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Least-squares spectral element method based on the discrete-ordinate equation is developed

to solve multidimensional radiative heat transfer problems in semitransparent media. An

efficient algorithm for implementation of the method is presented. Chebyshev polynomials

are employed as basis functions for the spectral element discretization. The p-convergence

characteristics of the least-squares spectral element method are studied. The convergence

rate is very fast and approximately follows the exponential law. Four test problems are

taken as examples to verify the least-squares spectral element formulation. The predicted

temperature distributions and radiative heat flux are determined by the least-squares spec-

tral element method and compared with data in the references. The results show that the

least-squares spectral element method developed in this article has good accuracy for

solving multidimensional radiative heat transfer problems.

INTRODUCTION

Numerical solution of the radiative transfer equation (RTE) in an absorbing,
emitting, and scattering medium requires considerable effort for most practical sys-
tems composed of semitransparent media. Recently, many numerical methods have
been developed to solve the problem of radiative heat transfer in semitransparent
media, such as the Monte Carlo method [1], the zonal method [2], the discrete-
ordinates method (DOM) [3–5], the finite-volume method (FVM) [6–10], and the
finite-element method (FEM) [11–15]. Among the traditional methods just stated,
the FVM and DOM have the ability to treat complex geometry, and are two of
the most popular methods to solve the radiative heat transfer in semitransparent
media. Recently, many modifications and improvements [16–23] have been made
for these two methods, including mitigation of ray effects [16, 17], parallelization
[18, 19], and new solution schemes [20–23]. While most of these methods just offer
h convergence, i.e., the convergence gained by reducing the element size h or h refine-
ment, as a result, remeshing or refining have to be done in order to gain the wanted
accuracy.
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Spectral element approximation, originally proposed by Patera [24] for the sol-
ution of fluid problems, combines the advantages of spectral approximation, i.e., the
freedom to choose the order p of spectral approximation, offering p convergence,
and finite-element approximation, i.e., the flexibility to deal with complex domains
and offering h convergence. The p convergence of the spectral element approxi-
mation makes it more flexible, and the solution accuracy can be easily increased
by just increasing the order or p refinement of spectral approximation without
refining or remeshing the geometric mesh. Another very important property of the
p convergence is its higher convergence rate, i.e., exponential law for approximating
continuous functions. As a result, spectral element approximation is more effective
than spectral approximation and finite-element approximation.

NOMENCLATURE

= first-order linear differential operator

defined in Eq. (4)

h element size, Lagrange interpolation

polynomial defined in Eq. (10)

�h two-dimensional spectral nodal basis

defined on X2
st

H matrix defined in Eq. (25)

I radiative intensityeII approximate radiative intensity

Ib blackbody radiative intensity

J Jacobian matrix

K matrix defined in Eq. (24)

L slab thickness, side length of

rectangular medium

M number of discrete directions

n inward normal vector

N number of solution nodes in X1
st

Nel total number of elements

Nesol number of solution nodes per

element

Nsol total number of solution nodes per

element

p polynomial order

P Legendre polynomial

q radiative heat flux, W=m2

s unit direction vector

S source term of radiation transfer

equation

T temperature, K

Tg medium temperature, K

Uh global approximation space of

spectral element method

V solution domain

w weight for SN approximation, weight

defined in Eq. (11)

W weight function

x Cartesian coordinate vector defined

in solution domain

x; y; z Cartesian coordinates defined in

solution domain

b extinction coefficient

d variable defined in Eq. (11)

ew wall emissivity

f Cartesian coordinate vector defined

in standard element

f; c; 1 Cartesian coordinates defined in

standard element

H dimensionless temperature

j absorption coefficient, m�1

mm; nm;gm direction cosine of direction m

r scattering coefficient, m�1

�rr Stefan-Boltzmann constant, W=m2 K4

sL optical thickness ½¼ðjþ rÞL�
/ global basis (shape function)

