then a general formulation of
Galerkin discretization is derived based on the discrete-ordinates equation. Finally,
the implementation of boundary conditions and solution procedure is presented.

Discrete-Ordinates Equation

Here, the discrete-ordinates method is used for the angular discretization.
Equations (11) and (12) are replaced by a set of equations for the discrete directions.
The resulting discrete-ordinates equations of the SORTE with boundary conditions
can be written as

�b�1Xm � r½b�1Xm � rIðr;XmÞ� þ Iðr;XmÞ ¼ Sðr;XmÞ � b�1Xm � rSðr;XmÞ ð35Þ

Iðrw;X
mÞ ¼ I0ðrw;X

mÞ nw � X > 0 ð36aÞ

b�1Xm � rIðrw;X
mÞ þ Iðrw;X

mÞ ¼ Sðrw;X
mÞ nw � X � 0 ð36bÞ

Figure 3. Comparison of error amplifying factors of radiative source term based on the SORTE and the

original RTE.
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For the opaque, diffuse emitting and reflecting wall, the inflow boundary condition is

I0ðrw;X
mÞ ¼ ewIbðrwÞ þ

1� ew

p

X
nw�Xm0<0

Iðrw;X
m0 Þjnw � Xm0 jwm0 ð37Þ

where Xm is the discrete angular direction, wm0 is the weight corresponding to direc-
tion m0, and nw is inward normal vector of the boundary.

Galerkin Discretization

By multiplying by b, Eq. (35) can be written as

�Xm � r½b�1Xm � rIm� þ bIm ¼ bSm � Xm � rSm ð38Þ

The advantage of replacing Eq. (35) by Eq. (38) for Galerkin discretization is that the
resulting stiff matrix is always symmetric even if b is a function of spatial coordi-
nates. Weighting Eq. (38) by shape function /j and then integrating over the solution
domain yields

hb�1Xm � rIm;Xm � r/ji þ
Z

C
b�1Xm � rIm/jðXm � nwÞ dAþ hbIm;/ji

¼ hbSm;/ji � hXm � rSm;/ji
ð39Þ

where C denotes the boundary of solution domain with C ¼ CD [ CN ; CD and CN

denote the inflow and the outflow boundaries as shown in Figure 1. The inner pro-
duct h�; �iis defined as

hf ; gi ¼
Z

V

fg dV ð40Þ

If we choose /j 2 UD :¼ fuðrÞjuðrÞ ¼ 0; r 2 CDg, then Eq. (39) can be written as

hb�1Xm � rIm;Xm � r/ji þ
Z

CN

b�1Xm � rIm/jðXm � nwÞ dAþ hbIm;/ji

¼ hbSm;/ji � hXm � rSm;/ji
ð41Þ

From the outflow boundary condition given by Eq. (36b), we have
Z

CN

b�1Xm � rIm/jðXm � nwÞ dA ¼
Z

CN

ðSm � ImÞ/jðXm � nwÞ dA ð42Þ

Substituting Eq. (42) into Eq. (41) leads to

hb�1Xm � rIm;Xm � r/ji �
Z

CN

Im/jðXm � nwÞ dAþ hbIm;/ji

¼ hbSm;/ji � hXm � rSm;/ji �
Z

CN

Sm/jðXm � nwÞ dA

ð43Þ
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Using the shape function approximation of radiative intensity, namely,

ImðrÞ ’
XNsol

i¼1

Im
i /iðrÞ ð44Þ

Eq. (43) can be written in matrix form for each discrete direction Xmas

KmIm ¼ Hm ð45Þ

where the stiff matrix Km and the right-hand-side vector Hm are defined, respectively,
as

Km
ji ¼ hb

�1Xm � r/i;X
m � r/ji �

Z
CN

/i/jðXm � nwÞ dAþ hb/i;/ji ð46Þ

Hm
j ¼ hbSm;/ji � hXm � rSm;/ji �

Z
CN

Sm/jðXm � nwÞ dA ð47Þ

From Eq. (46), it can be seen that the Galerkin discretization of the SORTE ensures
a symmetric stiff matrix for every discrete ordinate direction, which is a good
numerical property.

Implementation

The outflow boundary conditions have been imposed implicitly in the Galerkin
discretization formulation by using the Gauss theorem. Here, we use the collocation
technique [34, 35] to impose the inflow boundary condition, that is, for each node j
on the inflow boundary of direction Xm described by Eq. (36a), the matrix Km and
the vector Hm are modified as follows:

Km
ji ¼

1 j ¼ i
0 j 6¼ i

�
ð48aÞ

Hm
j ¼ Im

j ð48bÞ

In the following analysis, a finite-element method implementation of the
Galerkin discretization of the SORTE is employed. The implementation of
the method is carried out according to the following routine.

