||
论文题目:
作者:吕天帅(第一作者兼通知作者)
论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202206024
论文摘要:Developing X-ray or UV-light charged storage and mechanoluminescence (ML) materials with high charge carrier storage capacity is challenging. Such materials have promising utilization in developing new applications, for example, in flexible X-ray imaging, stress sensing, or non-real-time recording. Herein, the study reports on such materials; Bi3+, Tb3+, Ga3+, or Ge4+ doped LiTaO3 perovskite storage and ML phosphors. Their photoluminescence, thermoluminescence (TL), and ML properties are studied. The charge carrier trapping and release processes in the Bi3+, Tb3+, Ga3+, or Ge4+ doped LiTaO3 are explained by using the constructed vacuum referred binding energy diagram of LiTaO3 including the energy level locations of unintended defects, Tb3+, Bi3+, and Bi2+. The ratio of the TL intensity after X-ray charging of the optimized LiTaO3:0.005Bi3+,0.006Tb3+,0.05Ga3+, or LiTaO3:0.005Bi3+,0.006Tb3+,0.05Ge4+ to that of the state-of-the-art BaFBr(I):Eu2+ is ≈1.2 and 2.7, respectively. Force induced charge carrier storage phenomena is studied in the Tb3+, Bi3+, Ga3+, or Ge4+ doped LiTaO3. Proof-of-concept compression force distribution sensing and X-ray imaging is demonstrated by using optimized LiTaO3:0.005Bi3+,0.006Tb3+,0.05Ga3+ dispersed in a hard epoxy resin disc and in a silicone gel film. Proof-of-concept color-tailorable ML for anti-counterfeiting is demonstrated by admixing commercial ZnS:Cu+,Mn2+ with optimized LiTaO3:0.005Bi3+,0.006Tb3+,0.05Ge4+ in an epoxy resin disc.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-9-14 07:52
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社