/e elemental basis function defined on

element e

U scattering phase function

u coordinate transform function

Xe general element e

Xst standard element

rx gradient operator with respect to x

ð¼ i q
qxþ j q

qyþ k q
qzÞ

rf gradient operator with respect to f
ð¼ i q

qfþ j q
qcþ k q

q1Þ

Subscripts

e element index

i elemental nodal index

i0 transformed elemental nodal index

defined in Eq. (14)

n; j solution node index

w value at wall boundary

Superscripts

e function defined on element e

m;m0 direction index

1, 2 dimension
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Spectral or hp finite-element method has been successfully applied to computa-
tional fluid dynamics and heat transfer [24–29], and hence it is a natural idea to
extend this method to solve radiative transfer problems. Recently, Pontaza and
Reddy [30] proposed a least-square hp finite-element formulation for solving the
one-dimensional integral-differential RTE directly. In their work, two kinds of dis-
cretization schemes, namely, space-angle coupled and decoupled schemes are stud-
ied, and the results show that the space-angle decoupled scheme is inferior to the
space-angle coupled scheme for one-dimensional problems. For multidimensional
radiative transfer problems, the space-angle coupled scheme increases the dimension
of the solution domain by adding an angular dimension to the spatial dimension and
results in very large algebraic equations; it is therefore inefficient. There are also
some differences between the solution of 1-D and 2-D or 3-D problems. So it is
necessary to develop a space-angle decoupled spectral=hp finite-element method
and verify its performance for multidimensional radiative transfer problems.

In the present work, we develop a least-squares spectral element method
(LSSEM) for solving multidimensional RTEs based on the discrete-ordinates equa-
tion of the RTE. An efficient algorithm for implementation of the method is pre-
sented. The p-convergence characteristics of the least-squares spectral element
method are studied. Four test cases of radiative heat transfer in semitransparent
media are studied to verify the performance of the method.

MATHEMATICAL FORMULATION

Discrete-Ordinates Equation of the Radiative Transfer Equation

Consider radiative transfer in an enclosure filled with an absorbing, emitting,
and scattering gray medium. The discrete-ordinates equation of radiative transfer
can be written as

mm qIm

qx
þ gm qIm

qy
þ nm qIm

qz
¼ jIb � jþ rð ÞIm þ r

4p

XM
m0¼1

Im0Um0;m wm0 ð1Þ

For the opaque and diffuse boundary, the boundary conditions are given as

Im
w ¼ ewIbw þ

1� ew

p

X
nw �sm0<0

Im0

w nw � sm0
�� ��wm0 sm

� nw > 0 ð2Þ

For simplicity, the in-scattering term is treated implicitly as part of the source term,
thus the original system of partial differential-integral equations transform to a
system of partial differential equations of the form

=m½Im� ¼ Sm ð3Þ
where

=m ¼ mm q
qx
þ gm q

qy
þ nm q

qz
þ jþ rð Þ ð4Þ

SmðrÞ ¼ jIbðrÞ þ
r
4p

XM
m0¼1

Im0 ðrÞUm0;m wm0 ð5Þ
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Here, =m is the first-order linear differential operator and Sm is the source
term.

The partial differential equation (1) with boundary condition given by Eq. (2) is
solved for each discrete direction. Taking direction cosines mm, gm, and nm as veloci-
ties in the x, y, and z directions, respectively, operator =m can be considered as a
convection operator. Therefore, Eq. (1) is a special case of the general convection-
diffusion equation [31]. It is well known that convection-diffusion equations are some
of the most difficult problems to solve numerically, especially for convection-
dominated problem. The presence of a convection term may cause nonphysical oscil-
lation of solutions. This type of instability can occur in many numerical methods,
including the finite-difference method and the finite-element method, if no special
stability treatment is taken. In this article, a least-squares spectral element method
is developed to solve the discrete-ordinates equation of radiative heat transfer.

