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Abstract. In this paper, we empirically study the evolution of large scale
Internet topology at the autonomous system (AS) level. The network size grows
in an exponential form, obeying the famous Moore’s law. We theoretically
predict that the size of the AS-level Internet will double every 5.32 years. We
apply the k-core decomposition method on the real Internet, and find that the
size of a k-core with larger k is nearly stable over time. In addition, the maximal
coreness is very stable after 2003. In contrast to the predictions of most previous
models, the maximal degree of the Internet is also relatively stable versus time.
We use the edge-exchange operation to obtain the randomized networks with the
same degree sequence. A systematical comparison is drawn, indicating that the
real Internet is more loosely connected, and both the full Internet and the nucleus
are more disassortative than their randomized versions.
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1. Introduction

The last few years have witnessed tremendous activity devoted to the understanding of complex
networks. Particularly, functions and performance of the Internet, such as routing [1, 2], traffic
statistics [3, 4], navigation [5, 6] and information retrieval [7, 8], attract more and more attention
for their significance in modern society. Extensive evidence [9] has shown that the knowledge
of topology is a crucial prerequisite for understanding and optimizing Internet performance.
A seminal work by Faloutsos et al [10], revealing the heterogenous degree distribution of the
Internet, has induced an avalanche of works aiming at uncovering the structural architecture of
the Internet, including the degree–degree correlation [11], hierarchical organization [12], fractal
properties [13], loop structure [14], rich-club phenomena [15], clique-degree distribution [16],
and so on.

Although the immediate number of neighbors, namely the degree, is widely used as
an indicator of the importance of each node, this is over simplified thus may lead to
some misunderstanding since the networks of very different structures and functions could
have exactly the same degree sequence [17]. Actually, the degree represents minimal local
information. Based only on this information, one cannot distinguish whether a node belongs
to the central part or is located in a peripheral position. As an effective tool to extract the
central part of large scale networks, the k-core decomposition [18] has recently attracted much
attention and has been extensively used to analyze various networks [19]–[22], especially those
of heterogenous degree distribution. For the Internet at the autonomous system (AS) level,
k-core decomposition is usually used as a basis for visualization [23, 24], and the invariant
statistical properties of k-cores with different sizes (i.e. different values of k) indicate the
self-similar nature of the Internet [25]. Very recently, Carmi et al [26] studied the structural
properties of the most central part of the Internet at the AS level, namely the nucleus, which is
defined as the smallest k-core (i.e. the kmax-core with highest index kmax).

In this paper, based on the empirical analysis of the temporal evolution of Internet maps, we
show that (i) the size of a k-core with larger k is nearly stable over time (with some fluctuation),
in contrast to the exponential growth of the full graph size; (ii) the maximal coreness is very
stable after 2003, in contrast to the prediction from the configuration model; (iii) the maximal
degree is relatively stable versus time, in contrast to the prediction of mainstream Internet
models; (iv) the Internet is loosely connected compared with its randomized version; (v) both the
Internet and its nucleus are more disassortative than the corresponding randomized networks.
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Table 1. The basic topological properties of the Internet at AS level for about
five years with sampling interval of six months. Here, N and E are the total
number of nodes and edges, C denotes the average clustering coefficient, 〈d〉

is the average distance, r is the assortative coefficient [27] quantifying the
degree–degree correlation, and k∗ denotes the maximal degree among all nodes.
Note that another symbol, kmax, usually representing the maximal degree in the
literature, is used to denote the maximal core index (also called coreness, with
definition given below) in this paper. Nn denotes the size of the nucleus, that is
to say, the number of nodes in the kmax-core.

