lzr3333521的个人博客分享 http://blog.sciencenet.cn/u/lzr3333521

博文

Fourier限制性理论阅读建议 精选

已有 3197 次阅读 2022-7-23 00:32 |个人分类:数学感悟|系统分类:科研笔记


预备知识:调和分析基础 (实方法),Stein的1993调和分析专著的第8-9章(振荡积分基础),古典微分几何(曲线与曲面的局部理论).

  1. Hickman的decoupling讲义

该讲义一共五讲,是该领域入门的最佳材料之一.  第1讲是Fourier限制性估计的简要介绍,要点包括转换引理的严格化,2D reverse square function estimate 的证明(Cordoba的双正交性方法),波包分解的叙述与证明(傅里叶级数观点),限制性估计中的Kakeya型技巧. 第2讲是decoupling定理的应用,包括离散限制性估计与周期Schrodinger方程的Strichartz估计,让读者预先体会decoupling的巨大威力. 第3讲介绍B-C-T的多线性限制性估计以及Bourgain-Guth方法,这些方法在decoupling定理的证明中扮演着关键的角色. 第4-5讲是Bourgain-Demeter关于抛物面的l^2 decoupling不等式的证明,尤其是decoupling常数的迭代写得比原文更通俗易懂。

同样主题的还有Guth的decoupling讲义,也很好,与Hickman的讲义各具特色. 

2. Sogge的专著《经典分析中的傅里叶积分》

建议重点阅读第0章最后两节(波前集),第二章(Hormander型振荡积分算子)。选读第6章(Fourier积分算子基础理论)、第8章(Fourier积分算子的local smoothing). 上述章节是目的是研究变系数调和分析 (即四大猜想的变系数版本以及相关问题)。这本书的另一个导向(第3-5章)是研究紧致黎曼流形上Laplacian的eigenfunction估计,同样导向的还有一本书:Sogge的Hangzhou lectures.

3. Bourgain-Guth论文, GAFA, 2011

第2-4章是作者当时对限制性猜想的突破性进展,是之后该领域几乎所有重要文献的基础,是一篇经典文献。

4. Guth论文, 2016, JAMS

该文首次将多项式方法用于研究振荡积分问题,是开创性的论文, 改进了三维限制性猜想的指标,改进的点在于引理3.6,证明使用了代数几何(Bezout定理)与微分拓扑(Sard定理),具有很强的关联几何洞察.

5. Xiumin Du的博士论文

Du-Guth-Li解决了2+1维的Carleson问题,证明的核心方法是多项式分解+Refined Strichartz估计,后者是改进的关键.

6. Du-Zhang论文, Annals

解决了高维的Carleson问题,证明包含了极为巧妙的数学观察,将局部常数性质,多尺度分析,二进制鸽笼原理,decoupling,尺度归纳等技术运用的出神入化,可谓是技惊四座.

7. Guth高维多项式方法论文, Acta.

创新点在于第6节的横截等分布估计. 这是用多项式方法研究高维限制性理论的必读文献.

8. Tao的抛物面最优双线性限制性估计论文,GAFA

个人认为是双线性方法的顶峰,用到了Wolff的two ends argument和非常深刻的关联几何想法. 有没有读懂, 就看你有没有理解最后几页,然后用直观地语言讲出来.  本人用了1年时间,读了10多遍才理解其奥妙. 

注:读这篇文章如有细节卡住,可参考Mattila专著中最后一章里的推导,不足之处在于Mattla的写法缺乏几何直观。要想真正理解关联几何部分的想法,最后还得反复读Tao的原文.

9. Hong Wang的论文,Duke

创新点在于作者引入了新的关联几何对象:broom. 此外,第9节的代数几何引理的证明也是非常有难度的.  除非有相当的基础和非凡的韧性,否则看此文犹如读天书。本人看了2年,才基本啃下来.

10. Guth-Hickman-Ilioupoulou论文, Acta

作者应用7中的方法得到了具有正定相函数的Hormander型振荡积分的最佳L^p估计,其中第2节关于Kakeya压缩现象的解读很有启发性. 该文长达120页,写得非常详细,风格对读者很友好,可当成一本教材去读.

补充:Demeter的专著,书名为Fourier restriction, Decoupling and Applications. 由于我没怎么看过这本书,所以没有列在正文中.



https://blog.sciencenet.cn/blog-3371918-1348419.html

上一篇:平方函数估计习题解答
收藏 IP: 60.253.195.*| 热度|

1 王明

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2023-10-3 14:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部