Spectral Element Approximation

Spectral element approximation combines the advantages of spectral approxi-
mation, i.e., the freedom to choose the order p of approximation, offering p conver-
gence, and finite-element approximation, i.e., the flexibility to deal with complex
domains and the freedom to choose element size h, offering h convergence. As in
the finite-element method, the solution domain X is decomposed into Nel nonover-
lapping elements Xe, that is,

X ¼
[Nel

e¼1

Xe

\Nel

e¼1

Xe ¼
�
� ð6Þ

The spectral element method approximates a function by spectral expansion of the
function over each element Xe. As shown in Figure 1, the spectral bases are originally
defined on standard element Xst and transformed to each general element Xe to build
basis functions /e

i over Xe. With Lagrange nodal basis expansion, the spectral
element approximation can be formulated in a form as in finite-element approxi-
mation. Considering the elemental nodal basis as a shape function, the radiative
intensity can be approximated over element Xe by

eIIm;eðxÞ ¼
XNesol

i¼1

Im;e
i /e

i ðxÞ ð7Þ

Figure 1. Schematic graph for element coordinate transform.
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where Im;e
i denotes the radiative intensity at the ith node of element Xe, /e

i ðrÞ are
Lagrange nodal basis functions defined on element Xe (elemental basis), and Nesol

denotes the number of solution nodes per element.
Using a global assembly procedure as in the finite-element method, nodal basis

functions on each element around node j can be assembled as the global basis (shape
function) of node j, denoted by /j . The global approximation space Uh is taken to be
Uh ¼ spanf/j; j ¼ 1; . . . ;Nsolg. Here, Nsol denotes the total number of solution
nodes. The global approximation intensity eII m

can be written as

eIImðxÞ ¼
XNsol

j¼1

Im
j /jðxÞ ð8Þ

where Im
j denotes the radiative intensity at solution node j.

In this article, Chebyshev polynomials are used to build the elemental nodal
basis function. The N � 1 order nodal basis functions defined on standard element
X1

st ¼ ½�1; 1� are Lagrange interpolation polynomials through N Chebyshev-
Gauss-Lobatto points:

fj ¼ �cos
j � 1

N � 1
p

� �
j ¼ 1; . . . ;N ð9Þ

By using a barycentric interpolation formula, the Lagrange interpolation polyno-
mials can be written as [32]

hiðfÞ ¼
wi=ðf� fiÞPN
j¼1 wj=ðf� fjÞ

ð10Þ

where

wj ¼ ð�1Þj�1dj dj ¼
1
2 j ¼ 1 or j ¼ N
1 otherwise

�
ð11Þ

The barycentric interpolation formula is considered to be accurate and more compu-
tationally stable. This is demonstrated in [32–34].

Figure 2 shows the one-dimensional nodal basis for the order of 4. The location
of the nodes coincides with the aforementioned Gauss-Chebyshev-Lobatto points.
The Kronecker delta property of the nodal basis function is demonstrated in the
figure, which ensures that the expansion coefficients in Eqs. (7) and (8) coincide with
nodal values and is important to imposing boundary conditions.

Based on the one-dimensional spectral nodal basis function hiðfÞ, a two-
dimensional spectral nodal basis function defined on standard element X2

st ¼ ½�1; 1�
�½�1; 1� can be built with a tensor product by

�hi;jðf; cÞ ¼ hiðfÞhjðcÞ i; j ¼ 1; . . . ;N ð12Þ

For the sake of description and implementation, mapping the subscript index of �hi;j
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to get a compact form index is needed, i.e., i0 ¼ mði; jÞ, and Eq. (12) can be written
as

�hi0 ðf; cÞ ¼ hiðfÞhjðcÞ i0 ¼ 1; . . . ;N �N ð13Þ

A simple index mapping pairing used in this article is

i0 ¼ mði; jÞ ¼ ðj � 1ÞN þ i ð14aÞ

i ¼ ði0 � 1Þmod N þ 1 ð14bÞ

j ¼ ði
0 � iÞ
N

þ 1 ð14cÞ

In order to get the elemental nodal basis for general element Xe, element trans-
formation is needed. The nodal basis on standard element Xst and on general
element Xe is related by

/e
i0 ½xðfÞ� ¼ �he

i0 ðfÞ x 2 Xe; f 2 Xst ð15Þ

and with derivative relation

rx /e
i0 ½xðfÞ� ¼ J�1rf �he

i0 ðfÞ ð16Þ

where x ¼ xðfÞ defines the coordinate transform from Xst to Xe, rx is the gradient
operator with respect to x, rf is the gradient operator with respect to f, and J is
the Jacobian matrix.