Step 1. Mesh the solution domain with Nel nonoverlapping elements.
Step 2. Loop each angular direction for m ¼ 1; . . . ;M, then assemble the global stiff

matrix Km, and the right-hand-side vector Hm.
Step 3. Modify Km and Hm to impose the inflow boundary condition according to

Eq. (48).
Step 4. Solving the linear equation given by Eq. (45) to get the radiative intensity on

each node for discrete ordinate direction m.
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Step 5. Terminate the iteration process if the stop criterion is met. Otherwise go
back to Step 2.

In this article, the maximum relative error 10�4 of incident radiation is taken as
the stopping criterion for the global iteration.

RESULTS AND DISCUSSION

Computer code has been developed based on the numerical methods described
above. To verify the formulations presented in this article, four various test cases are
selected to fully verify the performance of the SORTE. For the sake of analysis and
comparison, the integral averaged relative error is defined as

Relative error % ¼
R

V numerial solution� exact valuej j dVR
V exact valuej j dV

� 100 ð49Þ

Case 1: Gaussian-Shaped Radiative Source Term between
One-Dimensional Parallel Black Slabs

We consider the radiative transfer problems in a nonscattering medium
between one-dimensional infinite parallel black slabs. The radiative source term of
the medium has a profile similar to a Gaussian function. This problem is modeled
by the following RTE as

m
dI

dx
þ jaI ¼ e�ðx�cÞ2=a2

x; c 2 ½0; 1� ð50Þ

with the boundary conditions

Ið0; mÞ ¼ j�1
a e�c2=a2

m > 0 ð51aÞ

Ið1; mÞ ¼ j�1
a e�ð1�cÞ2=a2

m < 0 ð51bÞ

The analytical solution of this problem in the case of m > 0 can be written as

Iðx; mÞ ¼ Ið0; mÞ exp � jax

m

� �

� a
ffiffiffi
p
p

2m
exp � ja

m
x� a2ja

4m
þ c

� �� �� �
erf

aja

2m
þ c� x

a

� �
� erf

aja

2m
þ c

a

� �� �

ð52Þ

The FEM based on the SORTE is applied to the case of c ¼ 0.5, a ¼ 0:02, in
which 50 linear isoparametric elements are used. The distribution of radiative inten-
sity in the direction of m ¼ 0:5773503 is presented in Figure 4 for three different
optical thicknesses, 0.1, 1, and 10, and compared to the analytical solution.
The results obtained by the Galerkin FEM based on the original RTE with the same
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Figure 4. Distribution of radiative intensity in a one-dimensional slab: (a) sL ¼ 0:1; (b) sL ¼ 1:0; (c)

sL ¼ 10.
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spatial grid are also presented as a comparison. It can be seen that the results
obtained using the SORTE are accurate and stable for all three optical thicknesses,
while the results obtained using the original RTE exhibit obvious nonphysical oscil-
lations, though the oscillations diminish with increasing optical thickness.

Case 2: Isotropic Scattering in a Gray Enclosure

In this case, a square enclosure filled by isotropically scattering medium with
single albedo x ¼ 1:0 is considered. The bottom wall of the enclosure is kept hot
and its temperature is denoted as Tw1, but all other walls and the medium bounded
by the enclosure are kept cold. The FEM based on the SORTE is applied to this case
with 400 linear quadrilateral isoparametric elements, in which the S8 approximation
is used for discrete-ordinates discretization. The dimensionless net radiative heat
fluxes qw=rT4

w1 along the hot wall are presented in Figure 5 for three different values
of wall emissivities, ew ¼ 0:1; 0:5, and 1.0, and compared to the results obtained
using the zone method [36]. It can be seen that the results obtained using the SORTE
agree with those obtained using the zone method very well. The integral averaged
relative error based on the results obtained using the zone method for the case of
ew ¼ 1:0 is less than 1%. Figure 6 shows a comparison of results obtained using
the FEM based the SORTE and the original RTE in the case of ew ¼ 0:5. It can
be seen that obvious nonphysical oscillations still exist in the results obtained using
the FEM based on the original RTE.

