Plant Com:澳大利亚西澳大学Mylne团队解析拟南芥除草剂磺草灵靶标的晶体结构和作用机制

已有 2068 次阅读 2022-4-14 15:35 |个人分类:每日文献|系统分类:科研笔记

Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam


背景介绍:Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS) which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics – and while still in widespread use, asulam has faced regulatory scrutiny. 


研究内容:With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. 


Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity and explore the structural basis of their potency by modelling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.

该研究解决了拟南芥结合HPPK到DHPS的结构,揭示一个保守结构。该研究通过在线粒体的HPPK/DHPS模拟这些化合物,阐明了 asulam 和antibiotic sulfamethoxazole有除草和抗菌活力,并探索到它们效力的结构基础。我们的发现合理设计植物的选择性的机会有限,植物和微生物之间的药代动力学或给药差异可能是保护这一作用模式的最佳方式。


Journal: Plant Communications

First Published:  April 9, 2022

上一篇:Plant Cell | 研究揭示病原体触发的植物免疫中的转录重编程
收藏 IP: 211.162.26.*| 热度|


该博文允许注册用户评论 请点击登录 评论 (0 个评论)


Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-7-18 02:40

Powered by

Copyright © 2007- 中国科学报社