Figure 2. Fourth-order Chebyshev Lagrange interpolation polynomial.
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In this article, the one-dimensional transformation is simply defined by

xðfÞ ¼ 1

2
½ðb� aÞfþ ðaþ bÞ� ð17Þ

where f 2 ½�1; 1� and x 2 ½a; b�. The Jacobian of this transform is just a constant
ðb� aÞ=2. In two-dimensional cases, the solution domain is decomposed into quadri-
lateral elements. For each f 2 Xst, the transformation from standard quadrilateral
element Xst defined by points fð�1;�1Þ; ð1;�1Þ; ð1; 1Þ; ð�1; 1Þg to general quadrilat-
eral element Xe defined by points fx1ðx1; y1Þ; x2ðx2; y2Þ; x3ðx3; y3Þ; x4ðx4; y4Þg in
anticlockwise order as shown in Figure 1 can be written as

x ¼
X4

i¼1

xiuiðf; cÞ ð18aÞ

y ¼
X4

i¼1

yiuiðf; cÞ ð18bÞ

where

u1ðf; cÞ ¼
1

4
ð1� fÞð1� cÞ u2ðf; cÞ ¼

1

4
ð1þ fÞð1� cÞ ð19aÞ

u3ðf; cÞ ¼
1

4
ð1þ fÞð1þ cÞ u4ðf; cÞ ¼

1

4
ð1� fÞð1þ cÞ ð19bÞ

and the Jacobian matrix of this transformation is

J ¼ qðx; yÞ
qðf; cÞ ¼

qx

qf
qy

qf
qx

qc
qy

qc

2
664

3
775 ¼ a1 þ c1c a2 þ c2c

b1 þ c1f b2 þ c2f

� �
ð20Þ

where

a1 ¼
1

4
ð�x1 þ x2 þ x3 � x4Þ a2 ¼

1

4
ð�y1 þ y2 þ y3 � y4Þ ð21aÞ

b1 ¼
1

4
ð�x1 � x2 þ x3 þ x4Þ b2 ¼

1

4
ð�y1 � y2 þ y3 þ y4Þ ð21bÞ

c1 ¼
1

4
ðx1 � x2 þ x3 � x4Þ c2 ¼

1

4
ðy1 � y2 þ y3 � y4Þ ð21cÞ

Discretization of Radiative Transfer Equation

Substituting Eq. (8) into Eq. (3), weighting by WjðrÞ, and then integrating over
the spatial solution domain yields

XNsol

n¼1

Im
n

Z
V

=m½/nðrÞ�WjðrÞ dV ¼
Z

V

SmðrÞWjðrÞ dV j ¼ 1; . . . ;Nsol ð22Þ
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Taking =m½/jðrÞ� and /jðrÞ as weight function, we can obtain the least-squares
scheme and standard Galerkin scheme of the spectral element method, respectively.
Here, only the least-squares scheme of the spectral element method discretization for
Eq. (3) is described. Taking =m½/jðrÞ� as weight function, the following discretized
system of linear equations is obtained:

