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On Diameter and Average Distance of Graphs∗

Zhou Tao† Xu Junming† Liu Jun†

Abstract

The diameter and average distance of a graph are two important parameters to
measure the efficiency of interconnection networks. Ore gave an upper bound of the
number of edges of an undirected graph in terms of order and diameter of the graph.
Entringer et at gave a lower bound of the average distance of an undirected graph and,
respectively, a digraph in terms of order and the number of edges of the graph. The
present paper provides short proofs of these two results and gives a counterpart of Ore’s
result for a digraph, and improves Entringer et al’s results in term of diameter of the
graph. Combining our results with Ore’s will yield a new lower bound on σ(G) better
than that given by Plesnik.
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1 Introduction

We follow Bondy and Murty[1] for graph-theoretical terminology and notation not defined
here. In the present paper, a graph G = (V, E) always means a simple graph with vertex-set
V = V (G) and edge-set E = E(G). The cardinality |V (G)| is called the order of G, and
ε(G) = |E(G)| is the size or the number of edges of G, The distance from a vertex x to
another vertex y, denoted by dG(x, y), is defined as the length of a shortest path from x to
y in G. The diameter of G, denoted by dG(G), is defined as the maximum distance between
any pair of vertices in G. The average distance of G with order v (≥ 2), denoted by µ(G),
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is defined as

µ(G) =
σ(G)

v(v − 1)
,

where σ(G) =
∑

x,y∈V

dG(G; x, y).

The diameter and average distance are two important parameters to measure the ef-
ficiency of interconnection networks. It is the reason why the two concepts have received
considerable attention in the literature. There are several excellent surveys of earlier results
on diameter and average distance of graphs, see, for example, Chung[2] and Plesnik[3].

Of the known results, two are considered in the present paper. The one is well-known
Ore’s theorem[4] that gives an upper of ε(G) for an undirected graph G in terms of order and
diameter of G. The other, due to Entringer, Jakson, Slater[5] and Ng, Teh[6], gives a lower
bound of σ(G) for an undirected graph and, respectively, a digraph in terms of order and size
of the graph. Ore’s theorem has been used in the proofs of many extremal problems (see, for
example, [7] and [8]). The original proof, however, is somewhat cumbersome. Apart from
average distance, σ(G) also occurs in the computation of other graph-theoretical parameters,
such as the forwarding index of a routing [9] and [10].

We, in the present paper, provides a short proof of Ore’s theorem and a counterpart of a
digraph. We also give a short proof of Entringert et al’s results. It can be easily found from
our proof that Entringert et al’s lower bound on σ(G) is obtained subject to the diameter of
G being at most two tacitly. We will improve this lower bound in term of diameters of the
graph subject to the diameter more than two. Combining our results with Ore’s will yield a
new lower bound on σ(G) better than that given by Plesnik (see, Theorem 2 and Theorem
3 in [3]).

2 On Ore’s theorem

A graph is called a (v, k)-graph if it has order v and diameter k. It is clear that any
(undirected or directed) graph of order v can be obtained by removing some edges from a
complete graph Kv or a complete digraph K∗

v of order v. It is this simple observation that
can be used to give a short proof of Ore’s theorem.

Theorem 1 (Ore[4]) For any connected undirected (v, k)-graph G,

ε(G) ≤ k +
1

2
(v − k + 4)(v − k − 1).

Proof Use the symbol η(v, k) to denote the minimum η for which η edges must be removed
from Kv to obtain a (v, k)-graph. Thus, for any (v, k)-graph G, we have that

ε(G) ≤ ε(Kv) − η(v, k). (1)

Assume that G′ is a (v, k)-graph obtained by removing η(v, k) edges from Kv. Clearly,
ε(G) ≤ ε(G′). Let P = (x0, x1, · · · , xk) be a shortest path of length k in G′. Obviously, any
two vertices xi and xj in P with j − i > 1 are nonadjacent in G′ because of the shortness of
P . This implies that at least 1

