PHYSICAL REVIEW E 78, 066109 (2008)

Optimal contact process on complex networks
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Contact processes on complex networks are a recent subject of study in nonequilibrium statistical physics
and they are also important to applied fields such as epidemiology and computer and communication networks.
A basic issue concerns finding an optimal strategy for spreading. We provide a universal strategy that, when a
basic quantity in the contact process dynamics, the contact probability determined by a generic function of its
degree W(k), is chosen to be inversely proportional to the node degree, i.e., W(k) ~k~!, spreading can be

maximized. Computation results on both model and real-world networks verify our theoretical prediction. Our
result suggests the determining role played by small-degree nodes in optimizing spreading, in contrast to the
intuition that hub nodes are important for spreading dynamics on complex networks.
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Phase transition with an absorbing state is a fundamental
phenomenon in nonequilibrium statistical physics [1-3].
Such a transition can usually be described in terms of an
order parameter, say p, as a function of some system param-
eter p. The absorbing state is defined by p=0, while p>0
corresponds to an active state. As p changes through a criti-
cal point p,., the order parameter changes from p=0 to p
>0, signifying a phase transition. The contact process (CP),
introduced by Harris [4] as a model for epidemic spreading,
has found wide applications in science and engineering [1,5].
Recently, the CP has been adopted to complex networks [6,7]
as a prototype model for investigating phase transition on
large networks. A typical CP starts with a set of nodes that
are infected by a virus or carry certain information. As time
goes, these “seed” nodes interact with their neighbors so that
the virus or information begins to spread on the network. The
virus has a finite lifetime, which can be characterized by a
probability ¢ that it can survive on a node for a basic time
step determined by the specific physics of the problem. The
parameter p=1—g¢ is thus the probability that the virus dies
in a time step. If p is sufficiently large, say p>p,, the virus
cannot spread and will vanish in a finite number of time
steps, signifying an absorbing state. An active phase arises
for p<p, where the virus can spread to a substantial part of
the network. A key quantity in the CP dynamics is the con-
tact probability, denoted by W(k), which is the probability
that a node of degree k is infected upon being “contacted” by
a neighboring node that has already been infected. In recent
works [6,7], W(k) is assumed to be degree independent, or
uniform across the network. Under this assumption various
scaling laws associated with the phase transition can be ob-
tained and deviations from predictions of the mean-field
theory have been addressed [6].

There are significant applications of CP on complex net-
works, such as wireless multihop ad hoc communication net-
works [8] and information infrastructure in defense net-
works, where efficient spreading of information is important.
An issue thus concerns the optimal strategy for information
spreading. Since network dynamics involve many quantities
and parameters that can or cannot be controlled, in order to
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be able to address the “optimization” issue in a realistic way,
we focus on the contact probability W(k). In particular, sup-
pose p is fixed such that the network is in an active phase.
We ask, what form of W(k) should one choose so as to maxi-
mize the spreading? Let p be the fraction of nodes in the
network that are infected in a steady state. Our question is
thus how to maximize p by choosing W(k). Since infinitely
many possibilities for the functional form of W(k) may exist,
we shall further focus on the power-law function W(k) ~ k?,
where [ is a scaling exponent, as power law is one of the
most commonly occurring scaling laws in nature, particu-
larly associated with phase transitions. Our extensive simu-
lation results using different complex-network topologies
and configurations and real-world networks indicate that op-
timal spreading occurs for W(k) ~k~!. To explain this, we
have developed a general theory, not constrained by any spe-
cific form of W(k), which indeed predicts the optimal choice
of W(k)~k~'. For further verification, we examine, for the
optimal choice of W(k), the maximum value of p as a func-
tion of the control parameter p. The theoretically predicted
Pmax-VS-p relation agrees reasonably well with the numerical
results. A somewhat counterintuitive implication of our find-
ing is that nodes with smaller degrees can play a significant
role in information spreading. In particular, say, an infected
node has a number of neighbors with different degrees and
for a given time step it can only contact one neighboring
node to spread the information. Our result indicates that the
neighboring node with the smallest degree should be picked
with higher probability, in order to maximize the final popu-
lation of nodes that are infected with the information. Con-
tacts with hub nodes, nodes with relatively large degrees in
the network, should be depressed. Indeed, our theory sug-
gests a destructive role played by the hub nodes in the CP-
based spreading dynamics. As many networked systems in
nature and in various technological applications are complex
with heterogeneous degree distributions, our result can be
useful for a better understanding of epidemic dynamics and
for designing networks that are most efficient for information
spreading.