KmIm ¼ Hm ð23Þ

where

Km
jn ¼

Z
V

mm q/nðrÞ
qx

þ gm q/nðrÞ
qy

þ nm q/nðrÞ
qz

þ jþ rð Þ/nðrÞ
� �

� mm
q/jðrÞ
qx

þ gm
q/jðrÞ
qy

þ nm q/jðrÞ
qz
þ ðjþ rÞ/jðrÞ

� �
dV ð24Þ

Hm
j ¼

Z
V

SmðrÞ mm
q/jðrÞ
qx

þ gm
q/jðrÞ
qy

þ nm q/jðrÞ
qz
þ ðjþ rÞ/jðrÞ

� �
dV ð25Þ

By using basis function interpolation, the source term can be expressed as

SmðrÞ ¼
XN

n¼1

Sm
n /nðrÞ ð26Þ

If b ¼ ðjþ rÞ is constant, Km and Hm can be written as

Km ¼ ðmmÞ2Axx þ mmgmAxy þ mmnmAxz þ mmbBxo

þ gmmmAyx þ ðgmÞ2Ayy þ gmnmAyz þ gmbByo

þ nmmmAzx þ nmgmAzy þ ðnmÞ2Azz þ nmbBzo

þ bmmBox þ bgmBoy þ bnmBoz þ ðbÞ2Boo ð27Þ

Hm ¼ mmBxo þ gmByo þ nmBzo þ bBooð ÞSm ð28Þ

Here

Axx
jn ¼

Z
V

q/nðrÞ
qx

q/jðrÞ
qx

dV A
xy
jn ¼

Z
V

q/nðrÞ
qy

q/jðrÞ
qx

dV

Axz
jn ¼

Z
V

q/nðrÞ
qz

q/jðrÞ
qx

dV

ð29aÞ

A
yx
jn ¼

Z
V

q/nðrÞ
qx

q/jðrÞ
qy

dV A
yy
jn ¼

Z
V

q/nðrÞ
qy

q/jðrÞ
qy

dV

Ayz
jn ¼

Z
V

q/nðrÞ
qz

q/jðrÞ
qy

dV

ð29bÞ
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Azx
jn ¼

Z
V

q/nðrÞ
qx

q/jðrÞ
qz

dV Azy
jn ¼

Z
V

q/nðrÞ
qy

q/jðrÞ
qz

dV

Azz
jn ¼

Z
V

q/nðrÞ
qz

q/jðrÞ
qz

dV

ð29cÞ

Box
jn ¼

Z
V

q/nðrÞ
qx

/jðrÞ dV Boy
jn ¼

Z
V

q/nðrÞ
qy

/jðrÞ dV

Boz
jn ¼

Z
V

q/nðrÞ
qz

/jðrÞ dV

ð30aÞ

Bxo
jn ¼

Z
V

/nðrÞ
q/jðrÞ
qx

dV Byo
jn ¼

Z
V

/nðrÞ
q/jðrÞ
qy

dV

Bzo
jn ¼

Z
V

/nðrÞ
q/jðrÞ
qz

dV

ð30bÞ

Boo
jn ¼

Z
V

/nðrÞ/jðrÞ dV ð30cÞ

The calculation of stiff matrix Km can be simplified by noticing the relations

Axy ¼ ðAyxÞT Axz ¼ ðAzxÞT Ayz ¼ ðAzyÞT ð31aÞ

Box ¼ ðBxoÞT Boy ¼ ðByoÞT Boz ¼ ðBzoÞT ð31bÞ
so only half of these matrices need to be calculated.

It can be seen that the series of matrices A and B is independent of angular
direction. They depend only on the various shape function integration over the sol-
ution domain. This means that they need to be assembled only once for each direc-
tion. This property can be used to design an efficient algorithm for solving the RTE.

Numerical Implementation

Boundary conditions must be imposed before solving Eq. (23). Here, the col-
location technique is used to impose the boundary condition given by Eq. (2). For
the Dirichlet boundary condition, the boundary operator can be considered as an
identity operator, and it is an identity matrix in discretized form. To impose the
boundary condition, we need only to replace the row of stiff matrix Km with an index
of the boundary node by the corresponding row of the identity matrix, and at the
same time, replace the corresponding row of the vector Hm by the radiation intensity
of the boundary node. Thus, for each node j on the inflow boundary of direction m
described by Eq. (2), this algorithm can be written as

Km
jn ¼

1 j ¼ n
0 j 6¼ n

�
ð32aÞ

Hm
j ¼ Im

j ð32bÞ
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Because the source term of the discrete-ordinates equation in direction m contains
the radiative intensities of the other directions, global iterations similar to those used in
the DOM are necessary to update the source term. The implementation of the least-
squares spectral element method can be carried out according to the following routine.

Step 1. Mesh the solution domain with quadrilateral elements.
Step 2. Choose the order of Chebyshev polynomial to build the elemental basis func-

tion and generate the solution nodes for each element with Gauss-Chebyshev-
Lobatto points.