Time N E C 〈d〉 r k∗ kmax Nn

2001–12 12666 25672 0.296 3.62 −0.199 2609 15 18
2002–6 13631 27749 0.292 3.65 −0.190 2692 15 24
2002–12 14625 29057 0.257 3.70 −0.193 2591 14 40
2003–6 15740 32263 0.264 3.71 −0.199 2507 17 40
2003–12 16691 35604 0.257 3.72 −0.199 2436 21 46
2004–6 17861 39637 0.266 3.72 −0.194 2437 24 47
2004–12 19085 42175 0.273 3.74 −0.200 2424 24 54
2005–6 20349 44016 0.275 3.75 −0.202 2462 23 37
2005–12 21588 45917 0.260 3.79 −0.196 2456 23 41
2006–6 22960 48545 0.242 3.82 −0.196 2460 23 78
2006–12 24403 52826 0.242 3.82 −0.196 2467 25 76

2. Exponential growth of the Internet

Up to now, the most prominent passive measurement for collecting AS-level Internet topology
is the Routeviews Project [28], which set up several (about 40) border gateway protocol (BGP)
collectors, each peering with dozens of BGP speakers residing in different ASs, to collect BGP
tables and BGP updates. We collected the routing data from December 2001 to December
2006, with an interval of half a year. Hence, we have in total 11 AS-level Internet graphs.
An AS graph is not a simple snapshot of the Internet, but a result of merging ten snapshots
uniformly distributed within the same month. In this way, we hope an AS graph can give a more
representative view of the Internet than a single snapshot can. We do not incorporate the trace-
route data such as DIMES to complement the AS graph because the process of mapping IP level
paths to AS paths still remains an open issue and could involve many false links, as indicated
in [29]. The basic topological properties are presented in table 1.

As shown in figure 1, the size of the AS-level Internet grows very fast, actually, it obeys
the famous Moore’s law as N (t) ∼ 100.0283t

∼ e0.0652t . We denote λ = 0.0652, the growing rate
and 1t , the period during which the size doubles. Clearly, 1t =

1
λ
ln 2 ≈ 10.64. Since the time

unit is half a year here, we predict that the size of AS-level Internet topology will double
every 5.32 years (in the current framework, the maximal number of ASs is 216; therefore,
this prediction is just of theoretical meaning unless a new framework/protocol is established
in the future that allows more ASs). The number of edges also grows in an exponential form.
Indeed, it scales as E ∼ N γ , with γ = 1.11 ± 0.04. In a short period, this relation can be well
approximated as a linear function. In comparison, the number of links in the World-Wide-Web
grows much faster as E ∼ N 1.29 [30], exhibiting a remarkable effect of accelerating growth [31].
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Figure 1. Number of nodes versus time. The growing tendency of the size of the
AS-level Internet follows an exponential form with exponent 0.0283 ± 0.0001.
The y-axis is in a logarithmic scale. The time labels, from 1 to 11, correspond to
December 2001 to December 2006 with six month intervals.

3. The Internet is loosely connected compared with the randomized graph

From table 1, one can get some structural information about the Internet, for example, it has
very short average distance and large clustering coefficient, hence displays the so-called small-
world phenomenon [32]. However, the topological measurements shown in table 1 are not
independent of each other. For example, a network having very large clustering coefficient is,
statistically, of longer average distance [33] since the abundant local connections are less helpful
for reducing distances. Note that the temporal data reported here exhibit a negative correlation
between clustering coefficient and average distance, but this is not in conflict with [33],
since in [33], the networks are of the same size. Another example is that a network of very
heterogenous degree distribution tends to have negative assortative coefficient [34]. Actually,
based on extensive numerical analysis, Zhou and Mondragón [34] found that the assortative
coefficient of a connected network having the same degree sequence as the Internet is always
close to −0.2 (see figure 3 of [34]). That is to say, given such a degree sequence, one can try any
optimization algorithms to enlarge or depress the assortative coefficient, however, the resulting
value cannot be far from −0.2, indicating that the assortative coefficient is not independent of
degree distribution.

To filter out the structural bias induced by the heterogeneity of degree distribution, Maslov
and Sneppen [35] proposed an edge-exchange operation, based on which a randomized network,
having exactly the same degree sequence as the original network, can be obtained. Then, one
can compare the topological properties between the original and the randomized networks,
and this method can highlight the topological features besides degree distribution. As shown
in figure 2, the procedure of the edge-exchange operation goes as follows: (i) randomly pick
two existing edges e1 = (v1, v2) and e2 = (v3, v4), with all four vertices (v1, v2, v3, v4) being
different; (ii) exchange these two edges to obtain e′

1 = (v1, v4) and e′

2 = (v2, v3). To ensure the
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Table 2. Topological properties of randomized networks. Every data point is
obtained by averaging over ten independent realizations, and in each realization,
the number of exchanges is set as ten times of the number of edges.