We consider a general CP process on complex networks.
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FIG. 1. (Color online) For a scale-free network of size N
=2000 and average degree (k)=6, the critical probability p. vs the
parameter (8. Each data point is the result of averaging over 10*
runs of the CP process and each run contains 2 X 10° time steps,
where a time average is taken for the last 10° steps. The solid red
line represents the polynomial fit of the data.

Assume that, initially, certain nodes in the network are in-
fected (e.g., they catch a virus, or acquire a piece of infor-
mation). For convenience, we say that a node, when infected,
carries a particle. At each time step, an infected node is cho-
sen at random. Say at a particular time step, node i is chosen.
The set of nodes that are connected to i are its neighbors.
With probability p, the particle carried by node i dies, but
with probability 1-p, the particle can contact one of i’s
neighbors, say j. If j is already occupied by a particle, it will
not be affected. If, however, j is not infected (or empty), the
particle at node i will generate an “offspring” on j, i.e., a new
particle can be created on j. In existing works on CP on
complex networks, the probability for a neighboring node to
generate a particle is uniform among all the neighboring
nodes of i. Here, we assume that the probability depends on
the degree k; of the neighboring node j. As we have rea-
soned, this contact probability can be meaningfully chosen to
be W(k;) ~kf. Hence the probability of choosing node j to
accept the particle is

ki) =Wik) | 2 Wk)=ki [ 2k (1)
leV; leV;

where [ represents one of the nodes in the neighboring set of
node i, V. If B>0 (B8<0), a node with large (small) degree
is more likely to be chosen. The fraction of infected nodes
p(t), which is equivalently the density of particles on the
network, in general depends on time. If p is large, there is a
high likelihood that a particle will die before generating any
offspring. In this case, the infection will eventually vanish
and the asymptotic steady-state solution is p=0, which cor-
responds to an absorbing phase. If p is small, we expect the
infection to spread over the network and a nonzero
asymptotic steady-state solution for p can arise, signifying an
active phase. As p is increased from zero, there will be a
phase transition to an absorbing state at p.>0. For uniform
contact probability, i.e., 8=0, the critical value of p,. is 0.5
[1]. For B#0, the value of p, deviates from 0.5.

To illustrate the deviation of p,. from the idealized value
0.5 in the general case of nonuniform contact probability, we
consider a standard scale-free network [9]. The number of
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FIG. 2. (Color online) For p=0.28, steady-state particle density
p as a function of B: (a) standard scale-free networks [9] of size
N=2000 but with different average degrees, (k)=16 (squares), 8
(circles), 4 (triangles); (b) scale-free networks of average degree
(k)y=6 but with different sizes, N=10 000 (squares), 5000 (circles),
1000 (triangles); (c) standard small-world networks [10] with dif-
ferent degrees of randomness as determined by the rewiring prob-
ability, ¢=0.2 (squares), 0.5 (circles), 0.8 (triangles); (d) scale-free
networks of different degree exponent y=4 (squares), 3.5 (circles),
2.5 (triangles) generated by the algorithm in [11]. In (c) and (d), the
network size and the average degree are fixed as N=2000 and (k)
=6. Every data point is the average result of 10* independent runs
of the CP dynamics. The remarkable phenomenon is that, regardless
of the network topology and configuration, the maximum value of
particle density is apparently achieved for S=-1.

nodes is N=2000 and the average degree is (k)=6. We start
the CP dynamics with the initial state where half of the nodes
are infected. For a fixed value of S, the parameter p is in-
creased systematically from zero. For each value of p, the
dynamics is evolved for a sufficiently long time to allow the
system to settle down to a steady state, either absorbing or
active. Thus the value of p. can be determined for each fixed
value of 8. The result is shown in Fig. 1, where we observe
that for 8=0, the value of p,. is indeed 0.5. When S is not
zero, we see that p. decreases from the idealized value 0.5.
This can be understood heuristically by taking into account
the correlations in the dynamics. First consider the case
where B is positive. In this case, nodes of large degrees (hub
nodes) are contacted more frequently than other nodes in the
network. The particle density on the hub nodes is typically
higher than the average density in the network. Thus only a
small fraction of contacts, the contacts by the hub nodes, are
likely to generate new particles. Many contacts in the net-
work tend to generate no particles. In order for an average
particle to survive on the network, the survival probability
g=1-p needs to be larger. This reduces the threshold prob-
ability p.. Now consider the opposite case where 3 is nega-
tive. In this case, nodes with relatively small degrees are
contacted more often and these nodes tend to carry a rela-
tively high density of particles. However, since these nodes
are not well connected in the network, the number of con-
tacts made by them is small. It is more difficult to generate
particles at other nodes. In order to sustain a steady popula-
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tion of particles, the particle survival probability g needs to
be larger, effectively reducing the critical value p.,.