Step 3. Build the basis function for each element Xe from standard element Xst, inte-
grate to get the element stiff matrix of series of matrices A and B defined in
Eqs. (29) and (30), then assemble to get the corresponding global stiff matrix
of series of matrices A and B.

Step 4. Begin to loop each angular direction for m ¼ 1; . . . ;M, and calculate the
corresponding source term matrix Sm, global stiff matrix Km, and Hm.

Step 5. Impose boundary conditions according to the algorithm described above.
Step 6. Solving the linear equation Eq. (23) to get the radiative intensity on each

solution node for angular direction m. End the angular loop.
Step 7. Terminate the iteration process if the stop criterion is satisfied. Otherwise, go

back to step 4.

In this article, the maximum relative error 10�4 of radiative intensity is taken as
stopping criterion for iteration.

RESULTS AND DISCUSSION

To examine the performance of the method presented in this article, four test
cases for radiative heat transfer are examined. The test cases are selected because
exact or very precise solutions of the radiative transfer equation exist for comparison
with the least-squares spectral element method results. The discrete ordinate equa-
tion with S8 approximation is used for all the cases.

Case 1: Nonscattering Gray Medium between Parallel Black Plates

We consider the temperature distribution in a nonscattering gray medium
between parallel black plates. The temperatures of the plates are T1 and T2, respect-
ively. The least-squares spectral element method was applied to the case with five
elements and fourth-order polynomial. The dimensionless temperature distribution
H ¼ ðT4 � T4

2 Þ=ðT4
1 � T4

2 Þ in the gray medium at radiative equilibrium is presented
in Figure 3 for three different optical thicknesses sL, namely, 0.1, 1, and 10, and com-
pared with the exact solution obtained by Heaslet and Warming [35]. It can be seen
that the least-squares spectral element method results agree with the exact result very
well. The maximum error based on the data in [35] is less than 2%.

The polynomial order p on the convergence characteristics of the spectral element
solution was studied based on the data in [35]. The relative error was defined as

relative error ¼ HLSSEM �Hexactk k
Hexactk k � 100 ð33Þ
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where �k kdenotes the l2 norm, and HLSSEM and Hexact denote the dimensionless tempera-
ture distribution obtained by the least-squares spectral element method and the exact
data in [35], respectively. The influence of different numerical integration schemes on
convergence characteristics was also studied. Here, two spectral elements were used,
and both Gauss and Chebyshev-Gauss-Lobatto integration schemes were selected.
The relative errors are plotted in Figure 4 for various polynomial orders. It can be seen

Figure 3. Dimensionless temperature distribution in gray medium at radiative equilibrium.

Figure 4. p Convergence on solution of temperature distribution.
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that the convergence rate is very fast and approximately follows the exponential law for
both integration schemes.

Case 2: Anisotropically Scattering in a Black Enclosure

In this case, we consider radiative heat transfer in a two-dimensional rectangu-
lar gray semitransparent medium enclosed by black boundaries. The optical thick-
ness based on the side length L of the rectangular enclosure is sL ¼ 1:0. The
medium is kept hot, but the temperatures of all boundary walls are maintained at
0 K. The temperature Tg, the absorption coefficient j, and the scattering coefficient
r of the medium enclosed by the rectangular enclosure are uniform. This case was
also studied by Kim and Lee [36] using the DOM. The following phase function
[37] with asymmetry factor 0.66972 is used:

U ¼
X8

j¼0

CjPjðmÞ ð34Þ

where the Pj are the Legendre polynomials. The Cj are the expansion coefficients
defined as C0 ¼ 1.0, C1 ¼ 2:00917, C2 ¼ 1:56339, C3 ¼ 0:67407, C4 ¼ 0:22215,
C5 ¼ 0:04725, C6 ¼ 0:00671, C7 ¼ 67407, and C8 ¼ 0:00005.

