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Basic Block Optimizations

® Common Sub-Expression Eliminationfili3: 23 1L 1%
& a= (x+y)+z; b =x+y;
S t=x+y;a=t+z;b=t;
® Constant Propagation ZUL #&/ % =4S
& X =5; b=x+y,
& b=5+y;
® Algebraic I dentitiesf {5 1E 25 A E AL ]
S a=x*1;
$a=x;

Basic Block Optimizations

® Copy Propagation 5 {& #%
8 a=x+y;b=a c=b+z
S a=xty;b=a c=atz

® Dead Code Eliminationfiil 3 ¢ F 4t h4
8 a=xty;b=a c=atz
$ a=xty,c=atz

® Strength Reductioni & 41 55
Bt=i*4
St=i<<

Yinliang Zhao



Compiler2008CodeOptimization

Yinliang Zhao

RN id

" RIS
™ IR A
™ IS

R A BT o By [ R

LRI T TN
" EFRRER

m AR
L

™ AR

m R
™ AT A PR O




Compiler2008CodeOptimization

(NZEN-E-3:0E DN

® JRFE P AR OR
SH A ZMRRTE
S BFIETA BArPlas BEEE (RLEESEFRED)
c OB ERRURE, AT REEHREAE
o —RBEE IR

® AP SRER
o 1 ER R 4 F T REB RIBIE X % 1247 I ik

BARRR

W A HLARIE S
&AL RP AT

W T EEA INLASTE S
oA g TE, HEERE

™ VLR AHS
sRIEERRE S

Yinliang Zhao



Compiler2008CodeOptimization

TR

B TR, ERPIR - RIEREEEAE
FESTHRESE

W R R B A IEIRET B, AR R EEE A
B plas

™ MR O I B SRR RANPSE 2
™ EFRHLARA 2 B Ko S A A TR S

R 5%

™ TR F AR R AR
" SR RS R
R T NP 2

Yinliang Zhao



Compiler2008CodeOptimization

Yinliang Zhao

10.2 1R 4G A B FEAHE &

E

¥ University of Berkeley

® 6.035 Computer Language Engineering (SMA 5502)
Fall 2005

T BRI

® A basic block isa maximal sequence of instructions
with:
&3 no labels (except at thefirst instruction), and
&no jumps (except in thelast instruction)
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| dea about Basic Blocks

® Cannot jump in a basic block (except at beginning)
¥ Cannot jump out of a basic block (except at end)

® Each instruction in a basic block is executed after
all the preceding instructions have been executed

Basic Block Example

® Consider the basic block
1. L:
2. t:=2*X
3. W:=t+Xx
4. ifw>0gotolL’

® No way for (3) to be executed without (2) having
been executed right before

3 Wecan change (3) tow :=3* X
& Can we eliminate (2) aswell?

Yinliang Zhao
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® A control-flow graph isa directed graph with
s Basic blocks as nodes

& An edge from block A to block B if the execution
can flow from thelast instruction in A tothe
first instruction in B

sfl. AR BRE—4%&ES & jump Ly
s, NERABERBIKHAT T BEA BLTh

mEEAHEN CFG

Control Flow Graphs

RO

int add(n, k) {
s=0,a=4;i=0;
if (k==0)b=1,
elseb=2;
while (i <n) {
s=s+a*b;
i=i+1;

AN = o

T

}

returns,

}

Yinliang Zhao
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Basic Block Construction

/’—,’7;'
~Z
avie Gl

® Start with instruction control-flow graphdig 42 ]
CFG

® Vist al edgesin graph

® Merge adjacent nodes if
£ Only one edge from first node
& Only one edge into second node

Yinliang Zhao
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returns,

returns;
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Optimization Overview

® Optimization seeksto improve a program's
utilization of some resour cefiAkisk B I 12 b
BEYR A
¢ Execution time (most often)
3 Codesize
& Networ k messages sent
¢ Battery power used, etc.
® Optimization should not alter what the program
computesti b AN Z B R P Th g

8 Theanswer must still bethe same
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¥ For languageslike C and Cool therearethree
granularities of optimizationsiZhL B R4
1.L ocal optimizations
* Apply toabasic block in isolation
2.Global optimizations

* Apply to a control-flow graph (method body) in
isolation

3.Inter-procedural optimizations
* Apply across method boundaries

® Most compilersdo (1), many do (2) and very few do

©)

Cost of Optimizations

® SZfR™, aconsciousdecision is made not to
implement the fanciest optimization known
® Why?