Time N E C 〈d〉 r k∗ kmax Nn

2001–12 12666 25672 0.178 3.42 −0.195 2609 19 47
2002–6 13631 27749 0.165 3.47 −0.185 2692 19 50
2002–12 14625 29057 0.154 3.52 −0.187 2591 18 52
2003–6 15740 32263 0.153 3.52 −0.192 2507 21 50
2003–12 16691 35604 0.155 3.51 −0.191 2436 24 52
2004–6 17861 39637 0.151 3.52 −0.185 2437 26 46
2004–12 19085 42175 0.149 3.53 −0.190 2424 26 55
2005–6 20349 44016 0.145 3.55 −0.192 2462 26 55
2005–12 21588 45917 0.132 3.61 −0.186 2456 25 54
2006–6 22960 48545 0.128 3.61 −0.185 2460 26 60
2006–12 24403 52826 0.123 3.63 −0.184 2467 27 70

Figure 2. The edge-exchange operation used in the randomizing process [35].
Two edges are chosen randomly and the two vertices of edges are exchanged
with each other. Multiple edges and self-edges are prohibited. This illustration is
a glorified copy of figure 1 in [36].

operations are sufficient to get a fully randomized network, we set, in each realization, the
number of exchanges equal to ten times of the number of edges.

Some basic topological measurements of the randomized networks are reported in table 2.
The average distance in the real Internet is remarkably longer than its randomized version,
indicating that the Internet is loosely connected. This is because in the Internet, the density of
edges connecting nodes with very large degrees is lower than the randomized graph (see also
the empirical results in [37]). This also makes the real Internet more disassortative (it has more
edges connecting large-degree and small-degree nodes) and of larger clustering coefficient (the
small-degree nodes determine the magnitude of the clustering coefficient in a network with very
heterogenous degree distribution [12], therefore more edges between small-degree nodes make
the clustering coefficient increased). Previously, the Internet is expected to be very compactly
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Figure 3. Illustration of k-core decomposition.

connected, showing the rich-club phenomenon [15]. The comparison between the Internet and
its randomized version provides a completely different picture, that is, the Internet is, indeed,
loosely connected. Colizza et al [37] claims that although large-degree nodes in the Internet are
tightly connected, the connections between large-degree nodes are even sparser than those in
the randomized networks. This conclusion is in accordance with our finding.

4. Size stability of k-cores

Uncovering the growing tendency of the central part of the Internet has great significance since
those central nodes actually govern the global functions of the Internet. In this paper, we apply
the k-core decomposition [18] method to extract the central part, where a k-core is obtained by
recursively removing all the nodes of degree smaller than k, until the degree of all remaining
nodes is larger than or equal to k. Here, k is called the core index or the coreness.

An illustration of k-core decomposition is shown in figure 3. Given a graph, the 0-core is
exactly this graph itself, and the 1-core is the subgraph excluding all the isolated nodes. A node
of degree larger than or equal to k may not appear in the k-core since some of its neighbors could
be previously removed. Generally speaking [25, 26], a core of higher coreness is considered to
be more central. We denote by N (k) the number of nodes in the k-core, the highest coreness,
kmax, is defined as the maximal k that keeps N (k) larger than zero. That is to say, kmax is the
highest coreness corresponding to a nonempty core.

Very recently, Carmi et al [26] studied the topological properties of the nucleus (i.e. the
kmax-core) of the Internet at the AS level. Based on a growing Internet model (scale-free
configuration networks with parameters similar to the real Internet), their numerical results show
that both the size of the nucleus, as well as kmax, grows as a power of N (see figure 3(a) of [26]).
We have applied the k-core decomposition method on the real data, as shown in table 1, there is
no clear evidence of the exponential growth of kmax versus time, which is not in accordance with
the theoretical prediction by the configuration model. In particular, kmax is very stable after 2003.
Notice that, as shown in table 2, even for the randomized graphs, the kmax remains stable after
2003. The size of the nucleus, Nn, exhibits large fluctuations versus time (see table 1), and no

New Journal of Physics 10 (2008) 123027 (http://www.njp.org/)

http://www.njp.org/


7

Figure 4. The sizes of k-cores versus time. The time labels, from 1 to 11,
correspond to December 2001 to December 2006 with six month intervals. The
large open symbols denote the empirical results of the real Internet, whereas
the filled small symbols denote the numerical results of randomized networks.
Those numerical results are obtained by ten realizations, and in each realization,
the number of exchanges is set as ten times of the number of edges.

clear scaling can be observed (the fluctuations of Nn versus time are smaller in the randomized
graphs, however, for both cases, there is no observable scaling behavior).