Case 3: Anisotropic Scattering in a Black Enclosure

In this case, we consider the radiative heat transfer problem in a gray medium
enclosed by a square black enclosure. The optical thickness based on the side length
L of the enclosure is sL ¼ bL ¼ 1:0. The medium is kept hot, but all the boundary

Figure 5. Distribution of dimensionless net radiative heat fluxes along the bottom wall of a gray enclosure.
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walls are kept cold. The temperature Tg, the absorption coefficient, and the scatter-
ing coefficient of the medium bounded by the enclosure are uniform. The following
scattering phase function [38] with asymmetry factor of 0.66972 is used:

U ¼
X8

j¼0

CjPjðmÞ ð53Þ

where the Pj are the Legendre polynomials. The Cj are the expansion coefficients
defined as C0 ¼ 1:0, C1 ¼ 2:00917, C2 ¼ 1:56339, C3 ¼ 0:67407, C4 ¼ 0:22215,
C5 ¼ 0:04725, C6 ¼ 0:00671, C7 ¼ 67407, and C8 ¼ 0:00005; respectively.

The FEM based on the SORTE is applied to this case with 400 linear quadri-
lateral isoparametric elements, in which the S8 approximation is used for discrete-
ordinates discretization. The dimensionless net radiative heat fluxes ðqw=rT4

g Þ on
the lower wall for three different single scattering albedos, x ¼ 0:0; 0:5, and 0.9,
are shown in Figure 7 and compared to the results obtained using the DOM [37].
The integral averaged relative error based on the DOM data in [37] is less than
0.9% for the case of x ¼ 0:5. The FEM based on the SORTE has good accuracy
in solving the radiative heat transfer problems in an anisotropically scattering
medium.

Case 4: Nonscattering Medium in a Semicircular Enclosure with a
Circular Hole

As shown in Figure 8a, we consider a semicircle enclosure with a circular hole.
The medium is kept hot, while all boundaries are black and kept cold. The tempera-
ture Tg and the absorption coefficient of the medium bounded by the enclosure are
uniform. The FEM based on the SORTE is applied to this case with 450 linear
quadrilateral isoparametric elements, in which the S8 approximation is used for
discrete-ordinates discretization. The elements distribution is shown in Figure 8b.

Figure 6. Comparison of dimensionless net radiative heat fluxes obtained using the SORTE and the orig-

inal RTE in the case of ew ¼ 0:5.
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Figure 7. Distribution of dimensionless net radiative heat fluxes on the bottom wall of a square enclosure

filled with an anisotropically scattering medium.

Figure 8. Semicircle enclosure with a circular hole: (a) configuration; (b) mesh with 450 elements.
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The distribution of the dimensionless net radiative heat flux qw=rT4
g along the bot-

tom wall are presented in Figure 9 for three different optical thicknesses ðsL ¼ bRÞ,
namely, 0.1, 1.0, and 10, and compared to the results obtained using the FVM [38]. It
can be seen that the results obtained using the FEM based on the SORTE agree well
with the FVM data in [38]. The integral averaged relative error based on the FVM
data for the case of sL ¼ 1:0 is less than 3%. The FEM based on the SORTE
developed in this article has good accuracy in solving radiative heat transfer pro-
blems with complex geometric configurations.

CONCLUSIONS

A second-order radiative transfer equation (SORTE) has been derived for an
absorbing, emitting, and anisotropically scattering medium. This new equation is
a diffusion-type equation similar to the heat conduction equation for an anisotropic
medium. The appropriate boundary conditions for the SORTE have been discussed.
The consistency of the SORTE under the given boundary conditions with the orig-
inal RTE has been demonstrated. The perturbation characteristics of the error in the
boundary conditions and the radiative source term have been analyzed for both the
SORTE and the original RTE. Good numerical properties have been found for
the SORTE. A general formulation of Galerkin discretization based on the discrete-
ordinates equation of the SORTE has been derived, which guided a symmetric stiff
matrix for every discrete ordinate direction. A finite-element method implementation
of the Galerkin discretization of the SORTE has been employed to solve radiative
heat transfer problems in multidimensional semitransparent media. Four various test
problems were taken as examples to verify the formulations. The predicted radiative
intensity distributions and net radiative heat flux determined by the FEM based on

Figure 9. Distribution of dimensionless net radiative heat flux along the bottom wall of a semicircle

enclosure.
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the SORTE agree very well with the analytical solutions and data in references.
Results show that the FEM based on the SORTE is numerically stable, efficient,
and accurate for solving radiative transfer problems in semitransparent media.
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