£ Some optimizations are hard to implement

£ Some optimizations are costly in terms of
compilation time

& The fancy optimizations are both hard and
costly

¥ The goal: maximum improvement with minimum
of cost

Yinliang Zhao
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L ocal Optimizations =

Tt GEAIND;

¥ The ssimplest form of optimizations
¥ No need to analyze the whole procedur e body
& Just the basic block in question

® Example: algebraic smplification

Algebraic Simplification

® Some statements can be deleted
X:=X+0
X:=x*1
® Some statements can be simplified
X:=x*0 = X:=0
yi=y*2 = yi=yry
X:=X*8 = X:=Xx<<3
X:=x*15 = t:=x<<4, x:=t-X
(on some machines << isfaster than *; but
not on all!)

Yinliang Zhao
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Constant Folding# &3

¥ Operations on constants can be computed at
compiletime

® In general, if thereisa statement
X:=yopz
& Andy and z are constants
©Then y op z can be computed at compile time
B Example x:=2+2 =>x:=4
® Example: if 2<0jump L can be deleted

Rl

® Eliminating unreachable code:
& Codethat isunreachablein the control-flow graph

@3 Basic blocksthat are not the target of any jump or
“fall through” from a conditional

¢ Such basic blocks can be eliminated
® Why would such basic blocks occur?

® Removing unreachable code makesthe program
smaller

& And sometimes also faster, due to memory cache
effects (increased spatial locality)

18
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Single Assignment Form

¥ Some optimizations are simplified if each
assignment isto atemporary that has not appeared
already in the basic blockZF & H & —K

® | nter mediate code can berewritten to bein single
assignment form

X:=a+y X:=a+y
a:=x a; i=X
X:=a*x X;i=a* X
b:=x+a b:=x;+a

(x, and a, arefresh temporaries)

Common Subexpression Eliminatiop=

7 a". \/

® Assume
& Basic block isin single assignment form

® All assignments with same rhs compute the same
value

® Example:
X:Zy+2z X:i=y+z

W:=y+z W =X
® Why is single assignment important here?

19
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Copy Propagation I

Tt GEAIND;

® |f w:=x appearsin ablock, all subsequent uses of
w can be replaced with uses of x

= 5]
b:=z+ y b:=z+ Yy
a:=b = a:=b
X:=2*a X:=2*Db
® This does not makethe program smaller or faster
but might enable other optimizations
& Constant folding
¢ Dead code elimination
® Again, single assignment isimportant here.

Copy Propagation and Constant Foléi

® Example:
a:=>5 a:
X:=2*a = x:=10
y:=Xx+6 y:=16
t:=x*y t:=x<<4

=5
1

20



Compiler2008CodeOptimization

Dead Code Elimination

m If

w :=rhsappearsin a basic block

w does not appear anywhere elsein the program
® Then

the statement w :=rhsisdead and can be eliminated
® Dead = does not contributeto the program'sresult
Example: (aisnot used anywhere else)

X:=z+y b:=z+y b:=z+y

a:.=x = a:=b = X:=2*Db

X:=2*a X:=2*Db

Applying L ocal Optimizations

® Each local optimization doesvery little by itself
® Typically optimizationsinteract
3 Performing one optimizations enables other opt.
® Typical optimizing compilersrepeatedly perform
optimizations until no improvement is possible

& The optimizer can also be stopped at any timeto
[imit the compilation time

Yinliang Zhao
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An Example

® Initial code:
a.=x**2
b:=3
C:=X
d:=c*c
e=b*2
f:=a+d
g.=e*f

® Algebraic optimization:

22
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® Algebraic optimization:

® Copy propagation:
a=x*x

Yinliang Zhao
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® Copy propagation:
a=x*x

® Constant folding:
a.=x*x
b:=3
C:=X

d:=x*x

f:=a+d
g:.=e*f

Yinliang Zhao

24



Compiler2008CodeOptimization

Yinliang Zhao

¥ Constant folding:
a=x*x
b:=3
C:=X
d:=x*X

f:=a+d
g:=e*f

25
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® Copy propagation:
a=x*x
b:=3
C:=X

Yinliang Zhao

26



Compiler2008CodeOptimization

® Copy propagation:
a=x*x
b:=3
C:=X

® Dead code €imination:
a:=x*x

Yinliang Zhao
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® Dead code elimination:
a.=x*x

f:=a+a
g:=6*f

® Thisisthefinal form

Peephole Optimizations on Assembly

({K/

® The optimizations presented before work on
intermediate code

3 They aretarget independent

& But they can be applied on assembly language
also

® Peephole optimization is an effective technique for
improving assembly codeZi fLIEAL
$3The “peephole” isa short sequence of (usually
contiguous) instructions

& The optimizer replaces the sequence with
another equivalent (but faster) one

28
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Peephole Optimizations (Cont.)