Since the values of kmax are different for different samples, the direct comparison of the
size of the nucleus versus time may not be relevant. Instead, we investigate the size of the
k-core, N (k), for a given k. As shown in figure 4, N (1) and N (2) display almost the same
scaling as the size of the full Internet, N . N (3) also shows clear increment, however, the data
points have obvious fluctuations and cannot be well fitted by an exponential function. When k
gets larger than 3, the clear increasing tendency is destroyed by large fluctuations. Comparing
with the explosion of the full map of the Internet (see figure 1), the sizes of k-core (k > 3) are
relatively stable, especially after the year 2003. Two typical examples, N (6) and N (12), are
shown in figure 4. Those empirical results suggest that the explosion of the Internet is mainly a
result of growth in the periphery, and the central part may undergo a far different evolutionary
mechanism compared with the periphery nodes.

Figure 4 also reports the numerical results of the sizes of k-cores of the randomized
graphs. When k is very small (k 6 3), the temporal tendencies of the sizes of k-cores for
randomized graphs are almost the same as those of the real Internet. In contrast, when k gets
larger (k > 3), the k-cores of randomized graphs exhibit far different growing behavior from
those of the real Internet. Firstly, for large k, N (k) in the randomized graph is obviously larger
than that in the real Internet. Secondly, N (k) in the randomized graph grows monotonically
without observable fluctuations. Even for the randomized networks, we could not find a clear
scaling/fitting, however, a weak but solid conclusion can be drawn, that is, the size of the k-core
(for large k) in the real Internet grows more slowly than that in the randomized graphs.
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5. Evolving properties of the nucleus

Since the nucleus is the most central part in a network, to uncover its evolving properties is
of significant importance. In figure 5, we report the empirical results for some fundamental
topological characteristics. Firstly, we would like to see if the content of the nucleus changes
much during its evolution. We define Vn(t) as the set of nodes in the nucleus at time t , and ρ(t)
as the fraction of nodes in Vn(t) that stay in Vn(t + 1), namely ρ(t) =

|Vn(t)∩Vn(t+1)|

|Vn(t)| , where |A|

denotes the number of elements in set A. Clearly, small ρ corresponds to inconstant content of
the nucleus. As shown in figure 5(a), in most cases, ρ(t) is larger than 80%. That is to say, the
content of the nucleus does not change much.

Figure 5(b) reports the density of edges in the nucleus, which is defined as DE =
2En

Nn(Nn−1)
,

where En is the number of edges in the nucleus. In most cases, DE is larger than 0.5, indicating
that the nucleus is very tightly connected. In the nucleus, the degree of every node is no less
than kmax, and thus 2En > kmax × Nn. Therefore, there exists a lower bound of DE, namely
DE >

kmax
Nn−1 . This lower bound is also shown in figure 5(b). It is observed that the change of