For the range of g values considered in Fig. 1, the mini-
mum value of p, is pI"=~0.38. To ensure that the network is
in an active phase for all values of § of interest, it is neces-
sary to choose p< pZ"". In subsequent numerical experi-
ments, we choose p <0.38.

To address the optimization issue, we compute, for a num-
ber of different network topologies and configurations, in the
active phase, the steady-state particle density p vs B. The
results are summarized in Figs. 2(a)-2(d). Despite the differ-
ent network topologies (scale-free and small-world of differ-
ent degrees of randomness) and wide variations in network
parameters such as the size, the average degree, and the de-
gree exponent, we observe that p is maximized for S=-1.
Thus for the generic class of power-law, degree-dependent
contact probability W(k), the optimal strategy for spreading
information most efficiently is achieved for W(k) ~k~".

We now provide a mean-field theory to explain the opti-
mal spreading strategy W(k) ~ k™. Let n, be the fraction of
nodes of degree k that are occupied by particles. The evolu-
tion of ny, after incorporating the contact probability W(k),
can be written as

P(k'k)
k/

on
= pme+ (1= p)(1 = nk >,
ot B

nk.k nr, (2)

where the first term is due to the disappearance of particles
with probability p, and the second term is due to the genera-
tion of new particles. Specifically, the fraction of empty
nodes of degree k is (1—n;). To generate a new particle at an
empty node, it must be connected to an occupied node of
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some degree, say k', the probability of which is conditional
and denoted by P(k'|k). The quantity 5(k,k’) is the normal-
ized contact probability given by

W(k)

= E W(k/r)P(k//|k1) ’
k”

n(k,k") (3)

where k” denotes the degree of nodes in the neighbors of

nodes of degree k. For an uncorrelated network, the condi-

tional probability P(k’|k) is given by P(k'|k)=k'P(k")/{k)

[12]. Substituting this into Eq. (2), we obtain
z?nk

g len p
o =P (L= P (1= nkW(R) s

(4)

where p=2,P(k)n, is the average density of particles, and

(f(k)y=Z,P(k)f(k) represents the expectation of some func-

tion of degree, say f(k). The stationary solution to Eq. (4) is
MW (k) p

n,= s

T W (k)) + MW (k) p

)

where A=(1-p)/p. Carrying out the operation =,P(k) on
both sides of Eq. (5), we obtain

~ NkW(k) ~
t= % Pl (kW(K)) + NkW(k)p <

NF(k) >
(F(k)) +NF(k)p/’
(6)

where F(k) denotes kW(k). We see that, given a fixed value
of \, p is a functional of F(k). Taking the functional deriva-
tive 8/ 6F(k,) with respect to Eq. (6), we get

< Nk = ko) ((F) + NFp) = NF{(S(k = ko)) + NpS(k — ko) + NF[ Sp! 6F(ko)]}>
0= 5 (7)
((F)+\Fp)
NCEYS(k — ko) — NE(S(k — ko)) — NF2—P—
_ ’ ’ SF (ko) ®
N ((F)+\Fp)*
and hence
O _ [ (FYSk — ko) — F(3(k — ko)) \F? ©)
SF (ko) ((F)+\Fp)* (F)+\Fp)*| "

The density p can be maximized if Sp/ 8F(ky)=0. A possible
solution is &,F(k)=0, which leads to the optimal contact
probability: W(k) ~k~!, in good agreement with results from
numerical computations on model complex networks as in
Fig. 2. Mathematically, there can be multiple choices of the
function F(k) to make the derivative in Eq. (9) vanish. Our
choice g, F(k)=0 is thus only suggestive and its validity
needs to be checked by numerical computations. Indeed, as