® Write peephole optimizations as replacement rules
14y ceer Ig = I 15 wes I
wheretherhsistheimproved version of thelhs
B Examples:
move $a $b, move $b $a — move $a $b
aWorksif move $b $aisnot thetarget of ajump
addiu $a $b k, Iw $c ($a) — lw $c k($b)
& Worksif $a not used later (is“dead”)

M I PS4

® addiu d,s,const

B # $d <-- s+ const.

B # Const is 16-bit two's comp. sign-extended to 32
bits

B # when the addition isdone. No overflow trap.

F lw register_destination, RAM source

B #copy word (4 bytes) at source RAM location to
destination register.

Yinliang Zhao
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Peephole Optimizations (Cont.)

® Many (but not all) of the basic block optimizations

can be cast as peephole optimizations

s Example: addiu $a $b 0 — move $a $b

S Example move$a$a —

$ These two together eliminate addiu $a $a 0

® Just likefor local optimizations, peephole
optimizations need to be applied repeatedly to get
maximum effect

L ocal Optimizations. Notes.

® Intermediate code is helpful for many
optimizations

® Many ssmple optimizations can still be applied on
assembly language

Yinliang Zhao
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L ocal Optimizations. Notes(I1).

¥ Serious problem: what to do with pointers?
©*t may change even if local variablet does not:
Aliasing
S Arraysarea special case (address calculation)
® What to do about globals?
® What to do about calls?

¢ Not exactly jumps, because they (almost) always
return.

& Can modify variables used by caller
® Next: global optimizations
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¥ Outline

® What is register allocation
® Webs

® 30 & Interference Graphs
® [&35 t1.Graph coloring

® 3 HH Spilling

® )24 Splitting

® M ore optimizations (1)

m AT AR B 6.035©MIT Fall 1999

Storing values between def and use

¥ Program computes with values
& value definitions (where computed)
& value uses (where read to compute new values)
® Values must be stored between def and use
® First Option
{3 store each valuein memory at definition
& retrieve from memory at each use
B Second Option
¢ store each valuein register at definition
3 retrieve value from register at each use

32
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| ssues

E On atypical RISC architecture
& All computation takes place in registers

& Load instructions and store instructions transfer
values between memory and registers

® Add two numbers, values in memory
< load rl, 4(sp)
& load r2, 8(sp)
& add r3,r1,r2
&3 storer3, 12(sp)

| ssues

E On atypical RISC architecture
& All computation takes place in registers

& Load instructions and store instructions transfer
values between memory and registers

® Add two numbers, values in memory
& load rl, 4(sp)
& load r2, 8(sp)
& add r3,r1,r2
& storer3, 12(sp)

Yinliang Zhao
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| ssues

® On atypical RISC architecture
& All computation takes place in registers
& Load instructions and store instructions transfer
values between memory and registers
® Add two numbers, values in registers
S add r3,r1,r2

| ssues

® Fewer instructions when using registers
& Most instructions are register-to-register
& Additiona instructions for memory accesses
¥ Registers are faster than memory
& wider gap in faster, newer processors
& Factor of about 4 bandwidth, factor of about 3 latency

& Could be bigger if program characteristics were
different

® But only asmall number of registers available
& Usualy 32 integer and 32 floating-point registers
& Some of those registers have fixed users (r0, ra, sp, fp)

Yinliang Zhao
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Register Allocation

¥ Deciding which values to store in limited number of
registers

¥ Register allocation has a direct impact on
performance

& Affects amost every statement of the program
& Eliminates expensive memory instructions

& # of instructions goes down due to direct

manipulation of registers (no need for load and
store instructions)

& Probably is the optimization with the most impact!

What can be put in aregister?