edge density in the nucleus exhibits the same tendency as the theoretical lower bound. However,
the value of DE is much larger than the lower bound, again indicating that the nucleus is very
tightly connected. As observed in figures 5(e) and (f), the clustering coefficients and distances
(including both diameters and average distances) of the nucleus are very close to those of the
randomized networks (distances of nucleus and the randomized version are exactly the same),
in contrast, the nuclei are more disassortative than their randomized version. In figure 5(c), we
show the nodes’ average degree in the original Internet (i.e. the full Internet). Compared with
the typical value of average degree (about 4, see table 1) and the lower bound degree for a
node to be included in the nucleus, i.e. kmax, one can say that most of the nodes in the nucleus
have high degrees (for example, more than 70% of nodes in the nucleus in December 2006
have degree larger than 100, while the average degree of the full graph is about 4 and kmax is
25). It is interesting that DE, 〈k〉, r and C are strongly positively correlated, whereas they are
negatively correlated with average distance. The correlation between edge density and average
distance is easily understood. Actually, in the high-density case, the shortest path of length
larger than 2 can be ignored (the diameter reported in figure 5(f) has already demonstrated that
no shortest path has length larger than 2), and only if two nodes are not directly connected is
their distance 2. Therefore, 〈d〉 = 1 × DE + 2 × (1 − DE) = 2 − DE, which exhibits a completely
negatively correlation with edge density. We have checked that this analytical result is exactly
the same as the numerical result. However, other correlations cannot be simply explained,
for example, additional links could simultaneously increase the number of triangles and the
degrees of relevant nodes, thus it is hard to say the network with higher density must have larger
clustering coefficient. In addition, the additional links may connect nodes of large degrees thus
increase r , however, they may connect large-degree nodes and low-degree nodes, thus depress r .
Thus far, It is not clear for us whether the correlations found in this paper represent some specific
topological characters of the nucleus, or whether they are just a trivial phenomenon. We here
report this empirical phenomenon, and leave the possible explanation as an open question.

6. Conclusion and discussion

In this paper, we empirically study the evolution of large scale Internet topology at the AS level.
The network size grows in an exponential form, and will double approximately every 5.32 years.
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Figure 5. Statistical properties of the nucleus versus time. (a) The fraction of
nodes still in the nucleus at the next sampling time, ρ(t), versus time t . The
time labels, from 1 to 10, correspond to December 2001 to June 2006 with six
month intervals. (b) The edge density of empirical data (◦) and the corresponding
theoretical lower bound (�). (c) The nodes’ average degree in the full Internet.
(d) The assortative coefficient. (e) The clustering coefficient. (f) The average
distance (denoted by �) and the maximal distance (namely diameter, denoted
by ◦). In the panels (b)–(f), the time labels, from 1 to 11, correspond to December
2001 to December 2006. In the plots (b), (d), (e) and (f), the large open symbols
denote the empirical results of the nucleus, whereas the solid and small symbols
denote the numerical results of the randomized networks. Those numerical
results are obtained by 10 realizations, and in each realization, the number of
exchanges is set as 10 times of the number of edges.
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Although in the current framework, the maximal number of ASs is 216, our finding is of
theoretical interest. Correspondingly, the number of edges shows a weakly accelerating growth
as E ∼ N 1.11. Different from the theoretical prediction by a simple configuration model [26],
the sizes of k-cores with larger k are relatively stable compared with the growth of the full
Internet map, and the highest coreness, kmax, is also stable, especially for the data after 2003.
Those results suggest that the central part and the periphery of the Internet should be governed
by different evolutionary mechanisms. Actually, the majority of the new nodes and edges that
contribute to the explosion of the Internet appear in the periphery.

Up to our knowledge, the most accurate Internet model (judged by a number of topological
parameters) is the so-called positive-feedback preference (PFP) model [38]–[41]. In this model,
a node’s ability to acquire new links increases as a feedback loop of the node’s degree, thus
the maximal degree, k∗, increases very fast (faster than the Barabási–Albert model [42])
as the network size increases. However, as shown in table 1, the maximal degree of the
Internet is also relatively stable versus time, indicating the existence of some hidden evolving
mechanisms instead of or in addition to the PFP mechanism. Indeed, most of the previous
models embedded in the preferential attachment mechanism could not reproduce the stability of
the maximal degree. The aging effect can lead to an evolving network with relatively stable
maximal degree [43], however, there is no clear evidence indicating an aging mechanism
in the real Internet. The limitation of traffic capacity in an individual level may cause a
boundary of the individual connectivity. Another candidate that may contribute to the statistical
properties reported here is the mutual interaction among existing nodes [44]: according to
the transportation demand of information packets, new edges between existing nodes may be
created while some existing edges may disappear or be rewired. In addition, we systematically
compared the structures of the real Internet and its randomized version, and found that the real
Internet is more loosely connected, which is in accordance with the empirical results reported
in [37]. We believe this work can provide insights into Internet topology, as well as some
evidence of the mechanism that governs the evolution of the Internet. In particular, it gives
some important criteria for modeling the Internet.
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