Fig. 2 shows, extensive simulations on complex networks of
different topologies for different parameter settings indicate
that the choice is reasonable. It should be noted that this
result is not valid for relatively large p. As shown in Fig. 1,
for some p (e.g., p=0.49), the system with B=0 is in the
active state while the one with B=-1 is in the absorbing
state. As a result, Pp=i is smaller than Pp=0s indicating the
limitation of our result when p approaches the critical value.
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FIG. 3. (Color online) Contact process analysis (for p=0.2) for
the Internet at autonomous system level (open circles) and for a
co-author network (open squares) that includes all preprints posted
between Jan 1, 1995 and March 31, 2005 [14]. The Internet has
22 963 nodes and average degree (k)=4.22 and the co-author net-
work has 40421 nodes and (k)~8.69. We see that the optimal
spreading is achieved for B=~—1.

To provide further credence, we have also performed com-
putations using two real-world networks, the Internet and a
co-author network, and have obtained consistent results, as
shown in Fig. 3.

Note that, when the optimal functional form W(k) ~ k™! is
substituted back into Eq. (6), we obtain py=1-1/\
=(1-2p)/(1-p). Figure 4 shows, for a scale-free network,
numerically obtained relations between p,,, and p (open
circles) and the analytic prediction for p,,, (open squares).
We observe that, while there is a reasonable agreement be-
tween theory and numerics, the analytically predicted values
of pnax are slightly larger than the corresponding numerical
values. This can be explained as follows. Consider a particle
located at node i, which is generated by another particle situ-
ated at one of i’s neighboring nodes. Since this particle might
have already generated some other particles in the neighbor-
hood of i, the density of particles about i can be larger than
the asymptotic average density p. This means that, when two
connected nodes in the same neighborhood are both occu-
pied, the local density would be larger than p. Accordingly,
in the simulation of the actual process, more contacts yield
no new particles (or they are wasted), as compared with
those in the theoretical process where the correlation effect is
ignored. This leads to an overall lower value of p in the
simulation. This positive correlation effect becomes more
significant for p—p,, leading to a non-mean-field type of
behavior. These results are thus consistent with the main
point of Ref. [6], where the failure of the mean-field approxi-
mation is systematically addressed for p — p.. A similar phe-
nomenon is observed in a two-state epidemic spreading
model where at least one of the neighbors of an infected
node is infected [13]. In that case, we can replace the degree
k by the so-called remain degree (k—1) [13]. However, the
CP dynamics treated here is more complicated since there is
a nonzero probability that the ancestor of a particle can dis-
appear upon its generation.
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FIG. 4. (Color online) For a standard scale-free network of pa-
rameters N=2000 and (k)=6, p,.. (obtained with B=-1) vs the
parameter p. Each numerical data point is the result of averaging
over 10* independent runs of CP dynamics.

In summary, we have found a universal strategy for the
contact process on complex networks for optimal spreading
under the condition that, for an infected node, only the local
information about the degrees of its neighboring nodes is
available. Insofar as the degree distribution is not uniform,
we expect our strategy to be effective in maximizing the
extent to which an infection (or a piece of information) can
be spread on the network. Surprisingly, our optimal strategy
emphasizes the role of small-degree nodes played in promot-
ing efficient spreading dynamics. Moreover, recent studies
on network-based traffic [16] have revealed that, when rout-
ers have a uniform delivering capacity, routing protocols pre-
ferring small-degree nodes outperform the traditional method
without preference, and the optimal strategy is achieved in
the case where the delivering probability is inversely propor-
tional to the neighboring degree. Another example arises in
coupled oscillators where the highest synchronizability can
be achieved by setting the coupling strength inversely pro-
portional to the degree [17]. Our result, besides its implica-
tions to the fundamentals of nonequilibrium statistical phys-
ics, potentially can have significant applications such as the
design of broadcasting protocol of distributed sensor net-
works [8,15]. For a sensor network, the energy supply to
each sensor is limited but the transmission of information
costs a certain amount of energy. Carefully choosing the
message receiver to avoid a waste of energy is of paramount
interest. Our strategy also suggests that, in a social or a po-
litical network where the CP dynamics is relevant, seemingly
unimportant nodes, i.e., nodes of relatively small degrees,
can play a counterintuitively significant role in maximizing
the impact of a certain message that the social or political
leaders wish to spread.
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