® Values stored in compiler-generated temps
® Language-level values
& Vaues stored in local scalar variables
& Big constants
& Vaues stored in array elements and object fields
¥ |ssue: diasanalysis
B Register set depends on the data-type
¢ floating-point valuesin floating point registers
& integer and pointer valuesin integer registers

Yinliang Zhao
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Web-Based Register Allocation

¥ Determine live ranges for each value (web)
¥ Determine overlapping ranges (interference)
® Compute the benefit of keeping each web in aregister

(spill cost)
® Decide which webs get aregister (allocation)

® Split webs if needed (spilling and splitting)
B Assign hard registers to webs (assignment)
® Generate code including spills (code gen)

B Starting Point: def-use chains (DU chains)
& Connects definition to all reachable uses

E Conditions for putting defs and uses into same web
& Def and all reachable uses must be in same web
& All defsthat reach same use must be in same web

® Useaunion-find algorithm

36
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Webs

® Web isunit of register allocation
® |f web allocated to agiven register R
& All definitions computed into R
& All usesread fromR
? If web allocated to amemory location M
& All definitions computed into M
& All usesread fromM
¥ Issue: instructions compute only from registers
" Reserve some registersto hold memory values

40
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Convex Sets and Live Ranges

® Concept of convex set

® A set Sisconvex if
& A,BinSand Cisonapath from A to B implies
¢ CisinS

® Concept of live range of aweb

& Minimal convex set of instructions that includes all
defs and usesin web

& Intuitively, region in which web'svalueislive

Interference

® Two websinterfereif their live ranges overlap (have
anonemtpy intersection)

® If two webs interfere, values must be stored in
different registers or memory locations

® |If two webs do not interfere, can store valuesin same
register or memory location

Yinliang Zhao
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® \Webs S1IFS2Fi
B \Webs S21S3T1
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Interference Graph

® Representation of webs and their interference
& Nodes are the webs

&

& An edge exists between two nodes if they interfere

Register Allocation Using Graph Colori

® Each web isallocated aregister
& each node gets aregister (color)
® |f two webs interfere they cannot use the same register

& if two nodes have an edge between them, they
cannot have the same color

Yinliang Zhao
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Graph Coloring

¥ Assign acolor to each node in graph

¥ Two nodes connected to same edge must have
different colors

® Classic problem in graph theory
® NP complete
& But good heuristics exist for register allocation

Yinliang Zhao
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¥ Option 1
¢ Pick aweb and allocate value in memory

& All defs go to memory, al uses come from memory
B Option 2

¢ Split the web into multiple webs
® |n ether case, will retry the coloring

Which web to pick?

® One with interference degree >= N

® One with minimal spill cost (cost of placing valuein
memory rather than in register)

® What is spill cost?
& Cost of extraload and store instructions

48
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|deal and Useful Spill Costs

¥ ldeal spill cost -dynamic cost of extraload and store
instructions. Can't expect to compute this.

& Don’'t know which way branches resolve
& Don't know how many times |oops execute

& Actual cost may be different for different
executions

B Solution: Use a static approximation

& profiling can give instruction execution frequencies
or use heuristics based on structure of control flow
graph

One Way to Compute Spill Cost

® Goal: give priority to values used in loops
B So assume loops execute 10 or 8 times
® Spill cost =
& sum over all def sites of cost of a store instruction
times 10 to the loop nesting depth power, plus

& sum over all use sites of cost of aload instruction
times 10 to the loop nesting depth power

® Choose the web with the lowest spill cost

Yinliang Zhao
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Spill Cost Example =

Tt GEAIND;

¥ Spill Cost For x
storeCost +loadCost

® Spill Cost For y
$39*storeCost +9*loadCost

® With 1 Register, Which
Variable Gets Spilled?

Splitting Rather Than Spilling

B Split the web

& Split aweb into multiple webs so that there will be
less interference in the interference graph making it
N-colorable

& Spill the value to memory and load it back at the
points where the web is split

50
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Splitting Example
Xy z

Splitting Example

Xy z
|

Yinliang Zhao

51



Compiler2008CodeOptimization

Splitting Example
Xy z

Splitting Example

Xy z
|
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Splitting Example
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Cost and benefit of splitting

® Cost of splitting anode

& Proportion to number of times splitted edge hasto
be crossed dynamically

& Estimate by itsloop nesting
" Benefit

& Increase colorability of the nodes the splitted web
interferes with

& Can approximate by its degree in the interference
graph
" Greedy heuristic

& pick the live-range with the highest benefit-to-cost
ration to spill

Yinliang Zhao
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