2 k(k − 1) edges should be removed from Kv to obtained G′.
On the other hand, because of the shortness of P for any vertex x in G′ not in P , if

exists, it can not be adjacent to two vertices xi and xj in P with |xi − xj | > 2 at the same
time. Thus, x can be adjacent to at most 3 vertices in P . In other words, there are at least
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(k − 2) vertices in P not adjacent to x. As a result, (v − k − 1)(k − 2) extra edges in Kv

must be also removed to obtained G′. It follows that

η(v, k) ≥
1

2
k(k − 1) + (v − k − 1)(k − 2). (2)

Combining (1) and (2), we have that

ε(G) ≤ ε(G′) ≤
1

2
v(v − 1) −

1

2
k(k − 1) − (v − k − 1)(k − 2)

= k +
1

2
(v − k + 4)(v − k − 1),

as desired and the theorem follows.

Using the same way, we can easily obtain an upper bound on the number of edges of
(v, k)-digraphs.

Theorem 2 For any strongly connected (v, k)-digraph D,

ε(D) ≤ v(v − k + 1) +
1

2
(k2 − k − 4).

Proof Assume that D′ is a (v, k)-digraph obtained by removing η(v, k) edges from a com-
plete digraph K∗

v . Clearly, ε(D) ≤ ε(D′). Let P = (x0, x1, · · · , xk) be a shortest directed
path of length k in D′ from x0 to xk . Clearly, for any two vertices xi and xj in P with
j − i > 1, the edge (xi, xj) /∈ E(D′). Thus, at least 1

2 k(k − 1) edges in K∗

v have to be
removed to obtain D′. Also because of the shortness of P , for any vertex y in D′ not in P ,
if exists, the two edges (xi, y) and (y, xi+3) can not appear in D′ simultaneously for each
i = 0, 1, · · · , k − 3. This fact implies that at least (v − k − 1)(k − 2) extra edges must be
removed from K∗

v to obtain D′. Thus, we have

ε(D) ≤ ε(D′) ≤ε(K∗

v ) −
1

2
k(k − 1) − (v − k − 1)(k − 2)

=v(v − k + 1) +
1

2
(k2 − k − 4)

as desired and the theorem follows.

From our proofs, it is easy to construct a (v, k)-graph and a (v, k)-digraph such that
the upper bounds given in Theorem 1 and Theorem 2 can be attained, respectively.

3 On average distance

The following lower bounds on σ(G) are obtained by Entringer, Jackson and Slater [5] for
an undirected graph and Ng and Teh [6] for a digraph. We here provide a short proof by
using the same way as one used in the above section.

Theorem 3 Let G be a graph with v vertices and ε edges, then
(a) σ(G) ≥ 2v(v − 1) − 2ε if G is an undirected graph;

(b) σ(G) ≥ 2v(v − 1) − ε if G is a digraph.
Moreover, the equality occurs if d(G) ≤ 2.
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Proof We consider an undirected graph G obtained by removed p edges from a complete
graph Kv. Then

ε(G) =
1

2
v(v − 1) − p. (3)

Suppose that these p edges are x1y1, x2y2, · · · , xpyp. Then

σ(G) =
∑

xy∈E(G)

dG(x, y) +

p
∑

i=1

[dG(xi, yi) + dG(yi, xi)] . (4)

Obviously, dG(x, y) = dG(y, x) = 1 if xy ∈ E(G), and dG(x, y) = dG(y, x) ≥ 2 other-
wise. It follows from (4) that

σ(G) ≥ 2ε + 4p. (5)

Combining (3) and (5) yields the conclusion (a).

The same consideration to a digraph D, we have ε(D) = ε(K∗

v )− p = v(v − 1)− p, and
so

σ(D) =
∑

(x,y)∈E(D)

dD(x, y) +

p
∑

i=1

dD(xi, yi)

≥ 2ε + 2p = 2v(v − 1) − ε.

The last assertion that the equality occurs if d(G) ≤ 2 is obviously from our proof. The
theorem follows.