The least-squares spectral element method was applied to this case for three
values of single scattering albedo x, namely, 0.0, 0.5, and 0.9. Three decomposition
schemes, namely, 4, 25, and 49 elements, with fourth-order polynomial are used. The
dimensionless net radiative heat fluxes qw=�rrT4

g on the lower wall are shown in Fig-
ure 5 and compared to the results obtained from DOM [36]. It can be seen that the
result is independent of the mesh, and even with four elements the result obtained

Figure 5. Dimensionless net radiative heat flux on lower wall of rectangular enclosure.
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has a good accuracy. The maximum relative error based on the DOM data in [36] is
less than 3.5%. The least-squares spectral element method approach presented in
this article has good accuracy in solving the radiative heat transfer in anisotropically
scattering media.

Case 3: Nonscattering Gray Medium in a Trapezoidal Enclosure

As shown in Figure 6, we consider the radiative heat transfer in a two-
dimensional trapezoidal gray semitransparent medium enclosed by black boundaries.
The width of the bottom wall is L ¼ 1 m. The medium is kept hot, but the temperatures
of all boundary walls are maintained at 0 K. The temperature Tg and the absorption
coefficient of the medium enclosed by the rectangular enclosure are uniform.

The least-squares spectral element method was applied to this case with fourth-
order polynomial and two decomposition schemes, namely, 3 and 27 elements. The
solution domain and nodal distribution of the spectral element approximation for
three elements is shown in Figure 6. The dimensionless net radiative heat fluxes
qw=�rrT4

g on the lower wall are shown in Figure 7 for two different values of absorp-
tion coefficient, namely, j ¼ 1:0 and j ¼ 0:1 m�1, and compared to the exact sol-
ution [38] and the results obtained from the embedded FVM [38]. The maximum
relative error based on the exact data in [38] is less than 6% for Nel ¼ 27. It can
be seen that the least-squares spectral element method approach presented in
this article has good accuracy in solving the radiative heat transfer in complex
geometries.

Figure 6. Solution domain and nodal distribution of spectral element approximation for trapezoidal

enclosure.
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Case 4: Isotropically Scattering in a Gray Enclosure

In this case, the least-squares spectral element method is applied to a square
enclosure filled by isotropically scattering medium with the single albedo x ¼ 1:0
and the optical thickness sL ¼ 1:0: The lower wall is kept hot, but all other walls
and the media enclosed by the rectangular enclosure are kept cold (Tw1

¼ Tw2
¼

Tw3
¼ Tg ¼ 0 K), which means that the boundary conditions are discontinuous at

Figure 7. Dimensionless net radiative heat flux on lower wall of trapezoidal enclosure.

Figure 8. Dimensionless net radiative heat flux on lower wall in gray enclosure filled with purely scattering

medium.
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the two corners of the lower wall. The least-squares spectral element method was
applied to this case with nine elements and fourth-order polynomial. The dimension-
less net radiative heat fluxes qw=�rrT4

w1
on the lower wall are presented in Figure 8 for

three values of wall emissivities, namely, 0.1, 0.5, and 1.0, and compared to the
results obtained from zone method [39]. It can be seen that the results of the least-
squares spectral element method presented in this article agree with those of the zone
method very well. Even at blackbody wall condition (ew ¼ 1:0), the maximum
relative error is less than 1%.

CONCLUSIONS

A least-squares spectral element method based on the discrete-ordinates equa-
tion has been developed to solve multidimensional radiative heat transfer problems
in semitransparent media. An efficient algorithm for implementation of the method
has been presented. Chebyshev polynomials have been employed as basis functions
for the spectral element discretization. The p-convergence characteristics of the least-
squares spectral element method have been studied. The influence of different
numerical integration schemes on convergence has also been studied. Gauss and
Chebyshev-Gauss-Lobatto integration scheme have been selected. The convergence
rate is very fast and approximately follows the exponential law for both integration
schemes. Four test problems were taken as examples to verify the least-squares spec-
tral element formulation. The predicted temperature distributions and radiative heat
flux were determined by the least-squares spectral element method and compared
with data in the references. The results show that the least-squares spectral element
method developed in this article has a good accuracy for solving multidimensional
radiative heat transfer problems.
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