It can be found from our proof that the lower bound on σ(G) in Theorem 3 is obtained
subject to d(G) ≤ 2 tacitly. Note that if d(G) = 1, then G is a complete graph and so
there is nothing to do for σ(G). We can suppose that d(G) ≥ 2 in our discussion below and
improve the lower bounds of σ(G) which dependents on d(G) strongly.

Theorem 4 Let G be an undirected graph with v vertices and ε edges. If d(G) = k ≥ 2,
then,

σ(G) ≥











2v(v − 1) − 2ε +
1

3
k(k − 1)(k − 2) +

1

2
(v − k − 1)(k − 2)(k − 4), if k is even;

2v(v − 1) − 2ε +
1

3
k(k − 1)(k − 2) +

1

2
(v − k − 1)(k − 3)2, if k is odd.

Proof For each j = 1, 2, · · · , k, let cj be the number of ordered pairs of vertices with
distance j. Clearly,

σ(G) =

k
∑

j=1

jcj , c1 = 2ε,

k
∑

j=2

cj = v(v − 1) − 2ε.
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Thus, we have that

σ(G) = c1 +

k
∑

j=2

jcj

= c1 + 2
k

∑

j=2

cj +
k

∑

j=2

(j − 2)cj

= 2v(v − 1) − 2ε +

k
∑

j=2

(j − 2)cj

= 2v(v − 1) − 2εS, (6)

where S =
k
∑

j=2

(j − 2)cj .

So we need to only consider pairs of vertices with distance larger than 2. Let P =
(x0, x1, · · · , xk) be a shortest path of length k in G and let cl

P be the number of pairs of
vertices in the set VP = {x0, x1, · · · , xk} with distance l (1 ≤ l ≤ k) in P . Then

dP (xi, xj) = |i − j|, and cl
P = k + 1 − l.

It follows that the contribution of VP to S is

SP = 2

k
∑

l=3

(l − 2)cl
P = 2

k
∑

l=3

(l − 2)(k + 1 − l) =
1

3
k(k − 1)(k − 2). (7)

For any vertex y ∈ VO = V (G) \ VP , we have

dG(xi, y) + dG(xj , y) = dG(y, xi) + dG(y, xj) ≥ |i − j|, xi, xj ∈ Vp.

We consider the pairs of vertices xi and xk−i in p. Note that dG(xi, y) + dG(xk−i, y)
will do some contribution to S if |k − 2i| > 4. Thus, the contribution of a single vertex y to
S is

Sy ≥











2[2 + 4 + · · · + (k − 4)] =
1

2
(k − 2)(k − 4), if k is even;

2[1 + 3 + · · · + (k − 4)] =
1

2
(k − 3)2, if k is odd.

It follows that the contribution of VO to S is

SO ≥ |VO | · Sy ≥











1

2
(v − k − 1)(k − 2)(k − 4), if k is even;

1

2
(v − k − 1)(k − 3)2, if k is odd.

(8)

Noting S ≥ SP + SO and combining (6) with (7) and (8), we complete the theorem
immediately.

By a similar consideration, we can obtain the following result, the proof is omitted.

Theorem 5 Let D be a digraph with v vertices and ε edges. If the diameter of G is
k ≥ 2, then:

σ(D) ≥











2v(v − 1) − ε +
1

6
k(k − 1)(k − 2) +

1

4
(v − k − 1)(k − 2)(k − 4), if k is even;

2v(v − 1) − ε +
1

6
k(k − 1)(k − 2) +

1

4
(v − k − 1)(k − 3)2, if k is odd.
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As a direct consequence of Theorem 4 and Theorem 5, we can immediately obtain
Theorem 3 and the equality occurs if and only if d(D) ≤ 2.

Substituting the upper bounds on ε(G) in Theorem 1 and ε(D) in Theorem 2 into
Theorem 4 and Theorem 5, respectively, yield new lower bounds of σ(G) and σ(D) only in
terms of their order and diameter, which is better than that given by Plesnik (see, Theorem
2 and Theorem 3 in [3]). The details are omitted here and left to the reader.
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